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ABSTRACT

A finite difference scheme is presented for the solution

of the non-linear shallow water equations based on flux

difference splitting. The scheme is applied to two standard

test problems in one-dimension.



il INTRODUCTION

The work of Glaister [1],[2] presents an approximate
Riemann solver for the Euler equations of gas dynamics for a
general equation of state. In the present report we develop a
similar type of approximate Riemann solver for the non-linear
shallow water equations.

In 82 we derive the two-dimensional shallow water
equations and consider the Jacobians of the corresponding flux
functions, while in &3 we define the Riemann problem for the
shallow water equations and derive approximate solutions for
the one-dimensional case. Then in 84 we discuss the
two-dimensional case incorporating operator splitting and in §5
describe a technique for dealing with source terms. In 86 we
describe two one-dimensional problems with exact solutions, and
finally in 8§87 give the numerical results for the problems of %6

using the scheme of §3.



2. SHALLOW WATER EQUATIONS

In this section we derive the shallow water approximation
in the case of incompressible, irrotational flow and give the
eigenvalues and eigenvectors of the Jacobians of the

corresponding flux functions.

2.1 Equations of flow

We begin by considering a typical physical situation with
water occupying the region (x,z) € R, -h(x,z) < vy ¢ nix,z,t),
(see figure 1). The depth of the undisturbed water is given
by h(x,z) (so that y = -h(x,z) represents the bottom of the
sea, say) and n =ni(x,z,t) represents the free surface
elevation of the water. The undisturbed free surface of the
water is taken as lying in the x-z plane and the y-axis is

taken vertically upwards (see figure 1).

The equations of flow of an incompressible fluid in three

dimensions are

u +v._ +w_ =0 (continuity) (2.1)

Du _ _ 1

5F = Yt + uu,, + vuY + wu, = 5 Py (2.2a)
Dv _ __1 _ (equations

5t = Vi + uv_ + vv_ + wv, = 5 pY It of motion)(2'2b)
Dw _ - -1

5F = Yt + uw_ + vw__ + ww,, = 5 P, | (2.2c)



-

Figure 1
where u = u(x,y,z,t), v = v(x,y,z,t), w = w(x,y,z,t) and
p = p(x,y,2,t) represent the velocity in each of the

co-ordinate directions x,v,z and the pressure of the fluid,

respectively. The material derivative is given by

D _ 9o 3 3 3
and p,g represent the density of the fluid and the
acceleration of gravity, respectively. In addition to
equations (2.1)-(2.2c) we have the following boundary
conditions

D (kinematic condition
se(n-y) =0 at the free (2.4)
surface vy = n)



(dynamical condition
p=20 at the free surface (2.5)

Yy =n)
and

(zero normal velocity
(y+h) =0 at the lower (2.6)
boundary vy = -h).

Using equation (2.3) the boundary conditions given by equations

(2.4) and (2.6) become
(nt + un, + wn_ - v)l! = 0 (2.7)

and

(uhX + whZ + v)| = 0 = (2.8)

The two-dimensional shallow water equations are a consequence
of equations (2.1)-(2.2c¢),(2.5) and (2.7)-(2.8) together with
the shallow water approximation on the y-component of the

acceleration (see below). We proceed as follows.

Integration of equation (2.1) with respect to y yields

n

n n
J (ux)dy + J (wz)dy + v = 0 , (2.9)

and using the conditions given by equations (2.7)-(2.8) this

becomes
N n -
J uxdy + J wzdy + e + u! N, + w 1,
-h -h y=n y=n
+ u| Dy ) = 0. (2.10)

y=-h y=-h



Introducing the relations

a n(xlzlt) n
EEJ udy = J uxdy + u|
-h(X,Z) -h
and
3 n(x,z,t) n
§EI wdy = J wzdy + wI
-h(x,z) -h

equation (2.10) can be written as

<)
X

n
—| udy + Cl

ot u| .h (2.11)
y=-h
o, + w’ h, (2.12)
y=-n v=-h
= -, (2.13)



2.2 Shallow water approximation

We now introduce the shallow water approximation, namely,
the assumption that the y-component of the acceleration of the
water particles has a negligible effect on the pressure P
Formally, if we set the y-component of the acceleration to

zero, i.e.
Dv
Dt
then integrating equation (2.2b) and using the surface

= 0 (2.14)

condition on the pressure given by equation (2.5) yields the
hydrostatic pressure relation
p = pg(n - v (2.15)

Following equation (2.15) we obtain

P, = PIN, (2.16a)
p, = p9n, (2.16b)
so that P, and p, are independent of vy. It follows from

equations (2.2a) and (2.2c) that the x and 2z components of
the acceleration of the water particles are independent of y.

Hence the x and 2z components of the velocity, i.e. u and

W, are also independent of vy, for all t if they were at
any given time, say at t = 0. We shall assume this to be
true 1in all cases so that u = u(x,z,t) and w = w(x,z,t)
depend on X,z and t only. In view of equations (2.l6a-b)

and the preceding remarks the equations of motion (2.2a) and

(2.2¢c) become

u, + uu. + wu (2.17)
X A

t

+ +
Wt UWX th

Il
|
Q
=

= - gn : (2.18)



Finally, because of the assumptions made above we have

Jnu dy = u(n + h) (2.19)
-h
and
n
J wdy = w(n + h) " (2.20)
-h

so that equation (2.13) becomes

o . (2.21)

ng + (u(n+h)),  + (w(nth)),
Equations (2.17)-(2.18) and (2.21) are the governing

equations that we shall work with in this report.

2.3 Conservation Form

Before investigating the structure of the equations we
write them in standard conservation form.

Firstly, equation (2.21) can be written as

(n+h)t + (u(n+h))x + (w(n+h))Z = 0, (2.22)
since ht = 0. Secondly, multiplying equation (2.22) by u

and adding to equation (2.17) multiplied by n + h vyields

((n+h)u)t + ((n+h)u2)x + ((n+h)uw)Z = - gnx(n+h) . (2.23)

Similarly, equations (2.22) and (2.17) yield

((n+h)w)t + ((n+h)uw)x + ((n+h)W2)Z =5 gnz(n+h) . (2.24)
If we now write the terms on the right hand side of equations
(2.23) and (2.24) as - %((n+h)2}x + g(n+h)h and

- g((n+h)2) + g(n+h)h respectively, then we can rewrite the
2 z z
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governing equations (2.22)-(2.24) in conservation form as

w, +E, +G, = f+g (2.25)
where
w = (o, su, ow)T (2.26)
Flw) = (ou, ou? + &, ouw)T (2.27)
=N 7 '2_’ .
- 2 %2 T
G(w) = (ow, duw, ow* + 2--) (2.28)
£ = (0, gon_, 0)F (2.29)
_ T
g = (0, 0, geh,) (2.30)
and
$ = g(n + h) . (2.31)

Equation (2.25) has been written so that the right hand side
does not contain any derivatives of flow variables. However,
the vectors f and g are associated with derivatives in the
x and 2z directions, respectively, as a consequence of the
terms hx and hz. Moreover, equations (2.25)-(2.31)

represent a system of hyperbolic equations for the variables

$ = o(x,z,t), m=m(x,z,t) =¢u and n = n(x,z,t) = ow.

2.4 Jacobians

We now construct the Jacobian A, of the flux function

F(w), given by

A = (2.27)

r

ol o
I|I"1]

and find its eigenvalues and (right) eigenvectors, since this
information, together with a similar analysis for the Jacobian
of G, will form the basis for an approximate 'Riemann'

solver.
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With the definitions of m and n above we have
w = (é,mn)T (2.23)
and

i
_ m? $2 mn
F(w) = [m, > + > 3—] .

From equations (2.23) and (2.24) we then have the following

(2.24)

expression for the Jacobian

0 1 0
A = - u® + 9 2u 0 . (2.25)
- uw w u
(2.5) Eigenvalues and Eigenvectors

The eigenvalues )i and corresponding eigenvectors e;

of A are then found to be

1

A = u o+ Ve, e = | ut Vo' (2.26a)
W
il

Ag = u -V, e, = u- Ve (2.26b)
W

Ay = u, ey = 0 o (2.26¢)

A similar analysis can be carried out for the Jacobian

ol o
I€I 1



In the next section we develop an approximate 'Riemann'
solver in the one-dimensional case using the results of this

section.

Sl ONE-DIMENSIONAL CASE

In this section we define, for the one-dimensional shallow
water equations, an analagous problem to the Riemann problem of
one-dimensional gas dynamics, and derive approximate solutions

to this problem.

3.1 Equations of flow

The governing equations we shall look at in this section

can be written as

we +H = h (3.1)
where
W= (o,0u)T (3.2a)
Hw) = (ou,eu? + 5 )T (3.2b)
and
h = (0,g0h'(x))7T . (3.3)

We have here assumed slab symmetry so that the flow variables
are independent of z, i.e. ¢ = ¢(x,t) = g(n+h) and
u = u(x,t) where n = ni(x,t) and h = h(x). Using the

results of 82 we find that the eigenvalues and eigenvectors of

oH

the Jacobian C = 3w given by



0 1
g = (3.4)
¢ - u® 2u
are
. 1 1
R Ve, e = (3.5a)
lu + Vo |
2 1 3
Ay = u- V@, e, = (3.5b)
hu—ﬁd

3.2 Riemann problem for the shallow water equations (RPSW)

The Riemann problem of gas dynamics can be defined for any
system of hyperbolic conservation laws and in the present
context can be interpreted as follows.

We begin by considering a one-dimensional flow where a
membrane is placed at x = 0. In addition we consider an

initial state in which the fluid at the right-hand side,

x > 0, 1is in a constant state (r) given by ¢r’ur and the
fluid at the left-hand side, X < 0, is in a constant state
(1) given by ¢l,u1. The problem is then that of finding the

resulting fluid flow when the membrane is removed.

3.3 Approximate Riemann problem

For the remainder of this section we deal with the special
case when the undisturbed depth is constant, so that equations

(3.1)-(3.3) become
w, + H = 0 (3.6)



where

(¢,¢u)T (3.7)

1g
]

and

) = (ou,du® + % ) (3.8)

nT
1=

The approximate solution of equations (3.6)-(3.8) is
sought by assuming a piecewise constant approximation and

solving the approximate Riemann problem

w tC(w W)W, = 0,(x,t) € [xp,xpl x (t ,t ) (3.9)
where E(WL’WR) is an approximation to the Jacobian
oH
Clw) = 3w ¢ and Wy Wp represent the piecewise constant
states at time t i.e.

nl
AX AX
wp, X € {xp =7 3 7o)
wix,t. ) = . (3.10)
- B AX AX
Wp X € (% = 37, Xp + 77)
We assume a constant mesh spacing, AX in the x-direction.
To solve this approximate Riemann problem we begin by
determining the approximation E(WL,WR) to the Jacobian C 1in

a similar way to that of Glaister [1] for the Euler equations

with a general equation of state.

3.4 wWavespeeds for nearby states

Consider two adjacent states, w;,wp (left and right)

close to an average state W, at points L and R on an
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xX-coordinate line. We seek constants oy 0, such that
2
A = .e. 3.11
wo= ) oges (3.11)
j=1
to within 0(a%), where A(s) = (-)R - (~)L . Writing

equations (3.11) in full we have

Ad = oq + o, (3.12a)
and

A(du) = al(u + Vo) + az(u - V3 . (3.12b)
From equations (3.12a-b) we then have the following expressions

for « and a2

1
o = 4a0 + 1 _(aA(ou) - uao) (3.13a)
2Vo )
oa, = }a0 - 1 _(A(ou) - uae) . (3.13b)
2V !
A routine calculation verifies that
2
BH = ) N 50585 (3.14)
j=1
to 0(a2). We are now in a position to construct the

approximate Riemann solver for general discontinuities.

3.5 Decomposition for general Wr  Wp

Consider the algebraic ©problem of finding average

eigenvalues Ai, A and corresponding average eigenvectors
1’72

~ ~

€1:85 such that relations (3.11) and (3.14) hold exactly for

arbitrary states Wi Wy not necessarily close.

~

Specifically, we seek averages % and ¥ in terms of two
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adjacent states Ww;,%p (on an x-coordinate line) such that

2
W= ) a8, (3.15)
j=1
and
2
AH = [N 3.16
£ 2 ¥5%58 ( ‘
j=1
where
A(+) = (g - () (3.17)
w o= (o,0u)7 (3.18)
2
H(w) = (ou,0u® + 3 )" (3.19)
h1,2 = uztyvY (3.20a-b)
~ —— ~ 1 ~y [
91,2 - [u i \P] (3-21a b)
and
&, , = iae ¢ plalouw) - use) (3.22a-b)
’ b 4

~

The problem of finding averages u and ¥ subject to

equations (3.15)-(3.21b) will subsequently be denoted by (*).

(N.B. The quantity ¥ represents an average for Vo '.) We
note that problem (*) is equivalent to seeking an
approximation to the Jacobian c , namely [s ) with

eigenvalues hi and eigenvectors ey such that

Caw = aH . (3.23)
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The property given by equation (3.23) ensures that we will
obtain a conservative algorithm. Moreover equation (3.23)
guarantees that any discontinuity, e.g. a bore, will move at

the correct speed.

The first step in the analysis of problem (*) is to

write out equations (3.15) and (3.16) explicitly, namely,

Ad = oq + oy (3.24a)
a(ou) = &1(G+$) + QZ(G-G) (3.24b)
a(ou) = ap(ut¥) + o, (u-¥) (3.24c)

and
2, 92 s o ™ g ~oN T2
A(du +7 ) = al(u+Y) + az(u Y)?® . (3.244)
Equations (3.24Db) and (3.24c¢) are the same, and are
automatically satisfied by any average: similarly, equation
(3.24a) is automatically satisfied. Thus it remains to

determine u and ¥ using equation (3.244).

Equation (3.24d) can be rewritten using the expressions

for o and « from equations (3.22a-b) as

il 2

2 ¢2 Mo, T2y Y g A F
A(duz) + A(E ) (u?+y )(al+a2) + 2u‘i’(cx1 u2)
= (U+¥2)ad + 2u(a(ou)-uad), (3.25)

and on rearrangement becomes

U2a0 - 2UA(ou) + A(du?) = ¥2p0 - A(g“) . UBL.26)



Firstly, if we set
42 - 2ua(eu) + A(duz) = 0 (3.27)

then from equation (3.26) we have

~ 2
¥200 - A(% ) = 0 (3.28)
which yields

¢ 1042 2

A (02 - ¢2)

2= 2 2'7R L

2 = @i

¥2 = < =) " o + o) . (3.29)

~

This gives the following average Y for Vo,

~o — T .

¥ ¢§(¢R+¢Lj' , (3.30)
i.e. the square root of the arithmetic mean of ¢R and ¢L .
only one solution of the quadratic equation (3.27) for u is

productive, namely

b}
<

Alou) - V(a(dou)Z-aea(ou®)
X

_ Y’r 'R i e . (3.31)
o

Thus the averages u and ¥ given by equations (3.30)~-(3.31)
represent a solution of equation (3.244). In addition, using
equation (3.31), we have

A(ou) - uA® = VeBT AU . (3.32)

Hence, if we define an average of ¢ by

o = V¢R¢L ' (3.33)
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ct

equations (3.22a-b) simplify to

(3.34a-b)

]
b=
D>
<
I+
Nl
<2l e
>
[

1,2

Alternatively, noting the results that have just been

found, we could begin to solve equation (3.26) by defining

& = \/w (3.35)
Iy = 1
¢ = 2(¢R+¢L) (3.36)
and
N Ve u, + Ve ' u
a = LS L L | (3.37)
v$§ + VEE

Then, using equations (3.35)-(3.37) we can show that

A(du?) = u2A® + 2udAu (3.38)
A(du) = uAd + AU (3.39)
and
o2 -
A[Z ] = $Ad (3.40)

Substituting the expressions given by equations (3.38)-(3.40)
into equation (3.26) and rearranging yields

((B-w)? + & - ¥2)ae + 28(u-wau = 0 . (3.41)

We require equation (3.24d) to be satisfied for all variations
A® and Au, i.e. setting the coefficients of a4 and Au in
equation (3.41) to zero yields

(0 -u) = 0 (3.42a)
and

(U-u)2 + & - ¥2 = 0 . (3.42b)
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The only physical solution of equation (3.42a) is

N R VB2 u, + VB u
4 = u = LS o (3.43)
V¢R + V¢L

and hence from equation (3.42b)

¥ = Ve = VIR . (3.44)
R 'L
In addition, following equations (3.43), (3.32) and (3.33) we
arrive at the simplified expressions for &1 2 given by

equations (3.34a-b).

Summarising, we now have a one-dimensional Riemann solver
for the shallow water equations, with a constant undisturbed
depth, and can apply it using a first order upwind scalar
algorithm as follows.

If at time level n we have data w;,Wp given at either
end of the cell (xL,xR), then update w to time level n+l
in an upwind manner as follows. Schematically, we increment

w as in Figure 2.

n 1 /: 1 1§ =1,2
L R L R
Ay >0 Y. <0
J J

Figure 2
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where Ax = Xp ~ Xp and At 1is the time interval from level
n to n+l. Specifically, we
add - éE;.&.g. to w if ;. > 0
AX j 3=3] =R J
or
AtN ~n o~ . ~
add - Zixj“jgj to wp if hj <0,
where gj’ &j’ éj are given by
~ . ~ + ~ _
k1,2 uztv (3.45a-b)
x = 1a0 + 254 (3.46a-b)
1,2 g
P = [~ 1. (3.47a-b)
=1,2 u v ‘
with
N V_ u_ + VO u
u = R _R L )a. (3.48a)
\/CDR + V¢L
o = V$E$£” (3.48b)
Yy = J3(¢R + ¢L) (3.48¢)
and
a(-) = (')R = (')L )

In addition, we can use the idea of flux limiters [3] to create

a second order algorithm which is oscillation free.

The approximate Riemann solver that has been constructed
in this section takes the form of a conservative algorithm, and
has the property that discontinuities in the solution will move
at the correct speed as guaranteed by equations (3.15) and

(3.16).



= 5P =

Finally, we note that the approximate Jacobian [s

-satisfying equation (3.23) can be written as

N f 0 1
Clw. w) = |, 1 . (3.49)

In the next section we extend the scheme of this section
to the two-dimensional case incorporating the technique of

operator splitting.
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4. TWO-DIMENSIONAL CASE

In this section we develop approximate solutions of the
two-dimensional shallow water equations along the same lines as

those of §3 incorporating the technique of operator splitting.

4.1 Equations of flow

The governing equations considered in this section are the

two-dimensional equations of 82.3 when the undisturbed depth

h(x,z) = constant, so that equation (2.25) becomes
w, +E +G, = 0 (4.1)
where
_ T
w = (o,%u,ow) (4.2a)
_ 2 , ®° T
F(w) = (¢ou,ou + > ,Puw) (4.2Db)
and

2. T

(ow,duw,ow? + > ) (4.2c)

Q)
g
]

We wish to solve equations (4.1)-(4.2c) approximately
using an extension of the Riemann solver of 8§83 and the

technique of operator splitting, i.e. we solve successively

1 —

2We + By 0 (4.3a)
and

1 .

W, *+ G, 0 (4.3b)
along x- and z-coordinate lines, respectively. We shall

discuss the solution of equation (4.3a) and the solution of

equation (4.3b) will then follow by symmetry. Using the
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results of §2 we find that the eigenvalues and eigenvectors of

dF
the Jacobian A = 3% given by
0 1 0
A = ¢ - u? 2u 0 (4.4)
- uw W u J
are
hl,Z = u Vo, Ny = u (4.5a-c)
1
€1,2 = ut Vo . ey = 0 ‘ (4.6a-c)
o
4.2 Wwavespeeds for nearby states
Consider two adjacent states W rWp (left and right)

close to an average state w, at points L and R on an

x-coordinate 1line. As in 83.4 we seek constants ®q 0y, 00
such that
3
A = €. 4.7
W ) @ses (4.7)
j=1
to within 0(a2), where A(s) = (-)R - (-)L . Writing

equation (4.7) in full we have

A = ay +oa, (4.8a)

al(u + V&) + u2(u - Vo) (4.8b)

A(ou)
and

Aldw) = alw + aW + oy . (4.8¢c)
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From equations (4.8a-c) we have the following expressions for

o ., and o
1

o = a0 + —— (A(du) - uad) (4.9a)
2ve !
@, = 340 - —— (a(ou) - uae) (4.9b)
2V !
and
ay = Al(ow) - wae . (4.9c)
A routine calculation verifies that
3
A = hjse; (4.10)
j=1
to within 0(a%) . We are now in a position to construct the

approximate Riemann solver in the x-direction.

4.3 Decomposition for general Wr  Wp

Consider the algebraic problem of finding average

~

eigenvalues hl’AZ’AB and corresponding average eigenvectors

~ ~

91’92’§3 such that relations (4.7) and (4.10) hold for

arbitrary states w,,w not necessarily close. Specifically,

L’-R

we seek averages u,w and Y in terms of two adjacent states

Wi Wp (on an x-coordinate line) such that
3
AW = a.e. 4.11
W ) ases ( )
j=1
and
3
AF = ) Njoseg (4.12)

1
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where
a(+) = (g - () (4.13)
w = (¢,0u,éw)T (4.14)
_ 2 ¢ T
F(w) = (¢u,ou® + =, dUuw) (4.15)
A1,2 = uztyvy, h3 = u (4.16a-c)
il
§1,2 = u f Y , ey = 0 (4.17a-c)
w [ 1
and
a, o o= pae ¢ plalPW) - wse) Bl D Sae . (4.18a-c)
1,2 v 3

The problem of finding averages G,& and ¥ subject to
equations (4.11)-(4.17c) will subsequently be denoted by (**)
which is equivalent to seeking an approximation to the Jacobian
A, namely A with eigenvalues :i and eigenvectors éi such
that

(4.18)

12
Il
>
!

As

The first step in the analysis of problem (*) is to

write out equations (4.11) and (4.12) explicitly, namely,

AD = @y +a, (4.19a)
A(du) = &l(ﬁ+¥) + &2(G-$) (4.19b)
A{dw) = alw + azw + a3 (4.19c)
A(du) = &1(G+$) + QZ(G-Q) (4.19d)
2¢2 AP N Yy 2
A(du +?_) = al(u+f) + az(u Y) (4.19e)
and
A(duw) = &1(G+$)$ + &z(G—G)Q I &3G i (4.19f)
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Equations (4.19b) and (4.194) are the same, and are
automatically satisfied by any average: similarly equations
(4.1%9a) and (4.19c) are automatically satisfied. Thus it

remains to determine G,& and ¥ using equations (4.19%e) and

(4.19f).

If we define

$ = V¢R¢L' (4.20)
¢ = 5(¢R + ¢L) (4.21)
and
vo u. + Vo u
6 = ==L L L (4.22)
V¢R' + V¢L'

as in §3.5, and use the difference properties

A(®UuZ) = U2A¢ + 2udAu (4.23)

A(dU) = UAad + dAU (4.24)
2 -

A{%—] = a0 (4.25)

then equation (4.19e) becomes
((Q-U)% + & - ¥2)ae + 26(u-u)au = 0 . (4.26)
Therefore, 1f equation (4.19e) 1is to be satisfied for all
variations A¢ and au then from equation (4.26) we have
(u-u = 0 (4.27a)
and
(a-u)? + & - ¥2 = 0 . (4.27b)
The only physical solution of equation (4.27a) is
Vop Up + Vo up

u = u = (4.28)

—
V¢R + V¢L

>

and hence from equation (4.27a)

Yy = Ve = VE(o_to.) ' . .
Y () Plopte, (4.29)



In addition, since

A(du) - use = V¢R¢L AU = AU (4.30)
where
¢ = V¢R¢L' (4.31)
equations (4.18a-b) simplify to
&1’2 = iae + 22 au . (4.32)
Y

Finally, using equations (4.18c) and (4.19b) equation (4.19f)
can be rewritten as

A(ouw) - ua(ew) = w(a(ou) - use) . (4.33)
However, using equation (4.28) the left hand side of equation

(4.33) becomes

. N(\/tb A + Vo W )
A(duw) - ua(ow) = é—>R R L L .u (4.34)
\/¢R o+ \/¢L !

and from equation (4.30) the right hand side of equation (4.33)

becomes
w(a(ou) - uA®) = woAu . (4.35)

Thus, combining equations (4.34)-(4.35) equation (4.33) yields
(V¢R'wR + V¢L ML)

® AU =  wdAU (4.36)
v + vo !
R L
so that
. Vo_ W, + Vo W
w = R _R L L, (4.37)
Vo 4 Ve

Equation (4.37) now gives

A(SW) - WAD =  GAW (4.38)
so that the expression for &3 in equation (4.18c) simplifies
to

Q. = OAW . (4.39)



By symmetry, similar results hold for the Jacobian

o] o
I£| 12

We can now apply the results of this section to find
approximate solutions to the two dimensional shallow water
equations with an undisturbed depth h(x,z) = constant. In
particular, we shall use first order upwind differencing as in
§3.5 together with the technique of operator splitting.
Incorporating the results found here, together with a
one-dimensional scalar algorithm, we perform a sequence of
one-dimensional calculations along computational grid lines in
the x- and z-directions in turn. The algorithm along a
line 2z = constant can be described as follows. Supposing at
time level n we have data W Wp given at either end of a
cell (xL,xR) (on a line 1z = zo), then we update w to time
level n+1 in an upwind manner as shown below.

Schematically, we increment w as in Figure 3

n 1 ///Z 1 1 j=1,2,3
L R L R
. >0 . <0
J J
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where Ax = Xp = Xp and At is the time interval from level
n to nt+l. Specifically, we
Atlv ~ ~ . ~
add - —y.o.e. to w if x. > 0
AX ] 7] -R J
or
AtN ~ ~ . ~o
add Zihjajgj to wp if Aj <0,

e. are given by

jr3r=3
il s 3 = u+¥, u-%, u (4.40a-c)
o = a0 + %gAu, ird - %gAu, « = AW (4.41a-c)
1,2,3 3
A ¢ b ¢
1 1 0 )
§1’2’3 = [ u+¥ |, u-Y |, 0 (4.42a-c)
v d .
with
N VE_ ' u, + VB 'u
B 2 st L L (4.43a)
¢¢R + J¢L
. VO W, + Ve w
w = R _R L _L (4.43Db)
\/\'bR + \/¢L
o = “’W (4.43¢c)
¥ = V(e * o) (4.43d)
and
A(+) = (g - () (4.43e)

Similar results apply for updating in the z-direction.
As in 83.5 we can use the idea of flux limiters [3] to create a

second order algorithm which is oscillation free.



The approximate Riemann solver we have constructed in this
section is a conservative algorithm when incorporated with
operator splitting and has the one dimensional property of
capturing discontinuities guaranteed by equations (4.11),

(4.12).

>

Finally, we note that the approximate Jacobian

satisfying equation (4.18) can be written as

0 1 0
~o = N2-’\'2 ~ne
A(w ,Wp) = Y°-u 2u 0 . (4.44)
-uw W u

In the next section we extend the schemes of this section
and 83 to include the case when the undisturbed depth h(x,z)

is not constant.



5. SOURCE TERMS

In this section we extend the algorithms of 83 and $4 to
include the case when the undisturbed depth is not constant.

We shall use a technique suggested by Roe [4] in the
context of gasdynamics and used by Glaister (5] which treats
the source terms arising from a variable undisturbed depth.
The source terms are projected onto the local eigenvectors of
the Jacobian and then upwinded using the previously described

first order algorithm.

5.1 One-Dimensional Case

The governing equations in the one-dimensional case are

now
W + HX = h (5.1)
where
w = (¢,0u)T (5.2)
2
Hiw) = (ou,0u® + 3 )7 (5.3)
and
h(w) = (0,geh'(x))T. (5.4)
Consider the interval [xL,xR] and denote by W Wp the
approximations to w at X 1 Xp, respectively. We rewrite

equation (5.1) as

&l =

w, +

" w. = h(w) (5.5)

X
and now solve approximately the associated Riemann problem

we + Cw,. = h(w) (5.6)



with data We W either side of the point i(xL + xR),

L’'-R
linearising by considering C as a constant matrix. We shall

use the approximate form

wn+1 - WP (We = W.)
=P “P . %' "R -~L’ _ =~ . n
i + C = = h(w) (5.7)
where C is the matrix of §3.5, ﬁ is an approximation to

~

h(w) (see below) and P may be L or R. The matrix C 1is

given by equation (3.49) and its eigenvalues and eigenvectors

are given by equations (3.45a-b), (3.47a-b), (3.48a) and
(3.48c). A suitable approximation for the source term
h = (0,g0h'(x))T is

S ~Ah,T

h = (0,99:%) (5.8)

~

where ¢ 1is given by equation (3.48b), (see Glaister [5]).

We now rewrite equation (5.7) as
n+1 n

N - _
project WpWp and ﬁ onto the local eigenvectors given by
equations (3.47a-b) and update yn to yn+l as follows. 1if

2
Wp T W = } 58y (5.10)
j=1
then
2
~ _ - Y‘ ~ ~ ~
C(wR yL) / xjujgj (5.11)
g il
since C has eigenvalues ;i with eigenvectors éi given by
equations (3.45a-b) and (3.47a-b), respectively. We note that
the results of 83.5 hold for variable h(x) provided we

evaluate terms 1like ¢R as ¢R = g(nR + h(xR)). Projecting



the source term E(yn) given by equation (5.8) as

2
~ n _ _l ~ e
Bw™ = - ip ) Bse; (5.12)
j=1
enables equation (5.9) to be written as
2
n+l _ n At vy
witt = wp o+ 2= ) h5Y5e; (5.13)
j=1
where
Y. = AL + RL/¥ 5.14
V3 o Bj/hj ( )
n n+1l
and P may be L or R. To update w to w we use the

method of upwind differencing as in 83, i.e. for each cell

[xL,xR] we

nigy & £ B
add Zﬁxjngj to wp when Aj >0
or
AtNNN ~
add Zﬁhjngj to w;, when Aj <0
as shown in Figure 4.
Aty X N = =
n+1 - —A.Y.€. - —=A.v.€.
A%"3" 353 ﬁ\\\ 5% 37353
n 1 ////’j 1 1 j=1,2
L R L R
. >0 . <0
J J
Figure 4

Following the algebra through, equation (5.10) gives

A £

N
Nl

€| 2

o = AU (5.15a-b)

1,2

as in equations (3.46a-b) and (3.48b-c), and equations (5.8)
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and (5.12) yield

= ¥ ig2an . (5.16a-b)
Y

(Note that the quantity Ah is independent of time and

81,2

therefore has to be worked out only once.)

We turn now to the two-dimensional case.

5.2 Two-Dimensional Case

The governing equations in the two-dimensional case are

w, +E_+ G, = f+g (5.17)
where
w = (¢,¢u,¢w)T (5.18)
F(w) = (¢ou,ou?® + %2,¢uw)T (5.19)
G(w) = (ow,ouw,ow? + %2)T (5.20)
£(w) = (0,g¢h_,0)7T (5.21)
and
g(w) = (0,0,g0n )7 . (5.22)

We seek to solve equations (5.17)-(5.22) approximately using

the technique of operator splitting, i.e. we solve successively

1 =
and

%wt + gz = g (5.23b)
along x- and z-coordinate lines, respectively. The vectors
f and g are associated with the =x- and z-directions,

respectively: this is a consequence of the terms hX and hZ
representing changes in the X- and z-directions,
respectively. We shall discuss the solution of equation
(5.23a), and the solution of equation (5.23b) will then follow

by symmetry. The technique we adopt is an extension of 85.1.



Consider the interval [xL,xR] on an X-coordinate line,

z = 2z, and denote by Wy Wp the approximations to w at
X 1 Xp, respectively. We now rewrite equation (5.23a) as
JF

and solve approximately the associated Riemann problem

w, + Ayx = f(w) (5.25)
with data W Wp either side of the point %(xL + xR),
linearising by considering A as a constant matrix. We use
the approximate form

n+l _ wh e = W)
-P -P ~ =R -L . %,.n
—— t A ——— = flw) (5.26)
where A is the matrix of §4.3, f is an approximation to
f(w) and P may be L or R. The matrix A is given by

equation (4.44) and its eigenvalues and eigenvectors are given

by equations (4.40a-c), (4.42a-c), (4.43a-b) and (4.434). A
suitable approximation for the source term f = (O,g¢hx,0)T is
= ~Ah T

f = (0,g¢Z§,0) (5.27)

~

where ¢ 1is given by equation (4.43c) and Ah,Ax are given by
Ah = h(xR,zo) - h(xL,zo) (5.28)
AX = Xp T Xp (5.29)

where 2z = 2, is the x-coordinate line being considered.

We now rewrite equation (5.26) as

ntl _  n Z, _ At = _
wp = wp + Atf i A(WR WL), (5.30)
project Wp T Wp and E onto the local eigenvectors given by
equations (4.42a-c) and update yn to wn+1 as follows. If
3
We - W, =) a8 (5.31)
j=1
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then
3
Alwp - w ) = 'E M8y (5.32)
J:
since A has eigenvalues Ai with eigenvectors e; given by
equations (4.40a-c) and (4.42a-c), respectively. As in §5.1,

we note that the results of $4.3 hold for variable h(x,z)

provided we evaluate terms like ¢R as ¢R = g(nR + h(xR,zO)).
Projecting the source term f(y , given by equations

(5.27)-(5.29), as

3
~ n _ _1 ~Noo~o
Ew') = -3z ) B8 (5.33)
j:
enables equation (5.30) to be written as
3
n+l _ n At &8 R
witt o= wp + 22 ) h5v 55 (5.34)
j=1
where
Y. o= oL o+ Bu/v 5.35
Y5 oy BJ/A_ ( )
n n+1
and P may be L or R. To update w to w we use the

method of upwind differencing as in 84, i.e. for each cell

[xL,xR] we

Aty e g e &
add - = Ajngj to wp when Aj > 0
or
add - 28 X.9.8. to w. when A. <0
AX "] 717 =L J
as shown in Figure 5.
Aty % = Aty o
+1 - —A.Y.€. - ——A.Y.€e.
B ISULAEL 5x"3Y49¢5
n 1 ///’2 1‘\\\ 1 j=1,2,3
L R L R
. >0 . < 0
J J

Figure 5
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Following the algebra through, equation (5.31) gives

o = 4a0 £ %EAu, &3 = AW (5.36a-c)

1,2

~

Y
as in equations (4.4la-c) and (4.43c-d), and equations (5.27)

and (5.33) vyield

_ 110 _

= + ig=sh, g5 = 0. (5.37a-c)
Y

(As in 85.1 the quantity Ah is independent of time and
therefore has to be worked out only once.)

Similar results apply for updating in the z-direction.

In the next section we describe two one-dimensional

problems with exact solutions.
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6. TEST PROBLEMS

In this section we describe two test problems for the
one-dimensional shallow water equations which have exact

solutions.

(i) Bore reflection

This test problem is concerned with the reflection by a
wall of a fluid governed by the one-dimensional, constant depth
shallow water equations. We consider a region 0 ¢ x<1
with initial conditions at t = 0,

® = 93 = gh
(6.1)

where the constant undisturbed fluid depth is ho. This
represents a fluid of zero constant elevation moving towards
x = 0. The boundary x = 0 1is a rigid wall and the exact
solution describes the reflection of a bore from the wall.
The fluid is brought to rest at x = 0 and, denoting initial
values by (0), values behind the bore by (+) and values
ahead of the bore by (-), we can postulate an exact solution

of the form

u=u, =0 for %— < S (6.2a)

u=u = -1u for %— > 3, (6.2b)

at a time t, > 0 (see Figures 6 and 7).



¢(x,to) 'r
L
__) g
¢6
StD X
Figure 6
u(x,tDJ’“
StU X
— S
“Up 4

Figure 7
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The bore moves out from the origin with speed S, and
S, are given Dby the following conditions at the
discontinuity

2
g = [ou] _ [ou® + % ] (6.3)
To T [ou]

where [Vv] = v, - v_ denotes the jump in Vv  across the bore
(see [61]). We therefore need to solve equations (6.3) for
S, subject to the initial conditions given by equation
(6.1).

If we write out equations (6.3), using equations

(6.1)-(6.2b), we obtain

¢ .u
s = g °_°¢ (6.4a)
+ 0
;¢2 - 1¢2 - o u2
2 2
s = uo 00 (6.4b)
070
From equation (6.4a) we find
Yo
o, = ¢0[1-F—§] (6.5)
and substituting for ¢, from equation (6.5) into equation
(6.4b) yields the following cubic equation for S
3 2 _ - & =
S? + u,S ¢OS 3054, 0o . (6.6)

By inspection, the sum of the roots of equation (6.6) is
negative while their product is positive. Therefore the only
positive real root of equation (6.6) gives the required speed
of the bore, and hence ¢ igs determined by equation (6.5).
The elevation of the fluid at rest behind the bore is given by

n, = ¢+/g - hO = (¢+ = ¢0)/9-
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(ii) A breaking dam

This test problem arises when there is water of constant
depth either side of a dam and the dam breaks. Consider a
horizontal tank of constant cross section extending to infinity
in both directions with a thin partition at the section x = 0.

For x > 0 the water has the depth h0 while for x < 0 the

depth is hl’ with h0 < hl' In addition the water 1is
assumed to be at rest initially. Thus we can write the
initial conditions as
® = o, = ghO
x>0 (6.7a)
u = 0
¢ = ¢1 = g(nl + ho) = gh1
X <0 (6.7b)
u = 0

where the initial elevations are nq and ng = 0 for x< 0
and x>0, respectively. When the dam is destroyed at
t =0 the 1initial discontinuity breaks up 1into a bore
travelling to the right and a depression wave travelling to the
left. The derivation of the exact solution can be found in
Stoker [6] and as indicated in Figures 8 and 9, consists of
four different regions marked (1), (3), (2), (0) at any time

t, > 0.

0
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¢(x!t0] ‘

~

Figure 8

g =7 S
—/$‘,|t0 0 T st
[uz—/E;)tD
Figure 9

Thus the exact solution can be written as



Region_1 -0 < x <=Mt

------ 1 0
¢=¢1
(6.8a)
u = 0
Region_2 - V@l' tg < X < (u2 = V¢2 )t0
= 1 _ X y2
¢ = 9(2V¢1 to)
% (6.8b)
u = §(V¢l + )
0
Region_3 (uy, - ¢¢£ )t, < x < St
® = o,
(6.8c)
u = u,
Region_4 Sty < X <9
¢=¢0
(6.8d)
u = 0

where the quantities ¢2 and u, are given in terms of the

bore speed S by

o, = %[»/1 1 8§_ - 1]@0 (6.9)
0
® .
u. = s - 91 + A + 832 (6.10)
2 43 ¢

and the bore speed S 1is the real positive root of

u, + 2V¢2' = 2V¢1' = 0 . (6.11)

(N.B. Substituting for ¢2 and u, from equations
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(6.9)-(6.10) into equation (6.11) yields the required

equation.)

In the next section we display the numerical results

obtained for the test problems of this section using the scheme

of §3.5.



7. NUMERICAL RESULTS

In this section we give the numerical results achieved for
the two one-dimensional problems of 86 wusing the scheme

presented in 83.

Problem 1 Bore reflection

For this problem we apply a reflection condition at
x =0, i.e. we consider an image cell at the boundary and
impose equal elevation and equal and opposite velocity at
either end of the cell. This results in no net movement in
the cell.

Figures 10 and 11 refer to the problem of 86.1 using 50
mesh points and the 'Superbee' limiter (see [3]). The initial
incoming velocity is Uy = - 1, and the 1initial incoming
elevation ¢O chosen so that the jump in the discontinuity,

¢+/¢O takes the wvalues 2 and 3 in Figure 10 and 11,

respectively.

Problem 2 A bursting dam

For this problem we consider a fixed region 1in space,
0 £ x {1 and the initial discontinuity is at x = 0.5. At
the boundaries we allow only outgoing waves and no incoming
waves.

Figures 12, 13, 14 and refer to the problem of 86.2 using

50 mesh points and the Superbee limiter. In each case we take

the initial elevation to the 1left of the discontinuity as
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¢1 =1, and to the right of the discontinuity we take
¢O = 0.1,0.2 and 0.5, corresponding respectively to Figures
12, 13 and 14. We use 25 time steps with At = 0.01 for each
case.

For both problems we display ¢, related to the elevation
n, and the fluid speed u. In all cases we observe a good
representation of the solution and correct propagation speeds

of the discontinuities.

Finally, we give the c.p.u. time to compute the results
obtained for ©problem 2. Using an Amdahl V7 takes
0.0048 c.p.u. seconds to compute one time step and a total of
0.12 c.p.u. seconds to reach a real time of 0.25 seconds using

25 time steps.
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8. CONCLUSIONS

We have presented a technique for obtaining approximate
solutions to the shallow water equations using a Riemann
problem. In the two-dimensional case the scheme incorporates
the technique of operator splitting. The scheme achieves
satisfactory results for two one-dimensional test problems

involving discontinuities.
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