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1 Introduction

A moving grid method is described in [1] which attempts to solve advection
on optimal grids by minimising a least squares functional using a steepest
descent procedure.

Using scalar advection in 2-D, we define a fluctuation and then introduce
a functional that we wish to minimise which depends on this fluctuation.
Differentiation of this functional with respect to the solution values v and
the gridpoints x gives rise to a steepest descent update which we use to find
new values of u and x.

This method is slow to converge and we consider ways to speed up the
rate of convergence.

We note that the variational equation for the solution u can be written
in the form of a matrix equation and when solved also gives updates which
appear to be better than those obtained from steepest descent. This is easy
to implement in the case of solution updates, but appears more difficult when
we consider the grid.

We can also take an upwinding approach to the method described in [1]
where the updates for upwind nodes in each triangle are set to zero and this
also improves the rate of convergence.

We also attempt to optimise the relaxation factor in the steepest descent
method in order to make this method as efficient as possible. Other ideas for
improving the rate of convergence are briefly discussed.

In section 2 we introduce some notation, then in sections 3 and 4 we
consider the cases of constant advection and circular advection respectively,
together with ideas to speed up the rate of convergence. Some numerical
results are given in section 5.



2 Notation

Before looking at the problem, we introduce the following notation.

Figure 1: An arbitrary triangulation.

The triangulation in figure 1 shows part of an unstructured grid. A typical
node is denoted by j and {T;} is the set of triangles (shaded) surrounding
that node. A typical triangle is denoted by 7' and {jr} is the set of points
(marked with squares) forming its vertices.

3 Scalar Advection

Approximate solutions of the two-dimensional equation

aVu=0 (1)

on an unstructured grid have been considered in [1]. The function u is ap-
proximated by a piecewise linear function. The fluctuation is defined by

br = —//Ta.Vudmdy (2)
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where the advection speed a is a constant averaged value in each cell. Then

we may write [1]
¢T = - Z ijj. (3)

JEiT
Here u; is the value of u at vertex j and k;, is given by
1_
kjr = ga.an (4)

where nj, is the scaled (by length of edge) inward normal to the side T
opposite vertex j.
We minimise the least squares functional

— 1 5 2
= 5//0(a.Vu) dzdy. (5)
From (2)
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where St is the area of triangle T given by
1
St = 5(161(?/2 —y3) + z2(y3 — y1) + z3(y1 — ¥2)) (7)
so that (5) becomes
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as in [1].

Allowing the minimisation to be carried out over both the solution u and
the grid coordinates x = (z,y), using the steepest descent method gives an
update at each iteration of the form

oF
ouy = ———6 9
i Ou; ! (9)
at the point j, where uj = (;,y;,u;) and é7 is some relaxation factor. The
derivative in (9) is
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(10)

From (9) the updates to node j are given by

ujnew - ujold il Tuéuj
Xjnew = onld s Tx5X

(11)

where 7, Tx are relaxation factors chosen small enough to ensure reduction
in F', and which are to be specified in the examples. We refer to (11) as the
standard method.



3.1 Matrix Representation for u

Instead of solving for u by steepest descent, we can construct the variational
equation and solve it directly. That is, solve 2= = 0. From (10) this leads
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to

¢rd¢r ¢ OST _ b
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where b comes from the boundary conditions and is zero at all points except
boundary points. If a = (@,b) is constant in each triangle this equation is
locally of the form

(12)
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where

a = a(y2—ys)— ?(532 — z3)
B = a(ys—1) — blzs — x1)
v = a(ys —y2) — b(z1 — z2).

We overwrite nodal values which correspond to boundary nodes. The system
is already linear in u; but nonlinear in z; and y; ( = 1,2,3). We obtain a
linear equation to solve for u if we freeze the z;,y;, that is, treat them as
constants and solve the system for the unknowns u;. The local matrix on the
left hand side of equation (13) is labelled Az

We can construct the global system

Au=>b (14)

by assembling a global matrix from the local matrices Az (cf. assembly of
matrices in the FEM). We can also build up a local system from the cells
sharing node j. Here we form a local matrix by assembling the contributions
of element matrices from the patch T} surrounding this node. Since we are
only interested in updating u;, this is the only unknown, so we end up with
only a single equation to solve.

The second of these methods is used in the numerical experiments in sec-
tion 5 as it is computationally more efficient. Global solutions gave essentially
the same results.

When we solve for v using either the global approach with a matrix solver,
or by solving the local system, the method converges at approximately twice
the rate of the standard method (see section 5.)



3.2 Upwinding Approach for u

Another way in which we can try to speed up the rate of convergence is to
only update the solution u for downwind nodes.

2 2
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Figure 2: A triangle with one inflow side, k1 > 0, ko, ks < 0 (left), and one
with two inflow sides, ki, k; > 0, k3 < 0 (right).

Here we consider the ’direction of the wind’ a and k; = %a.ni where n; is
the unit inward normal to the side opposite vertex :. In the examples in figure
2, the downwind node for the left hand example is node 1, in the example on
the right hand side, nodes 1 and 2 are downwind nodes. If k; > 0, ky , k3 < 0
then we update node 1 only, and if &y, ky > 0, k3 < 0 then we update nodes
1 and 2 only. Hence in this method we work out the update at each node
of a triangle, then overwrite the updates to zero for upwind nodes. Then we
assemble the update to each node j from the contributions of each triangle
in 1. This again results in an increased rate of convergence . This method
does not correspond to the original Least Squares minimisation, however.

4 Circular Advection Problem

A slightly more complicated example is the circular advection equation

YUy — Uy = 0, (15)

that is equation (1) where a = (y, —z). We define the fluctuation as we did
before (3) but this time the vector a in (4) is a suitably averaged value of
(y, —z) taken over the sides of the relevant triangle. The suitably averaged
values are taken to be averages over the edges of each triangle, that is, if



we are considering the side joining edges 1 and 2, then the averaged value of
(y,—2) is (2(y1+y2), —3(2z1+22)). If we do this we obtain for the fluctuation

=7 O uibile +?) (16)
je{ir}
where A;, is a difference taken counterclockwise along the edge of triangle
T that is opposite vertex j.
The steepest descent updates (distribution formulae) to vertex j from
triangle 7" are then

1
buj = 7 (%) A (2? + 17, (17)
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where the nodes are again updated as in (11) using a relaxation factor small
enough to ensure that F' decreases. Once again the drawback with this
method is the number of iterations it takes to converge. Some more ways in
which we could try to speed it up are described in 4.1 - 4.6.

4.1 Accelerated Steepest Descent

The steepest descent procedure can be made second order as follows:
A sequence of points X1, Xz, ... is generated as follows:

e Point x7 is specified as the starting point.
e Then x2 is obtained from one step of steepest descent from xj.

e In the general step, if X1, X2, ..., Xm have been obtained, we find a point
z by steepest descent from xpm.

e Then Xm41 is taken as the minimum point on the line xm-1 + t(z +
Xm_l).

When this method was applied to the above problem, the effect was to speed
up the rate of convergence, but not by much. The convergence remained
very slow.

4.2 Shanks’ Method

In a paper by Shanks [3] it is shown that methods which have exponential
convergence can be speeded up by the following procedure.



Given approximate solutions an—1, @y, any1 from three consecutive itera-
tions of our procedure, if these three approximations are converging expo-
nentially then from these we can obtain an improved approximation

2
o= Gp-1Qny41 — Ay, (19)

Un_1 + Gny1 — 2a,

The problem here is that although the cost functional is exponentially de-
creasing in general, the nodal updates aren’t. To apply Shanks’ method to
our scheme to speed up convergence we would need du and éx to be expo-
nentially decreasing. In general they aren’t.

4.3 Optimising the relaxation factor

The grid convergence seems to be slow partly due to the relaxation factor.
This can be seen by changing the parameter and seeing what effect it has
on the speed of convergence. This beckons the question, can we find an
optimal relaxation factor within each patch? (We must use a local approach
for this to ensure mesh tangling does not occur.) One thing tried was to
identify the steepest descent direction and to look at how far the node could
move without tangling (Az)max (see (20)) in the steepest descent direction.
Consider the line of length %(A:c)max in the steepest descent direction from
the node we wish to move. Split this into 9 equal intervals and evaluate
the cost functional in the patch at the 10 points. Then move the node to
whichever of these points gives the minimum value of F. The relaxation
factor for u is then chosen which minimises the cost functional on 10 equally
spaced points in [0,0.5]. This has the effect of finding an optimal relaxation
factor and making the cost functional smaller in each patch. It was hoped
that this would speed up convergence of the overall problem.

4.4 Matrix equations for v and x

Convergence can be speeded up as before by solving for the solution u us-
ing the variational equation that arises from (12). This involves the local
assembly of element matrices of the same form as (13) . However, this time

a = (a)+ys—ai—y))
B = (22+yZ—al-—yd)
v = (a2} 4yl -zl —yd).

See section 3.1 for further details on the way we formulate and solve the
matrix equation arising from (12).

Again this method converges at approximately twice the rate of the s-
tandard method. One question is can we do the same thing to x?7 If we
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try to obtain a global matrix using the same ideas as before, the diagonal
entries are always of the form f(z;,y:;)(u1 — uz), where f is some function,
for 1 = 1,2,3 and where u; and u, are replaced by their cyclic counterparts.
Since u; = ug almost everywhere initially the matrix is highly singular and
the system cannot be solved.

Rather than look at the global matrix equation, we could look at all the
equations locally again. Where the solution is constant anywhere in a patch
the local matrix is singular and we have problems, but these nodes are the
nodes we don’t want to update anyway. So we could just ignore these nodes
and locally update the ones where the local matrix is non-singular.

4.5 Order in which the nodes are updated

Another thing we can try to do to see the effect on the speed of convergence
is instead of running through the nodes in a 'natural’ ordering, order the
nodes so that the nodes with largest residuals are updated first. That is,
order the residuals largest through to smallest, then update the nodes in this
order and see what effect this has on the overall speed of convergence.

In the following table, the first column contains the number of iterations,
the second column contains the residual when we update all the nodes at
the same time (Jacobi type iteration), the third column when we update
the nodes one by one (Gauss-Seidel type iteration) in the natural ordering
and in the fourth column when we order the nodes as described above and
solve in the Gauss-Seidel manner. The results were obtained using the re-
laxation factors 7, = 0.5 and 7 = 0.01. As can be seen from the table,

no. its Jacobi G-S G-S with ordering
100 0.25780557953231 0.25269975407991 0.25105049499222
200  0.22015283653773 0.21342898356537 0.21416536607059
300  0.19370864310136 0.18721340527752 0.18739333210444
400  0.17536142945494 0.16862435271070 0.16849578707215
500  0.16053601824937 0.15346463739737 0.15354462765720
600  0.14778521173567 0.13979527492773 0.14009945109866
700  0.13576640329657  0.12729403953335 0.12770102927813
800  0.12497032439340 0.11642666027934 0.11671492458661
900  0.11534463671945 0.10688381860330 0.10696599915345
1000  0.10671577744691 9.8549423430357D-02 9.8409987322490D-02

Table 1: Comparison of J,GS and GS with ordering

the GS type and ordered GS type iterations converge faster than the Jacobi



type iteration, but the increase in the speed of convergence is only very slight.

4.6 Upwinding Approach on u and x

We can also do the same thing we did with the linear case in section 3.2 and
update u only for downwind nodes. This has the effect of increasing the rate
of convergence (see figure 8(b)). Upwinding improves things even more if we
also update x for downwind nodes. Using this approach with the relaxation
factors 7, = 0.5 and 7 = 0.01 (the same as before) improves the convergence
rate by approximately 4 times. See figure 12(c).

4.7 Local approach to avoid tangling

In two or more dimensions, particularly on the highly distorted grids which
become common once the mesh is allowed to move, tangling occurs quite
readily. Figure 3 shows how tangling can occur. The dotted lines indicate
the convex hulls which bound the node movement and it can be seen that,
even if node 1 remains fixed, nodes 2 and 3 can easily move far enough
upwards to cause edge 23 to overtake node 1 and triangle 123 to ‘flip’, giving
it a negative area.

Figure 3: Mesh tangling in two dimensions.

The problem can be avoided by artificially limiting the distance which a



node can move. A simple but rather restrictive limit for a node ¢ is

(Bt = joi (i—) (20)

JeUA; \ maxj=1,3 Lji

where j indexes the cells surrounding the node, Sa; is the area of cell j and
L;; is the length of edge ! of cell j. The right hand side of (20) is equivalent
to half the smallest height of the surrounding triangles. A more sophisticated
limit would require prior knowledge of the direction and magnitude of the
displacement of the adjacent nodes and its calculation would cause unneces-
sary expense. It should be noted that restricting the movement of nodes in
this manner increases the probability of node locking. This is a phenomenon
where nodes which would, under normal circumstances, be moved by the
adaptation scheme are prevented from doing so by outside influences, such
as any artificial bound placed on the nodes or by requiring boundary nodes
to remain on the boundary.

5 Results

Constant Advection Problem

The standard method was used for equation (1) on the domain Q =
[0,1] x [0,1], with a defined to be the constant vector (0,1). The initial
solution was defined to be u = 1 at (0.5,0) and u = 0 everywhere else and
the initial grid was taken as in figure 4. Unless stated otherwise the nodes
are swept through in a natural ordering, that is we start in the bottom left
corner, sweep right through the nodes, then move on to the leftmost node on
the next level and repeat.

There are two ways in which we can perform the updates:

e Jacobi type Iteration. This is where the updates for ALL the nodes are
calculated before the nodes are updated.

o Gauss-Seidel type Iteration. Here the update for one node is calculated
and then that node is updated before the next node is considered.

The results are given in figures 4 - 8. The convergence history shown in
figure 7(a) is obtained using the Jacobi update and shows that this method
is slow to converge. Similar results are obtained if we use the Gauss-Seidel
update. A comparison between the Jacobi and Gauss-Seidel updates was
given in section 4 when we looked at the circular advection equation.
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These results show that if we solve for u from the matrix equation as
described in section 3.1 then the rate of convergence is approximately that
of the standard method.

Convergence was also speeded up using the upwind method as described
in section 3.2, although here the relaxation factors had to be reduced to
ensure that mesh tangling did not occur.

S

Figure 4: Initial grid for the constant advection equation.

Figure 5: Final grid for the constant advection equation using the standard
method with 7, = 0.05 and 7 = 0.001.
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Figure 6: Final solution for the constant advection equation by the standard
method with 7, = 0.05 and 7 = 0.001.

Figure 7: Convergence history for the constant advection equation with (a)
the standard method with 7, = 0.05 and 7x = 0.001 and (b) local GS type
solver for v and 7« = 0.001.
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Figure 8: Convergence history for the constant advection equation with (a)
the standard steepest descent method and (b) the upwind method on u only,
with 7, = 0.005 and 7 = 0.001.

Circular Advection Problem

The initial grid is given in figure 9 and the solution is defined to be
zero everywhere except for the two points (—0.6,0) and (—0.5,0) where it is
defined to be 1. The solution is poor when grid adaptation is suppressed [1].

When the standard method is used (11) with the constant relaxation
factors 7, = 0.5 and 7% = 0.01 the much improved results in figures 10, 11
and 12(a) were obtained.

The methods described in 4.1 and 4.2 had little effect on the rate of con-
vergence. As can be seen from figure 13, éu does not decrease exponentially
to start off with but appears to after a while (around 5000) iterations. The
same thing can be said of éx. Although this is only for one node, other
nodes exhibit similar behaviour. It should then be possible to switch on the
Shanks update after say 5000 iterations to see if this speeds things up. Again
convergence remained very slow.

Using the method decribed in section 4.3 it can be seen from the results
(see figures 14, 15), the overall cost functional does initially go down much
faster but then slows down and eventually gets stuck in a local minimum.
The nodes where the solution is changing most rapidly have moved large
distances and become out of place; they seem to continue moving in this
direction and the grid never gets to its final solution (see for example figure
14). As can be seen from the solution data, although the cost functional is
reasonably small after 200 iterations (much smaller than the original method)
the solution is hopeless and it is unlikely that machine accuracy in the cost
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functional would ever be achieved. Also working out the cost functional
locally at every iteration is computationally expensive and any benefit this
method may have had in terms of number of iterations needed to converge
is outweighted by the length of time it takes the program to run. Diagonal
swapping may improve things here. If we use the local solver for u and the
standard method for x we obtain similar results.

When u is solved using a matrix equation as described in section 4.4,
convergence history in figure 12(b) shows that the solution and grid converge
at approximately twice the rate at which they do using the standard method.

If we update u and x using the upwind approach described in 4.6, this
has a more dramatic effect. The solution and grid converge at approximately
4 times the rate of the standard method (see figure 12(c).)

Figure 9: Initial grid for circular advection problem.
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Figure 10: Final grid for the circular advection problem using the standard
method with 7, = 0.5 and 7 = 0.01.

Figure 11: Final solution for the circular advection problem using the stan-
dard method with 7, = 0.5 and 7 = 0.01.
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Figure 12: Convergence history for the circular advection problem with (a)
the standard method with 7, = 0.5 and 7« = 0.01, (b) local GS type solver
for u and steepest descent for x with 7 = 0.01, (c) upwind descent approach
for v and x with 7, = 0.5 and 7 = 0.01 .
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Figure 13: Log of |§u| for node 26, showing that for a general node éu does not
decrease exponentially, although after a while it settles down to exponential
decay.
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Figure 14: Grid after 200 iterations for the method which tries to optimise
the relaxation factors for v and x in the manner of section 4.3.
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Figure 15: Convergence History for the method which tries to optimise the
relaxation factors for u and x.

6 Conclusions

The method described in [1] for the solution of advection problems is slow to
converge in the cases considered, and I have attempted to speed up the rate
of convergence. It still remains unclear what choice of relaxation factor in
the steepest descent procedure optimises the rate of convergence. The rate
of convergence of the method described in section 4.3 was the best to begin
with, but was spoiled by nodes moving with the solution front. The idea
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described in [2] where grid points move perpendicular to characteristics may
help here and diagonal swapping may also be beneficial. Updating u from a
matrix equation which arises from solving the variational equation directly
improves convergence, and further work should include the use of this idea
locally for solving the x equation on patches which have non-zero residual.
So far the best convergence results have come from an upwind approach on
both the solution and the grid using Steepest Descent. Here the relaxation
factors are chosen only to achieve a reduction in F', and faster convergence
would be achieved if these relaxation factors were optimised.
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