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Introduction

This report follows on from an earlier report by Priestley (1987)
and pursues the ideas expressed there. That is, we are concerned with
solving the Fuler equations using Roe’s scheme on Cartesian grids but to
predict flows around non-cartesian bodies. Whilst body-fitted grids are
aesthetically very pleasing, the practicalities of three-dimensional
aeronautical configurations has led some researchers to rediscover their
roots and return to the use of Cartesian meshes rather than slavishly
following the trend towards adaptive and body-fitted meshes.

Some notable, although by no means exclusive, work with cartesian
meshes has been done by Clarke et al (1986), Leveque (1988) and Moretti
and Dadone (1988).

In this report the work is in two sections. Firstly there is a
direct application of the previous report to the flow past a HERMES type
forebody . This problem forced the author to revise his opinions on
generating regular Cartesian meshes.

In the second section we turn our attention to three dimensions.
One major reason for using Cartesian meshes is the ease of extension to
3-D, but the problem, as in 2-D, is the imposition of rigid wall
boundary conditions. In this section we will show how this can be done

and present results for a test problem.



1. DOUBLE ELLIPSE PROBLEM

This is a GAMM workshop problem designed to test research codes
around an analytic, but realistically shaped body. The double ellipse
problem is a 2-D version of the double ellipsoid problem and is defined

below.
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Figure 1 shows the body defined by these formulae. The two flow
regimes that will be considered both have freestream Mach numbers of

8.15, the first having an angle of attack of 0° and the second of 30°.



1.1 The Grid

We need to produce a Cartesian mesh fine enough to resolve the body
and all interesting features of the flow caused by it, and coarse enough
to reach the farfield moderately quickly.

In Priestley (1987) two attempts were made to address this question.
Firstly, and most simply, a tensor product grid was used. This certainly
allows a fine mesh to be constructed around the body but no matter how
quickly the x-mesh or y-mesh is then stretched there will always be a
preponderance of cells immediately above, below, left and right of the
body. This results in much unnecessary work. The way forward, according
to this report, was to take a very coarse mesh and then to refine this
around the body and any interesting flow features. Whilst this procedure
is very efficient in terms of the number of cells needed, virtually all
the advantages of having a Cartesian mesh are lost due to the
irregularity of the resulting grid.

Inspired by a talk of Moretti (1988) (although no doubt the ideas go
back further than that), for the double ellipse problem it was decided to
use totally uniform Cartesian grids. This reduces upwind schemes to their
simplest forms and reduces the amount of housekeeping needed virtually to
zero. It is also easy to see how a fine mesh can be constructed to cover
the body and sharpest flow features. Constructing a mesh coarse enough
to reach the farfield quickly is also easily envisaged. Reconciling the
two is also surprisingly straightforward. That is we simply use both
meshes. Indeed, for the double ellipse problem, four meshes were used.
No claims are made that the best nesting of meshes has been used - the
inner mesh could do to be finer - the coarsening of the meshes could do

to be quicker. However, we hope that the respectable solutions obtained



will convince the reader of the wisdom of this approach and that any
disquiet envisaged with the passing of data from one grid to another is

ill-founded.

1.2 Passing of Data

It is important that the passing of information between the grids
does not present any problems, as it is almost certain that we will not
be able to afford to capture, completely, the features we are interested
in on the finest mesh. The pictures presented later show this to be the
case but the solution does not seem to suffer. This is accomplished by

ensuring that the grids are all overlapping in the following manner (see

Figure 2).
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This one-dimensional example shows how the information is transferred.

After performing an iteration on the fine-mesh (cells LF - RF) the

values in cells LF+2 and LF+3 are used to update the value on the

right-hand boundary cell of the coarse mesh, RC' After an iteration has

been performed on the coarser mesh, the new value in RC_1 is then used

to update the values at LF+1 and LF on the fine mesh.



An exactly analogous procedure can be used in two dimensions. With
multiple grids this means that the CFL number will change drastically
from the finest mesh to the coarsest. Although, for the steady state
problems we are attempting here, local time-stepping would be
permissible, our real interest is in evolutionary problems. Moreover,
due to the extreme regularity of the grids it is possible to calculate a
time-accurate solution without being hindered by CFL numbers of different
orders of magnitude.

With a twofold increase, as in figure 2, between grids and using 4
grids in total we choose a DT for the finest grid (grid 1). The
time-step on the second mesh is 2DT, on the third mesh 4DT and on the
fourth 8DT.

We then perform two time-steps on the finest mesh before doing a
time-step on the second mesh. This process is repeated before doing a
time-step on the third mesh. Eventually we will do a time-step on the
coarsest mesh having done 8 on the finest, 4 on the second and 2 on the
third. We can modify this procedure, if a time-accurate solution is not
required, by changing the number of time-steps we do before moving up to
the coarser grid.

An advantage of the overlapping grids that we have yet to take
advantage of is the possibility of performing a Richardson extrapolation
to improve the accuracy. This would perhaps not be an advisable
procedure in the vicinity of the discontinuities but in the smoother
regions of the flow it may be possible to enhance the results somewhat at

no extra cost.



1.3 Results

Figures 3-6 are for the zero incidence case and show density (p/p_).
pressure coefficient ((p-p,) / %pmuz), mach number and a global density
plot. Apologies are made for the uninformative plot of Cp' This was due
to a poor choice of contours. Figures 7 — 10 show the same sequence for
the thirty degree case. Figure 11 shows a typical arrangement of the
grids.

These results all look very plausible. However, it has been pointed
out to the author that the canopy shock in the zero incidence case could
do to be closer to the canopy (see Gustafsson (1988), for example).

There are two reasons why we may have got this wrong. Firstly the grid

could do to be finer around the body - it is hoped to remedy this
situation in the near future. Secondly there is the business of
calculating the information required by the boundary routine. The

procedure described by this author (1987) requires the code to look for a
basic stencil and rotations and reflections thereof. In 3-D this
approach seemed oppressively complex and unmanageable. After a little
thought a much simpler procedure was arrived at, to be described in the
next section. It is hoped that this 3-D routine can now be altered to
provide a more robust 2-D version and hence eliminate this question mark.
However, even with these doubts the results are quite believable and in

particular there are no problems at grid boundaries.



2. RIGID WALLS IN THREE-DIMENSIONS

Following the success of the two-dimensional tests of using
Cartesian grids (even though the body may be distinctly non—cartesian),
the next stage was to extend the idea to three dimensions where the
advantages of uniform meshes over body-fitted or adaptive meshes become
even more significant. How then to pursue this approach in 3-D?

In two dimensions the (curved) boundary was replaced by a series of
straight lines. In three dimensions the obvious procedure is to replace
the (curved) surface by a set of flat plates.

Consider the point (i,j.,k) at the centre of a block of 27 points

{ (i1, j+1,k+1) }, see Figure 12.

K+l

.

J-l'l

K-1




We now assume that we have certain information available to us

concerning the body surface:-

1.

(a)

(b)

A function INSIDE (x,y,z) that given a point in space returns a
value of 1 or O according to whether the point is within the

body or not.

A function z(x.,y) that given a point (x,y) returns the value of z

that lies on the surface.

Functions QEéELXl and QZ%%;XL that return derivatives of the

above function.

Similarly defined functions x(y.z)., y(x.z). g%; gﬁ; g%, g%_

The procedure is now as follows.
If the point, (i,j.k), does not lie inside the body, then get the

next point, else go to (b).

We now need to decide if the point is on the boundary. This is done
by looking at the three pairs of points {xi—l' Xi+1}’ {yj—l’ yj+1}
and {zk—l’ zk+1}. If there exists a pair for which one point is
inside and the other outside, then the point (i,j.,k) is a boundary
point and we proceed to (c). If, for all 3 pairs, both points are

either inside or outside, then the point is not on the boundary.
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c. Let us assume that it was the {Zk—l’ Zk+1} pair that satisfied the
criterion of (b). We now need to find the plane that locally
approximates the surface.

The general equation of a plane is

ax + by + cz+d = O.
Immediately we can put ¢ = -1 (so that z = z(x,y)). The
parameters a and b can be found straight away from the functions
dz/9x and 08z/dy. We can also calculate the value of d although

it is not actually needed.

d. We now have the plane and its normal, given by (a,b,c). Now we find
a value, s, such that the point
(xi,yj,zk) + s(a,b,c)
lies on the surface of the cube shown in Figure 12. This gives us
the place from which we interpolate the values of (p,u,v,w,p} in
order to apply the reflection conditions.
Call this point T, then
Pi,jk = Pr
Pi.ik Pp-
For the velocities we need to reflect only the normal component
leaving the tangential components unaltered. To resolve into normal and

tangential components we need to solve

a 1 1 a u
b -a/b b/a B = v . (2.1)
c 0 . Ei ~ w

c ac T T
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Calling the matrix in (2.1) A, the normal and tangential components at

T are then given by

To reflect the normal vector and obtain the normal and tangential

components at (i,j,k) we multiply by a matrix D to get

-1
Dk = DAy

where D = [

OO wr
OO
= OO0
—_—

To return to x,y,zZz velocities we now just need to multiply by A and

so the final equation for the velocities at (i,j.,k) is
u,. = ADA! (2.2)
%1 jk it :

Evaluating A D A_1 explicitly leaves us with

s [ 1-2a2 -2ab -2ac | 4
R R R
-2ab 1-2b2 -2bc
v = | T R OR | |V (2-3)
w -2ac -2bc 1-2¢2 w
ijk | R R R | T

where R = a®+ b%+ 2.

2.1 The Results
A simple geometry has been chosen, namely a sphere with a Mach 8
free stream onflow. As I am sure most readers of this report in academic

institutions in this country will appreciate, it was only possible to run
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this problem on a very coarse mesh (40,40,40) and for a very short time -
30 time-steps. Figure 13 shows a density plot at k = 20. Whilst this
picture is far from being steady state and the mesh is far too crude for
the results to be taken seriously, it is hoped the picture does

demonstrate the possibilities of the approach.

3k CONCLUSIONS

It has been demonstrated that Cartesian grids can be used very
successfully in conjunction with Roe’s scheme to calculate flows past
bodies of irregular shape, and that the procedure can be easily extended
to three-dimensions, as has been shown in 83. More work needs to be
done on the Hermes problem but this essentially appears to be tidying up
and adjusting parameters rather than a major reappraisal. Roe’s scheme
on Cartesian grids is now looking a robust, generally applicable,

competitive alternative for these types of problems.
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Figure 1: Forebody Geometry







Figure 4: Pressure Coefficient 0° case




Figure 5: Mach number 0° case
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Figure 6: Density 0° case
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Figure 7:
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Figure 8: Pressure Coefficient 30° case
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Figure 9:
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Figure 10: Density 30° case
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Figure 13: Density cross-section about sphere




