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Abstract

Clinical trials can be lengthy and costly, with new treatments taking more than a

decade to become available to the patients who need them. It is therefore of great interest

to improve efficiency in this process, such as replacing the primary endpoint of a clinical

trial with an alternative endpoint that can be measured with greater ease, reduced cost

or reduced observation periods. Such replacement endpoints are called surrogate end-

points, and there has been a vast amount of research conducted to establish statistical

methodology that can reliably assess whether such endpoints are appropriate for future

use.

The aims of this research are therefore threefold; to identify appropriate methodology

that can be used in the assessment of time-to-event surrogate and true endpoints; to

examine the identified methods via simulation studies for the setting of small sample

sizes, across a variety of scenarios, and in particular for surrogate endpoints that capture

information on both an intermediate disease status and the long-term clinical outcome

of interest; and finally to develop improved methodology that can advance the surrogacy

evaluation process for these settings.

The findings of the research build on the existing surrogate endpoint literature by

demonstrating that the most commonly used approaches for evaluation of time-to-event

surrogate and true endpoints can have potential limitations. As a result of this finding, and

based on the identified strengths and weaknesses of the examined statistical approaches

under the settings of interest, a novel methodology for the evaluation of time-to-event sur-

rogate and true endpoints is proposed and evaluated. This method provides an alternative

option for the evaluation of surrogate endpoints, and is recommended for further use.
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Chapter 1

Background and Context for

Surrogate Endpoints

1.1 Introduction

The development of new medicinal products is a long and complex process that requires

significant investment of both time and money. Experimental treatments must undergo

intensive testing through multiple phases of clinical trials, to ensure that they demonstrate

therapeutic benefit to patients alongside an acceptable safety profile. For a new treatment

to achieve regulatory approval, there has to be clear confirmatory evidence of clinical

benefit, based on a measure that is reliable, objective and relevant for patients. As more

treatment options become available and new standards of care are introduced, satisfying

the need for substantive efficacy results from adequate and well-controlled clinical trials is

becoming increasingly difficult.

The long-established process of testing new molecules through multiple phases of clin-

ical trials can be lengthy, and in order for continued development of new medicines to

remain feasible, researchers are exploring ways in which the efficiency of this process can

be improved. A key determinant in the length, cost and complexity of any clinical trial

is the selection of primary endpoint; the measure of clinical benefit that ultimately deter-
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mines the ‘success’ or ‘failure’ of the study. Careful selection of this parameter is critical

in ensuring that the study is interpretable, relevant to patients and medical practitioners,

and considered approvable by regulatory and health authorities.

In many therapeutic areas, primary endpoints that are considered the gold standard

for satisfying these criteria are becoming increasingly difficult to use, due to increased

costs and long follow-up of patients. With this in mind, researchers are investigating the

plausibility of substituting such long-term primary endpoints for shorter-term endpoints

that can be evaluated more readily. For such short-term, or ‘surrogate’ endpoints to be

accepted by health authorities as substitutes for the traditionally used clinical endpoint,

they need to undergo a rigorous assessment, both clinically and statistically, to establish

their reliability in predicting long-term outcome and treatment effects thereon. Such

evaluations are heavily dependent on there being sufficient data available from previous

clinical studies to quantify the accuracy of these predictions.

The research presented in this thesis explores the motivation for use of surrogate end-

points, with particular focus on the statistical methodology that is designed for their

evaluation. Of primary interest is if and how surrogate endpoints can be reliably exam-

ined from the perspective of an individual pharmaceutical company, who may only have

a limited number of small clinical trial datasets available for the particular disease or

molecule under investigation. To explore why this is important, the remainder of this

chapter highlights an introduction to the concept and motivation for surrogate endpoints,

including definitions (Section 1.2), potential benefits and limitations (1.3), consideration

of when surrogate endpoints may be useful (1.4), regulatory aspects (1.5) and motivation

for further research (1.6).

1.2 Defining a Surrogate Endpoint

There have been a number of attempts to define a surrogate endpoint, both conceptually

and statistically. According to the US Food and Drug Administration (FDA) guidance
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on expedited programs for drug development, “a surrogate endpoint is a marker, such as

a laboratory measurement, radiographic image, physical sign, or other measure, that is

thought to predict clinical benefit, but is not itself a measure of clinical benefit” (FDA,

2014). Similarly, in the European Medicines Agency (EMA) notes for guidance on ICH

topic E8, a surrogate endpoint is defined to be “an endpoint that is intended to relate to

a clinically important outcome but does not in itself measure a clinical benefit” (EMEA,

1998).

These two definitions are very similar, with a key requirement that the surrogate must

relate to, or predict, the true clinical benefit as measured by the original and accepted

clinical endpoint. A number of researchers consider correlation between endpoints to

be a good indicator that the surrogate can be used in place of the long-term clinical

endpoint, however, correlation alone is not considered sufficient for a surrogate endpoint to

be considered worthy of future use (Fleming and DeMets, 1996). An equally fundamental

criterion is that, since the surrogate endpoint is being used to replace the true clinical

outcome of interest, the observed treatment effect on the surrogate outcome must be a

reliable predictor of the unobserved treatment effect on the clinical outcome. Both of

these criteria must therefore be established before a surrogate endpoint can be used as a

primary endpoint in confirmatory clinical trials.

To make steps towards these goals, Prentice (1989) was the first to propose a formal

statistical definition of surrogacy, as “a response variable for which a test of the null

hypothesis of no relationship to the treatment groups under comparison is also a valid

test of the corresponding null hypothesis based on the true endpoint”. This definition

requires a ‘valid’ surrogate to be an endpoint that captures all of the treatment benefit

on the true clinical outcome, such that knowledge of the treatment effect on the surrogate

outcome would provide full knowledge of the treatment effect on the clinical outcome and

remove the need to formally test the null hypothesis for the long-term endpoint. This has

been the cornerstone in the development of statistical methodology to evaluate potential

surrogates, which is described in detail in Chapter 2.
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Some examples of potential surrogate endpoints include CD4 cell count as a surrogate

for the development of AIDS in HIV (De Gruttola et al., 1993), blood pressure as a

surrogate for cardiovascular disease, and tumour shrinkage as a surrogate for survival in

cancer studies.

1.3 Benefits and Limitations of Surrogate Endpoints

The potential practical benefits of substituting a final clinical endpoint with a shorter

term surrogate endpoint can include shorter trial durations, higher compliance to study

protocols, reduced costs, increased ethics, trial feasibility and simplified recording and

monitoring of clinical trial data (Burzykowski et al., 2005). As investigational agents are

being developed, and new treatment options are emerging, all of these benefits sound

very attractive to the pharmaceutical industry, payers and patients alike. For the com-

panies expending the resources, the shorter trial durations can lead to a lower rate of

non-compliance, patient drop-out and loss to follow up, and subsequently a higher level of

reliability in the data. The lower costs associated with these shorter trials mean that drugs

can be tested, approved and marketed at an increased rate, despite the hurdle of needing

to prove superiority or non-inferiority over consistently improving standards of care. For

payers, the lower research and development costs can lead to more competitive pricing and

increased cost-effectiveness. For those patients with the disease, the chance to receive a

potentially life-saving treatment as early as possible is of the utmost importance. If drugs

can be developed quicker, they have more chance to be made affordable, reimbursable and

therefore accessible to those who need them. A number of successful surrogate evaluations

have been conducted based on large meta-analyses, with some leading to FDA approval

of surrogate measures in HIV (FDA, 2015; Marschner et al., 1998), and further approvals

of a number of treatments for adjuvant breast and colon cancers based on an endpoint of

disease-free survival (FDA, 2007), for example.

Alongside these potential benefits, the use of surrogate endpoints has been subject
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to criticism (Fleming and DeMets, 1996). Applications of surrogate endpoints have not

always been successful, and in some cases have led to harmful results. One of the most

striking examples in practice is that of the CAST trial (Pratt and Moye, 1990; Greene

et al., 1992). Following FDA approval of three investigational agents (encainide, flecainide

and moricizine) for the treatment of ventricular arrhythmia, it was hypothesised that

longer-term treatment with these agents would reduce the incidence of sudden cardiac

death after myocardial infarction. The biological plausibility of the relationship between

these endpoints seemed reasonable; since arrhythmia leads to increased risk of death,

suppression of arrhythmia should lead to reduced mortality.

The CAST phase III trial was designed to test this hypothesis by comparing mortality

rates between the three active agents and a placebo. However, the results of an interim

analysis of this study showed that the rate of death in the active treatment arms was 2.5

times higher than that in the placebo arm (Pratt and Moye, 1990). Both the encainide and

flecainide arms were discontinued early when 33 sudden deaths occurred in patients taking

these active compounds, compared to 9 in the placebo group. At the final analysis, the

comparison was 63 deaths in the active arms versus 16 in the placebo group (Fleming and

DeMets, 1996). Analysis of the moricizine data showed that this too increased the risk of

death (Cardiac Arrhythmia Suppression Trial II Investigators, 1992). This highlights the

difficulty that researchers and clinicians can face when selection of the primary endpoint

depends heavily on understanding of the disease under investigation, and the potential

damage that can be caused if surrogate endpoints are not sufficiently investigated and

validated. In this case, what appeared to be clear rationale for a surrogate measure of

benefit turned out to be incorrect, and led to harmful conclusions.

1.4 When might Surrogate Endpoints be suitable?

Phase II trials, designed to investigate dose and gain an indication of efficacy and safety,

generally use short-term primary endpoints that can provide relevant clinical information
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regarding the activity of an experimental treatment. Since these trials are rarely used

alone to provide confirmatory evidence of clinical benefit, the selection of clinical endpoint

can be flexible, with many short-term measures chosen in order to expedite further clinical

development of a molecule. In most cases, short-term endpoints are used without a formal

assessment of surrogacy (FDA, 2007; Fleming and DeMets, 1996).

In contrast, the confirmatory phase III trials which follow need to be designed to pro-

vide definitive evidence of treatment benefit based on a clinically relevant and reliable

measure. In many cases, such measures can be difficult to assess, or require a very long

follow-up period to be observed, which can lead to patient dropout or non-compliance,

and subsequently have an adverse effect on the overall trial conclusions. Furthermore,

there are some outcomes that must be measured using burdensome and invasive medical

procedures, and so it would be beneficial for patients if alternative ways to measure treat-

ment benefit could be made available. In each of these settings, having an opportunity to

replace the traditionally used endpoint with a surrogate has appeal to researchers, medical

practitioners and patients (Fleming and Powers, 2012).

One frequently used long-term endpoint is overall survival (OS), used in many ther-

apeutic areas to assess clinical benefit of new treatments. The benefits of this endpoint

are clear; it is unambiguous, reliable, objective, and positive results provide confirmatory

evidence of extended life of patients. However, there are also many drawbacks. Firstly, it

must be considered whether it is truly ethical to wait for the occurrence of a fatal event in

order to estimate the efficacy of a new treatment. Secondly, it can be an endpoint which

requires a long follow-up time, with clinical trials extending for many years before enough

evidence can be collected to confirm efficacy benefits. Finally, there is the possibility

that the endpoint can be confounded by factors such as next-line treatments, since those

patients who do not respond to their randomised therapy may require further treatment

with other marketed or experimental agents. This can make the results of overall survival

endpoints difficult to interpret, and in some cases may lead to underestimation of the

treatment benefit.
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One example of this can be seen in the BIG 1-98 phase III trial (BIG 1-98 Collaborative

Group, 2005), designed to compare the efficacy of letrozole and tamoxifen as monother-

apy and sequential treatments in post-menopausal women with estrogen receptor-positive

breast cancer. A total of 8010 patients were enrolled in the trial, and initial results com-

paring monotherapy letrozole to monotherapy tamoxifen concluded a significant increase

in disease-free survival for the letrozole monotherapy arm, leading to 25% of patients

from the tamoxifen arm to also be treated with letrozole. Updated intent-to-treat (ITT)

analyses conducted four years later confirmed the benefit in disease-free survival, but also

concluded that there was no significant difference in overall survival between the two

monotherapy groups (BIG 1-98 Collaborative Group, 2009). However, sensitivity analyses

accounting for the crossover treatment from tamoxifen to letrozole concluded that OS was

indeed significantly extended for those randomised to the letrozole arm (Colleoni et al.,

2011). This case-study demonstrates how the results of OS, despite being objective and

clinically relevant, can be confounded and potentially lead to erroneous conclusions.

The greatest case for the use of surrogate endpoints is therefore in confirmatory Phase

III studies, where the time required to complete studies renders them infeasible, or possibly

irrelevant by the time results are reported. Even in these settings, the use of surrogates is

not simple, as there is currently no standardised approach for their biological or statistical

evaluation, nor any regulatory recommendation as to which statistical methodology is

considered appropriate, or what results would be considered sufficient.

Furthermore, in order for a surrogate endpoint to be considered appropriate for use,

there are many aspects that require careful consideration (Fleming and Powers, 2012).

Firstly, there must be a good understanding of the underlying pathway of the disease

under investigation, sufficient to have confidence that therapeutic benefit in the surrogate

endpoint will also lead to clinical benefit for the patient in the long-term outcome of

interest (Fleming and DeMets, 1996). Secondly, the expected magnitude of benefit on

the true endpoint must be understood; regulators need to know that approved medicines

will show sufficient benefit in long-term outcome to ensure a balanced benefit/risk ratio
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for the patient. Finally, health technology assessors need to understand the value of the

treatment in order to make informed decisions on reimbursement and healthcare policy. All

of these factors require that potential surrogate endpoints are thoroughly assessed prior to

implementation in clinical trials, and such assessments require statistical evaluation and

analysis to determine the reliability and accuracy of surrogate endpoints (Burzykowski

et al., 2005).

1.5 Regulatory Aspects

A key component in the evaluation of surrogate endpoints is ensuring that they are consid-

ered appropriate for approval by regulatory agencies. Both the FDA and EMA recognise

the need for more efficient development and approval of new medicines, and have imple-

mented procedures for researchers to do so using surrogate endpoints.

In the United States, the FDA grant ‘regular’ approval of new medicines when clinical

benefit has been demonstrated, or when a treatment effect has been demonstrated on an

‘established’ surrogate. A surrogate endpoint is considered established when there exist

substantial data that have increased certainty that the surrogate is truly predictive of

clinical benefit. When such data are not available, a surrogate is considered ‘unestablished’

and cannot be used for full regulatory approval.

In recognition of the need for use of ‘unestablished’ surrogates, the FDA introduced an

Accelerated Approval program for diseases thought to be ‘serious’ or ‘life-threatening’ (FDA,

2014). According to this regulation, interventions tested using adequate and well-controlled

clinical trials based on a surrogate endpoint which is “reasonably likely to predict clini-

cal benefit” can be sufficient for approval and marketing, with the condition that post-

marketing clinical trials are conducted to confirm the clinical activity of the drug. This

enables patients to gain access to the treatment while it is still under investigation. Since

introduction of this regulatory pathway in 1992, a total of 169 accelerated approvals have

been granted by the FDA (as of 30th June 2017 (FDA, 2017)).
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The EMA offer a similar program; that of conditional approval. However, they already

allow more flexibility in their recommended choice of endpoint. They recommend that

the primary endpoint be chosen to provide a valid and reliable measure of clinical benefit,

stating that, for example, progression-free survival (PFS) or disease-free survival (DFS)

are acceptable primary endpoints in certain situations, with overall survival reported as a

secondary endpoint. In these cases, where the trial is powered for the primary comparison,

the sample size and study duration should allow for survival data to be precise enough

to rule out negative effects on OS. Further to this, for diseases where the time from

progression to death can be long, and the effect of treatment on the primary endpoint

is large, there may in fact be no need to show evidence of superiority in overall survival.

However, when there are no treatment options available as next-line therapies, when the

time from disease progression to death is expected to be short, or when it is expected

that there will be significant differences in toxicity in favour of the control arm, it is

recommended that overall survival be chosen as the primary endpoint (EMEA, 2013).

Interest in finding and implementing surrogate endpoints has increased rapidly over

recent years, with medical practitioners, clinicians and statisticians providing valuable con-

tributions to the debate. For some, the use of surrogate endpoints is seen as a potential

risk to the drug development process, caused by a lack of understanding of disease path-

ways and difficulty surrounding the validation of such endpoints (Fleming and DeMets,

1996). For others, surrogate endpoints are seen not only as a convenience, but a necessity,

to ensure that the pharmaceutical industry is able to continue to provide safe and effective

treatments to those who need them in the shortest possible time.

1.6 Motivation for Further Research

Researchers must show caution when selecting potentially useful surrogates, by considering

both the disease setting and the class of treatment under investigation. A surrogate that

is encouraging in one indication may not necessarily extend to treatment with the same
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compound in other, even similar, disease settings (Fleming and DeMets, 1996). Similarly,

the class of treatment under investigation may well influence the relationship between the

proposed surrogate and clinical endpoint; a surrogate which is predictive of treatment effect

for one intervention may have no relevance for the same surrogate and clinical endpoints

for a different intervention targeting the same disease. Finally, as new treatments become

available and treatment practices evolve, the need to evaluate surrogate endpoints will be a

continuous process. What was effective as a surrogate endpoint for one disease setting may

well change as treatments are approved and introduced into the wider patient population,

and medical knowledge increases. This means that there will also always be the potential

to improve on the statistical methodology used to evaluate the surrogates.

There has been a vast amount of research conducted into appropriate statistical method-

ology for the evaluation of surrogacy; this can be seen by the large number of methods

discussed in Chapter 2. The approaches have developed based on hypothesis testing and

estimation methods, in single trials and in a meta-analytic setting, however there are many

questions that remain unanswered.

There is currently no consensus, in the statistical literature or in regulatory guidance,

as to which of the methods are considered most appropriate for any given setting. Whilst

most recommend meta-analytic methods over single trial analysis (Burzykowski et al.,

2005; Daniels and Hughes, 1997), there are few recommendations as to which of the meta-

analytic measures perform most satisfactorily, and which may be subject to bias under

particular conditions. In addition, the majority of proposed measures provide quantifica-

tion of surrogacy based on a [0, 1] scale, but there is currently no recommendation for how

large such measures need to be before a surrogate can be considered suitable for use, and

it is suggested that clinical and other judgement is required to decide this (Molenberghs

et al., 2008; Weir and Walley, 2006). Without such guidance, it is difficult for researchers

to understand the regulatory requirements for surrogates, and there is a risk of subjective

and inconsistent conclusions from different applications of the same methodology.

Further, and considered of particular interest for this research, is the performance of
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measures when there exist very little data on which to base a surrogacy evaluation. The

majority of previous investigations of surrogacy have been based on large meta-analyses,

conducted by independent groups who gathered data from many sources, for example the

work of Shi et al. (2016) and Shi et al. (2017). Much of the motivation for the future use of

surrogates comes from individual pharmaceutical companies, who are planning Phase III

trials and are trying to determine which endpoint is most appropriate. In such cases, there

may exist data only from within the same or a similar clinical development plan, which

may consist of only a handful of small Phase II and III trials. Obtaining vast amounts

of data from competitors, although improving, remains challenging, and so it is critical

that research is conducted to determine the reliability of surrogacy evaluation methods in

this setting. Whilst there has been some exploration of this setting already (Renfro et al.,

2014), such investigation has been limited to just one statistical approach to evaluating

surrogacy, and there is a need to expand the scope to determine which of the variety of

available methods can be considered most appropriate for use in practice.

Finally, although surrogate and long-term endpoints can be based on any type of

outcome, such as binary, continuous or time-to-event (Burzykowski et al., 2005), this

research focuses on statistical methods applicable to time-to-event surrogate and true

endpoints, as these are the endpoints most likely to suffer from the need for long periods of

observation. The results and recommendations presented herein are applicable to all time-

to-event endpoints, however oncology endpoints are selected to illustrate the performance

of the methods. Two scenarios are of particular interest, in which overall survival is

used as the long-term outcome of interest. The first scenario considers a surrogate of

time-to-progression (TTP: time from study entry to disease progression) and the second

considers progression-free survival (PFS: time from study entry to disease progression or

death). The motivation for considering both of these cases is that in the first, the event

of death has no impact on the surrogate other than to censor the outcome if patients die

prior to disease progression, whereas in the second, death is also included as an event for

the surrogate outcome. Therefore, comparison of both endpoints allows an assessment
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of the impact of including information directly related to the long-term outcome within

the surrogate endpoint. This has so far been explored very little in the literature, but is

considered hugely important since PFS is used much more commonly in oncology trials,

with the larger number of potential events leading to the endpoint being quicker to achieve

maturity (see additional discussion of Ghosh et al. (2012), for example). PFS is also well

understood and accepted by clinicians and regulatory authorities as a secondary, and in

some cases primary, measure of clinical benefit.

A detailed description of the development of statistical methodology for the evaluation

of surrogate endpoints is presented in Chapter 2. Based on this review of the literature, two

methods have been selected for further investigation. The first of these methods is exam-

ined in Chapter 3, where the performance of the measure is assessed for the new scenario

of time-to-event surrogates that also contain information from the true clinical endpoint.

This scenario has not previously been explored for the selected method, but represents one

of the most commonly used time-to-event oncology endpoints in practice, progression-free

survival. Focus remains on surrogacy assessment from an individual pharmaceutical com-

pany perspective, where there are limited data available for analysis. The second measure

is examined in Chapter 4, again under the previously unexplored scenario of assessment

of surrogates that contain data from the true endpoint. The original proposal for use of

this second method was based on simulation studies of single clinical trial datasets; the

performance of the method in a meta-analytic setting is therefore investigated.

Based on findings from these investigations, Chapter 5 contains a proposal for a new

measure of assessing surrogacy. Whilst applicable to all endpoint types, focus remains

on time-to-event endpoints in order to compare results to the previous findings of the

research. This methodology is proposed to address some of the issues encountered during

investigation of previously recommended measures, and is evaluated through simulation

studies. An illustrative example of the application of all three of the investigated surrogacy

methods is provided in Section 6, and final conclusions and recommendations are presented

in Chapter 7.
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Chapter 2

Review of Statistical Methodology

Designed for Evaluation of Surrogate

Endpoints

2.1 Introduction

The need for a thorough statistical evaluation of potential surrogate endpoints provides

motivation for research into the most appropriate and reliable statistical methodology for

this purpose. As noted in Section 1.2, demonstrating that there exists correlation between

two endpoints, or between treatment effects on two endpoints, is not sufficient to ‘validate’

a surrogate endpoint for use (Fleming and DeMets, 1996). Of primary interest is whether

the outcome of, and treatment effect on, a surrogate endpoint can reliably predict outcome

and treatment effect for the long-term clinical endpoint of interest.

Statistical methodology designed to evaluate potential surrogate endpoints has de-

veloped over the last 30 years, from simple measures based on individual clinical trials

(single-trial measures, Section 2.2), to more complex assessments using meta-analysis of

many datasets (meta-analytic measures, Sections 2.3 and 2.4). Research has examined

individual-level surrogacy ; the ability of a surrogate outcome to predict long-term outcome
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for an individual patient, and trial-level surrogacy ; how well the unobserved treatment ef-

fect on the long-term endpoint can be predicted using the observed treatment effect on

the surrogate endpoint.

In this chapter, the development of statistical methodology designed for the assessment

of surrogate endpoints is described, with an aim to provide context for further research

and identify gaps that need to be addressed. As discussed in Section 1.6, the focus of

interest in this research is time-to-event endpoints, i.e. endpoints that measure time from

study entry to the occurrence of some event of interest, such as time to disease progression

or death. Measures that have been proposed for surrogacy but which cannot incorporate

time-to-event endpoints are therefore described only when critical to the understanding of

historic context or subsequent methodology, such as extensions to methods to allow their

use with time-to-event endpoints. Thorough reviews of the development of statistical

methodology can be found in Weir and Walley (2006) and Ensor et al. (2016). Further

guidance on the use of some of these measures is also provided by Alonso et al. (2017).

Throughout, the long-term clinical outcome of interest is referred to as the ‘true’

endpoint, and the surrogate and true endpoints are denoted by random variables S and

T respectively. Treatment effects on S and T are denoted by α and β respectively. When

describing meta-analytic measures, it is assumed that there exist a total of N clinical

trials available for analysis, with ni patients enrolled in each trial i = 1, ..., N , with Sij

and Tij used to denote the surrogate and true outcomes, respectively, for patient j in trial

i. It is also assumed that each trial includes a binary treatment indicator, Zij, which may

or may not be the same treatment across all available studies. When discussing general

model constructs, Xj(t) will be used to denote the covariate vector for patient j, which

may contain the treatment indicator Zij as well as other relevant covariates. For time-

to-event outcomes, it is assumed that patients either experience the event of interest, or

are censored, meaning that they did not reach the event of interest during their period of

observation. It is this censoring, commonplace in the analysis of time-to-event outcomes,

that causes difficulties in the extension of many surrogate evaluation methodologies and
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leads to the need for specific measures to assess these types of endpoints. The introduction

to existing measures of surrogacy starts in the next section with those based on a single

clinical trial.

2.2 Single-Trial Measures

2.2.1 Prentice Paradigm and Proportion of Treatment Effect

Explained

As stated in Section 1.2, the first formal statistical definition of a surrogate endpoint was

provided by Prentice (1989), who proposed that the treatment comparison based on the

surrogate should provide full information on the treatment comparison based on the true

endpoint. Burzykowski et al. (2005) write this definition statistically as

f(S|Z) = f(S)⇔ f(T |Z) = f(T ),

where f(.) represents the probability distribution for the random variables S and T , con-

ditional or not on treatment, Z. Therefore, a lack of treatment effect on the surrogate

outcome implies a lack of treatment effect on the true outcome, and vice versa, such that

only a formal hypothesis test of the surrogate endpoint is required to draw conclusions

about the treatment effect on the true endpoint. In order to satisfy this overall definition,

a number of operational criteria are proposed by Prentice (1989);

f(S|Z) 6= f(S),

f(T |Z) 6= f(T ),

f(T |S) 6= f(T ),

f(T |S,Z) = f(T |S).

These criteria require that, for a surrogate to be considered ‘valid’, it is necessary to ob-

serve statistically significant treatment effects on both S and T , a statistically significant
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impact of S on T , and crucially, that the conditional distribution T |S is not statistically

significantly different depending on whether treatment is also accounted for. In other

words, all of the treatment effect on the true endpoint is mediated by the surrogate end-

point.

Whilst these criteria have the benefit of being applicable to any type of endpoint,

they have been heavily criticised, in particular due to the final criterion which requires

non-significance of a hypothesis test. Firstly, the lack of non-significance does not confirm

that the two distributions are equivalent, since there may simply be insufficient evidence

or statistical power to detect a difference (Freedman et al., 1992). Secondly, it could

be questioned whether such a requirement is realistic in practice. Whilst the biological

plausibility of a surrogate must be strong, it could be possible that the underlying pathways

of a disease do not allow for absolutely all of the treatment effect to be captured by the

surrogate. The aim of surrogate endpoints is to reliably predict unobserved treatment

effects on T , but there must be a balance between accuracy of predictions and the potential

benefits of use of the shorter-term endpoint. Some loss of precision may be considered

acceptable if it leads to faster drug development and patient access to new medicines.

Indeed, as noted by the FDA (FDA, 2014), a surrogate can be considered for use in

clinical development if it is “reasonably likely to predict clinical benefit”.

Fleming et al. (1994) suggest using this final criterion “as an ideal to keep in mind”

rather than definitive evidence of surrogacy, and Buyse and Molenberghs (1998) note that

whilst the criteria are informative and will tend to be satisfied for a valid surrogate, strict

satisfaction is not necessary. In addition, studies have shown that a perfect surrogate can

fail to satisfy the criteria (Tsiatis, 1996). However, despite the criticism, the fundamental

concept behind the Prentice (1989) definition remains appealing, and has formed the basis

of much of the ensuing statistical literature.

To reduce the strictness of a binary decision resulting from a hypothesis test, and to

provide an alternative approach to estimating the value of a surrogate, Freedman et al.

(1992) propose a measure estimating the proportion of treatment effect on T that can
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be captured by adjustment for S, the proportion explained (PE). If β and βS denote the

treatment effect on T unadjusted and adjusted for S, respectively, the PE is estimated as

PE = 1− βS
β
.

A high value of PE would suggest that the majority of treatment effect on T is captured

or mediated through the surrogate. It could then be concluded that knowledge of the

treatment effect on S provides sufficient information about the treatment effect on T . A

value of PE close to zero would suggest that adjusting for the potential surrogate had

little impact on the treatment effect on T , and therefore that the surrogate did not offer

much potential.

The PE provides more information than a hypothesis test; it estimates what level

of treatment effect can be captured by the surrogate. It also has the benefit of being

applicable to any type of endpoint. However, the measure has been subject to criticism,

since values can lie outside of the [0, 1] interval, confidence intervals can be very wide, and

it becomes difficult to interpret when endpoints are not measured using the same scale,

for example ratios versus linear differences. It has been recognised that these criticisms

lead to difficulties in interpretation of the measure, and lead to it being infeasible for use

in practice (Freedman, 2001). Despite these limitations, many researchers continued to

develop and build on the idea of the proportion explained, including Lin et al. (1997), who

investigated the PE when based on time-to-event endpoints; Li et al. (2001), who extend

using a generalised linear model approach; Chen et al. (2003) who allow time-varying

covariates and Cowles (2002) for Bayesian estimation.

2.2.2 Relative Effect and Adjusted Association

Although the limitations of the PE prevent reliable use of the measure in practice, the

underlying concept remains appealing, providing estimation of how much of the treatment

effect on T can be captured by S. More fundamentally, of particular interest is how well

the treatment effect on S can predict the treatment effect on T , such that future use of
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a surrogate provides some information as to the benefit of treatment on the long-term

clinical outcome. To address this, Buyse and Molenberghs (1998) suggest to replace the

PE with two alternative measures, the underlying concepts of which have been key to

much of the subsequent methodological developments.

The first of the two measures, the relative effect (RE), is defined as the ratio of treat-

ment effects on T versus S

RE =
β

α
,

providing an estimate of the multiplicative relationship between the two treatment effects.

If this assumption of a multiplicative relationship is considered reasonable, an estimated

value of RE from a previous study can be used, together with an estimated treatment

effect on a surrogate endpoint from a new trial, to provide a prediction of the unobserved

treatment effect on the true endpoint for that new trial. The RE is considered a trial-level

measure of surrogacy, since it allows prediction of the treatment effect for a new trial.

The second proposed measure, the adjusted association (AA), is intended to evaluate

the association between S and T after accounting for treatment, such that for an individual

patient it would be possible to predict future clinical outcome using the outcome observed

on the surrogate endpoint. This ability to predict long-term outcome for a given indi-

vidual is denoted the individual-level surrogacy, and for normally distributed endpoints is

calculated based on the error terms generated from a linear model of surrogate and true

endpoints regressed on treatment.

While the concepts of RE and AA are applicable to all types of endpoints, there are

a number of limitations that have prevented their widespread use. In particular, the

confidence intervals for the RE, being based on data from only one clinical trial, can

be extremely wide, hampering interpretation. In addition, the measure assumes a linear

relationship between α and β, which cannot be verified when based on data only from

a single trial. As a result, a number of researchers have concluded that evaluation of

surrogate endpoints should be based on data from multiple clinical trials, in a meta-
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analytic setting (Daniels and Hughes, 1997; Buyse and Molenberghs, 1998). Potential

advantages of meta-analytic approaches to surrogacy evaluation also include the ability

to assess the robustness and sensitivity of surrogate endpoints within different patient

populations and treatments.

The extension of RE and AA to multiple trials has been a key development in the

statistical literature for surrogate endpoint evaluation. Whilst not the only contribution

to the literature, extensions to multiple endpoint types and combinations thereof has led

to a wealth of techniques designed to assess both trial-level and individual-level surrogacy,

as described below.

2.3 Meta-Analytic Methods

The aim of statistical methodology for the assessment of surrogate endpoints is to quan-

tify the accuracy and reliability of predictions for unobserved outcomes and unobserved

treatment effects. For a new endpoint to be considered appropriate for the widest possi-

ble range of future settings, it is of the utmost importance that it is evaluated across as

many different clinical trial datasets as possible, to ensure generalisability without over-

extrapolation of results and conclusions. The choice of clinical trials to be included in a

meta-analytic evaluation of surrogacy is therefore critical.

As an example, the duration of treatment for a disease may be dependent on individual

patient characteristics or prognosis, such as age or other co-morbidities. In such cases, if

the aim is to use a surrogate endpoint across all future clinical studies of that disease, the

surrogacy assessment must incorporate clinical trials that contain all possible treatment

regimens in all populations. Without this representation of all potential uses of the treat-

ment, it is difficult to justify universal use of the surrogate. Based on such meta-analysis,

use of a surrogate may also be restricted to scenarios that clearly demonstrated reliable

surrogacy.

Furthermore, whilst differing biological aspects of individual diseases mean that evalu-
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ation of potential surrogates must be done separately for each, there are additional ques-

tions to be considered, such as the class of treatment under investigation. An assessment

of surrogacy may be conducted for individual treatments, but more likely is that classes of

treatment will need to be explored based on their mechanism of action, so that use of sur-

rogate endpoints remains relevant for the future, and so that sufficient data are available

on which to base a surrogacy assessment. An evaluation of multiple clinical trials which

test different treatments within the same therapeutic class is therefore possible, but care

needs to be taken to ensure that treatments within these trials are biologically similar and

can be expected to act upon endpoints in a consistent way.

The earliest formal statistical methodology for the evaluation of surrogate endpoints

based on data from multiple trials was proposed by Daniels and Hughes (1997), who sug-

gest to model the difference in treatment effects on S and T across multiple trials from

a Bayesian perspective. This first step into meta-analytic surrogacy evaluation had the

benefit of requiring only summary level information from individual trials, rather than

individual patient level data, which can be difficult to access. However, the resulting

downside is that individual-level surrogacy cannot be evaluated. Nevertheless, this first

move into meta-analytic assessment of surrogacy formed the basis for a number of ex-

tensions (Burzykowski et al., 2005). Key developments of further meta-analytic measures

relevant to the work in this thesis are described next.

2.3.1 Two-Stage Methods

Extensions of the concepts of RE and AA to meta-analytic surrogacy assessment were

used to build a framework designed to evaluate surrogate and true endpoints of continuous

data (Buyse et al., 2000). Although not directly applicable to time-to-event endpoints, the

method is briefly described here as an introduction to extensions which do allow analysis

of such outcomes. Throughout, the meta-analytic version of individual-level surrogacy is

denoted R2
indiv, and the meta-analytic version of trial-level surrogacy is denoted R2

trial.
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In a meta-analytic setting, each clinical trial provides estimates of treatment effects on

S (α) and T (β), which are measured with some level of estimation error and will vary

from trial to trial. This variability is key in estimating the strength of surrogacy, as it

reflects the quality of predictions that can be made from the available data. In order to

define a trial-level measure of surrogacy, which can be used to quantify the variability in

predictions of treatment effects in future studies, Buyse et al. (2000) consider estimation

of the variability between trial-specific estimates of treatment effects (αi, βi), using either

fixed effects or random effects modelling.

In the fixed effects model, two-stages of analysis are used to estimate model parameters.

In the first stage, it is assumed that patient outcomes, Sij and Tij follow the linear model:

Sij = µSi + αiZij + εSij ,

Tij = µTi + βiZij + εTij ,
(2.1)

where µSi , µTi are trial-specific intercept terms and εSij , εTij are correlated error terms

which are assumed to follow a multivariate Normal distribution with mean zero and co-

variance matrix

Σ =

 σSS σST

σTT

 .

Using this model from the first stage of analysis, the square of the correlation coefficient

between S and T , based on covariance matrix (2.3.1), is used to quantify the association

between S and T after accounting for Z (individual-level surrogacy), using

R2
indiv =

σ2
ST

σSSσTT
.

This value then lies in [0, 1], with values close to one suggesting strong association between

endpoints. The obvious limitation to this measure is that there is no objective threshold

that would indicate when a surrogate is reliable enough for use, a point that will be

discussed further in Section 2.3.4. A confidence interval for R2
indiv can be calculated using

the delta method as

R2
indiv ± z1−α/2

√
4R2

indiv(1−R2
indiv)

2

ntotal − 3
,
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where z1−α/2 is the critical value of the standard normal distribution and ntotal is the total

sum of patients coming from all clinical trials included in the meta-analysis (Alonso et al.,

2017).

As a second stage to the analysis, and to define a trial-level measure of surrogacy, the

trial-specific terms of Equation (2.1) are considered to follow a linear model
µSi

µTi

αi

βi


=


µS

µT

α

β


+


mSi

mTi

ai

bi


,

where the terms mSi , mTi , ai and bi are assumed to be Normally distributed with mean

zero and covariance matrix

D =


dSS dST dSa dSb

dTT dTa dTb

daa dab

dbb


.

This model can be used to estimate the parameters and respective variability based on

previous clinical trial data, which can subsequently be used to estimate the proportion of

variability in the treatment effect on T that can be explained using the treatment effect

on S, using the coefficient of determination. This is proposed as a trial-level measure of

surrogacy, defined as

R2
trial =

 dSb

dab

T  dSS dSa

dSa daa

−1 dSb

dab


dbb

.

This measure of R2
trial lies in [0, 1], with values close to one suggesting that almost all

variability in treatment effects on T can be accounted for using treatment effects on S,

which would be a clear indication of good surrogacy. Again, the measure is limited due

to the subjectivity surrounding a threshold that would be sufficient to declare a surrogate
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valid, which is discussed further in Section 2.3.4. Confidence intervals can be calculated

using the delta method, as

R2
trial ± z1−α/2

√
4R2

trial(1−R2
trial)

2

N − 3
,

where z1−α/2 reflects the critical value of the standard normal distribution, and N reflects

the number of trials (Alonso et al., 2017).

Whilst this approach follows a two-stage procedure, continuous endpoints could also

be analysed using a random effects modelling approach where the two stages are combined

to estimate the model parameters and respective variance in one step. This process leads

to the same measure of trial-level surrogacy as above, but is not described further here

since extensions to other endpoints do not allow for such a modelling approach, and the

method has been subject to computational difficulties; details can be found in Buyse et al.

(2000). Further, a reduced version of R2
trial has also been considered, where the model is

simplified to remove the trial-specific intercept terms. In such cases, the simplified R2
trial is

defined as R2
trial =

d2ab
daadbb

. This model, based on random intercepts independent of random

treatment effects is used in the time-to-event setting, which will be described in the next

section.

There have been a number of extensions to this two-stage approach, in particular to

capture alternative endpoint structures, where the linear modelling approach is no longer

appropriate. For binary outcomes, it is argued that there is no clear model choice to handle

these endpoints efficiently (Burzykowski et al., 2005), and so the binary outcomes are

assumed to derive from underlying latent continuous random variables. This assumption

allows the proposed R2
indiv and R2

trial from the continuous endpoint structure to be used,

although it is recognised that parameter estimation is more difficult. Such an extension

also allows for ordinal endpoints to be used, as well as different combinations of binary,

ordinal and continuous outcomes.

For time-to-event endpoints, there is no extension that can allow the previously defined

surrogacy measures to be directly used, and so an alternative extension is required. This
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additional methodology, of primary relevance to the research in this thesis, is referred to as

the two-stage meta-analytic copula method, and is described in detail in the next section.

2.3.2 Time-to-Event Endpoints

Time-to-event endpoints measure the time from the start of observation, such as study

entry or date of randomisation of a patient into a clinical trial, until the occurrence of a

clinical event of interest. For example, a time-to-event endpoint may measure the time

from study entry until death, or capture durations of a particular disease status, for

example the duration of time from the first response to treatment until disease starts to

deteriorate. Such endpoints can also be referred to as failure-time or survival endpoints.

A key feature of such data is that, during the period of a clinical trial, not all patients

will experience the event of interest. There will likely be a number of patients who drop

out of the clinical study and withdraw their consent for further observation. There will

be other patients who reach the end of the observation period without experiencing the

event. Such cases are considered to be ‘censored’, indicating that they provide data for

analysis up to the point that they are no longer observed, but the time of their clinical

event remains unobserved and so their ‘survival time’ remains unknown. It is important

to note that the event of interest may not always be death, so the term ‘survival’ is used

to indicate that the particular event of interest has not been observed.

This censoring leads to challenges in the analysis of time-to-event data, which therefore

requires alternative statistical methodology that can accommodate censored observations

and make use of the data collected up to the point of censoring. A number of these

techniques are employed in the statistical evaluation of time-to-event surrogate and/or true

endpoints, therefore definitions to illustrate concepts, terminology and notation related to

survival analysis are briefly described below. These descriptions are restricted to those

that are critical to the understanding of proposed surrogacy evaluation measures.

40



2.3. META-ANALYTIC METHODS

Definitions

� Survivor Function: In the analysis of time-to-event data there are two functions

of primary interest, the survivor function and the hazard function. The survivor

function, S(t), defines the probability that a patient will survive beyond some time

t, P (T > t), where T is a random variable denoting actual survival time. This is

frequently estimated using the Kaplan-Meier methodology described below.

� Hazard Function: The second function that is of interest in the analysis of time-

to-event data, the hazard function λ(t), denotes the probability of an individual

experiencing an event at time t given that they survived up to time t. The hazard

function is used in regression modelling of time-to-event data using the Cox pro-

portional hazards model (see below). As a general result, it can be shown that the

hazard and survival functions are conveniently linked. As noted in the description

of the survivor function above,

S(t) = P (T > t) =

∫ ∞
t

f(u)du = 1− F (t),

where f(u) denotes the probability density function of the random variable T (de-

noting the time-to-event), and F (t) = P (T < t) denotes the distribution function of

T . Then, the hazard function is defined as

λ(t) = lim
δt→0

{
P (t ≤ T < t+ δt|T ≥ t)

δt

}
= lim

δt→0

{
1

δt

P (t ≤ T < t+ δt)

P (T ≥ t)

}
= lim

δt→0

{
F (t+ δt)− F (t)

δt

}
1

S(t)
.

The term in the limit here, shown in brackets, is the definition of the derivative of

F (t) with respect to t, which equates to f(t), thereby leaving the hazard function

defined as λ(t) = f(t)
S(t)

. Using differentiation with the chain rule, it can further be
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shown that

dlog(1− F (t))

dt
=
−f(t)

1− F (t)
=
−f(t)

S(t)
⇒ −dlogS(t)

dt
=
f(t)

S(t)
= λ(t),

and therefore the general relationship between survivor and hazard functions can be

derived as

S(t) = exp

(
−
∫ t

0

λ(y)dy

)
.

� Kaplan Meier Method (Kaplan and Meier, 1958): This approach estimates

the survivor function by estimating the reduction in cumulative probability of sur-

vival each time an event occurs in the sample. At time zero, all patients are event-

free, and the cumulative probability of survival is equal to one. As time progresses,

patients start to experience the event of interest, and at each event time t the prob-

ability of survival is re-calculated as the probability of survival just prior to time

t multiplied by the probability of observing an event at time t (number of events

occurring at time t divided by the number of patients remaining under observation

and event-free immediately prior to time t [the risk set]). Censored patients remain

in the risk-set until their observation discontinues. The time at which probability of

survival first reaches below 50% is termed the ‘median’ survival time and is a key

summary measure of survival outcomes.

� Cox Proportional Hazards Regression (Cox, 1972): As for any regression

model, the proportional hazards model allows for comparison of outcomes between

patient groups, after accounting for other covariates (if required). For time-to-event

data, the outcome to be modelled is the risk that the event of interest will occur

at time t, the hazard function. Covariates are assumed to have a multiplicative

effect on the hazard function, and hazard functions are assumed to be proportional

between patients with different covariate values. The comparison of hazard functions

between groups then provides a ‘hazard ratio’, a parameter which describes whether

patients in one group are more (hazard ratio > 1) or less (< 1) likely to experience
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the event of interest over the period of observation. The hazard ratio is a commonly

used measure of treatment benefit for time-to-event outcomes. The general form of

the Cox model for an individual patient, j, with time-dependent covariates Xj(t) is

given by

λj(t|Xj(t)) = exp(β′Xj(t))λ0(t),

where λj(t|Xj(t)) denotes the hazard function for patient j, β′Xj(t) denotes a linear

combination of the vector of covariate values at time t for patient j and λ0(t) denotes

the hazard function for a patient with values of zero for all covariates, also known as

the baseline hazard. In this representation, the covariate vector Xj(t) is described as

a function of time, t, since some applications of this model to surrogacy evaluation

apply a time-dependency concept to model the impact of the change in surrogate

outcome over time. This will be re-visited when describing the respective surrogacy

approaches.

Two-Stage Meta-Analytic Copula Method

The first meta-analytic surrogacy approach that was proposed specifically for the eval-

uation of time-to-event surrogate and true endpoints is an extension of the previously

described two-stage model for continuous endpoints (Burzykowski et al., 2001). As noted,

the extension is not trivial, due to the nature of the time-to-event endpoints, and in

particular the censoring.

In order to provide measures of individual and trial-level surrogacy for the time-to-

event case, Burzykowski et al. (2001) propose to replace the linear model used in stage one

of estimation with a function that defines the joint distribution of the surrogate and true

endpoints. To achieve this, a copula function is used (Nelsen, 1999), and so this approach is

described herein as the two-stage meta-analytic copula method. Copula functions provide

a method for constructing the joint distribution of two endpoints, using marginal uniform

distributions for the endpoints and defining a dependence structure between them. The
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uniform marginal distributions can then be transformed to the required endpoint type,

without impacting the strength or structure of relationship between endpoints.

The general definition of a bi-variate copula is a function on [0, 1] x [0, 1] for which, for

standard uniform random variables u Un(0, 1) and v Un(0, 1),

C(u, 0) = 0,

C(0, v) = 0,

C(u, 1) = u,

C(1, v) = v,

and for all u1, u2, v1 and v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0.

There are many different choices of copula function, some which describe the associ-

ation between endpoints using a single parameter, and others that do so using multiple

parameters. A detailed review of copula theory can be found in Nelsen (1999). Burzykowski

et al. (2001) consider functions with one dependence parameter, for simplicity, and con-

centrate on three different copula functions; Clayton, Gumbel and Plackett. Indeed, the

importance of the selection of copula has been a topic for much research (Renfro et al.,

2015).

Of primary interest in this thesis is the Clayton copula model, since this was the model

selected for previous simulation studies to assess performance of the proposed surrogacy

evaluation approach (Burzykowski, 2001), and has been the subject of further research

since (Renfro et al., 2014, 2015). Further discussion of the Gumbel model can be found

in Chapter 3, where it is used to examine the performance of the two-stage meta-analytic

copula approach under misspecified models.

For two uniform random variables, u and v, the general form of the Clayton copula is

Cθc(u, v) =
(
u1−θc + v1−θc − 1

) 1
1−θc ,
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where θc denotes the dependence parameter specific to the Clayton copula, quantifying

the strength of association between u and v. For this copula function, θc > 1, with the

association between endpoints decreasing as θc reduces. To apply such a model to time-

to-event data in the context of surrogate endpoints, Burzykowski et al. (2001) propose to

transform the uniform margins to survivor functions for Sij and Tij, such that the joint

survival distribution between surrogate and true endpoints is defined as

S(s, t) = P (Sij ≥ s, Tij ≥ t) = Cθc{SSij(s), STij(t)}, s, t ≥ 0,

where SSij(s) and STij(t) denote the marginal survival functions for S and T . Using this

model, estimation of the effects of treatment on the two endpoints is proposed through

the use of proportional hazards models for each endpoint:

SSij(s) = exp

{
−
∫ s

0

λSi(y) exp(αiZij)dy

}
,

STij(t) = exp

{
−
∫ t

0

λTi(y) exp(βiZij)dy

}
,

where λSi and λTi correspond to the trial-specific baseline hazard functions, and αi and βi

denote the trial-specific treatment effects on the surrogate and true endpoints respectively,

for each trial. In this setting, the proportional hazards models are considered separately

for each endpoint, and the covariate vector is not considered to be time-dependent. To es-

timate the parameters of the joint survival distribution, S(s, t), including the dependence

between endpoints, θc, and the trial-specific treatment effects, αi and βi, the baseline haz-

ards are specified parametrically to allow use of maximum likelihood estimation. For both

endpoints, baseline hazards are assumed to derive from a Weibull distribution, although

alternative approaches can be considered, including leaving the form of the baseline haz-

ards unspecified (Burzykowski et al., 2001). When maximum likelihood estimation is used

to estimate the copula model parameters, including the trial-specific treatment effects, a

Newton-Raphson procedure can be implemented.

As in the case of continuous endpoints, an individual-level measure of surrogacy is

defined as the association between S and T after accounting for treatment, Z. Whereas
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the square of the correlation coefficient could be used for continuous data, such a measure

is not appropriate in a time-to-event setting since the baseline hazard may be different for

each trial. Instead, the copula dependence parameter, measuring the dependence between

endpoints after accounting for trial and treatment effects, is considered a good candidate

for individual-level surrogacy. However, since each copula model has a different dependence

parameter, Burzykowski et al. (2001) propose to transform the copula parameter into an

estimate of Kendall’s τ (Kendall, 1938), which can then be used to compare results across

different copula models for the same dataset. For two random variables u and v, τ can be

calculated as

τ = 4

∫ 1

0

∫ 1

0

Cθc(u, v)Cθc(du, dv)− 1,

serving as a measure of individual-level surrogacy. Of note, when using the Clayton copula

function, the dependence parameter θc has an additional interpretation relevant to survival

analysis. This parameter also represents the ratio of the hazard rate for T conditional on

S = s to the hazard rate for T conditional on S > s, thereby quantifying the increase

in risk of the true outcome (e.g. death) for observing a surrogate outcome (e.g. disease

progression) at time s relative to achieving a longer time to surrogate outcome. A higher

value of θc therefore indicates that the risk of observing the true outcome increases with

a shorter time to surrogate outcome, reflecting a stronger association between surrogate

and true endpoints.

During this first stage of analysis, the copula model provides estimation of not only the

dependence parameter, and therefore the individual-level surrogacy, τ , but also the trial-

specific treatment effects for S and T . In a second stage of analysis, as in the continuous

setting, these estimated treatment effects are then regressed according toαi
βi

 =

α
β

+

ai
bi

 ,

where the final term is assumed to follow a zero-mean normal distribution with variance-
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covariance matrix

D =

daa dab

dbb

 .

A trial-level measure of surrogacy is then proposed as

R2
trial =

d2ab
daadbb

,

which is the same measure as that used in the approach for assessing continuous surrogate

and true endpoints. Confidence intervals for both τ and R2
trial can be constructed using

the delta method (Burzykowski et al., 2005).

Burzykowski et al. (2004) also consider the use of a copula modelling approach when

assessing a time-to-event true endpoint and a binary or ordinal surrogate endpoint. As-

suming a latent underlying continuous random variable for the surrogate endpoint, for

which specific cutpoints define the given categories, the Plackett copula model is proposed

to estimate both τ and R2
trial in the same way as for time-to-event surrogate and true

endpoints.

2.3.3 Applications

The two-stage meta-analytic copula method has been used in a number of recent surrogacy

evaluations, and has become the preferred method for many, particularly in oncology

settings. The method is used by Chibaudel et al. (2011) to assess a number of surrogate

endpoints to replace OS in clinical trials of advanced colorectal cancer, including PFS

and duration of disease control. Laporte et al. (2013) use the approach in evaluating PFS

as a surrogate for OS in advanced non small-cell lung cancer, and Foster et al. (2011)

and Foster et al. (2015) use the approach to assess PFS as a potential surrogate for OS

in extensive stage small-cell lung cancer, with tumour response also being evaluated as a

surrogate using the two-stage copula modelling approach developed for the assessment of

binary surrogates. Shi et al. (2017) also applied the method to assess a binary surrogate for

PFS in the assessment of patients with follicular lymphoma. Some of these applications
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split the studies into smaller subgroups to increase the number of data points available for

analysis; this important topic will be discussed further in Section 2.5.

Despite these examples of the use of the two-stage meta-analytic copula approach,

a number of limitations have also been noted, as will be described in the next section.

Limitations that are considered specific to the two-stage meta-analytic copula method are

described first. More general limitations of the surrogacy approaches under investigation

within this thesis are described in Section 2.4.4.

2.3.4 Limitations of the Two-Stage Method

A practical limitation of the two-stage meta-analytic copula method is that the under-

lying modelling relies on complex computational procedures that are not available in

standard software packages. Whilst Burzykowski et al. (2001) have provided code to ap-

ply the methodology (see http://ibiostat.be/online-resources/online-resources/

surrogate), it remains challenging to implement due to the complex joint modelling

and likelihood maximisation procedures that are required. As an attempt to address

this, Cortiñas and Burzykowski (2010) explored a number of alternative approaches to

estimate R2
trial that would not require the complex joint modelling of endpoints, however

none of these approaches were considered to provide reliable results, and so this remains

of concern.

A further issue that has been noted by Burzykowski et al. (2001) but not extensively

studied in the literature is that of the assumptions associated with modelling using copula

functions. In particular, regardless of endpoint choice, copula models assume that the

two endpoints used for the marginal distributions are symmetrical, such that either of

the endpoints can be shorter or longer than the other. In general, if we wish to model

time-to-event surrogate endpoints, it would be most likely in practice that the surrogate

would be shorter than the true endpoint, and for some surrogates it is impossible for the

true endpoint to be shorter. One particular example is the endpoint of progression-free
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survival, defined as the time until disease progression or death. When the true clinical

endpoint is time to death (overall survival), it is not possible for progression-free survival

to be longer, and so Burzykowski et al. (2001) note that caution is needed in the interpre-

tation of the copula approach in this setting. Whilst simulation studies of the two-stage

meta-analytic copula method have been conducted by Burzykowski (2001), Renfro et al.

(2014) and Renfro et al. (2015), none of these included an assessment of progression-free

survival as a surrogate for overall survival, and violation of the assumption of symme-

try between endpoints has therefore not been previously explored. Such exploration is

therefore considered of high importance and is conducted in Chapter 3 of this thesis.

The simulation study conducted by Burzykowski (2001) assessed the performance of

the two-stage meta-analytic copula method for a number of factors, including varied trial-

level and individual-level surrogacy, sample size and proportions of censoring. However,

there remain a number of scenarios left unexplored. Firstly, the sample sizes examined

consisted of 10 or 20 trials each containing 50-200 patients, representing an ideal situation

where there are many datasets available for analysis. When there exist very few datasets

available, the reliability of the surrogacy measures could be expected to be lower, and

it is important to understand the impact of this. Less data implies that parameters of

the models are estimated less precisely, which in turn can lead to imprecise predictions of

future treatment effects. Whilst some trade-off between accuracy of predictions and the

length and cost of future clinical trials could be warranted, it is important to assess whether

such predictions may be misleading. Therefore, exploration of much smaller sample sizes

is performed in Chapter 3.

Additionally, the underlying surrogacy at both individual and trial levels were previ-

ously restricted to values of 0.5 or greater, which does not provide insight into settings

where the true surrogacy is low. Whilst low values would not be of interest to evaluate a

surrogate endpoint further, it is important to understand how well the method performs

in these circumstances, to ensure that truly poor surrogate endpoints are recognised as

such. Whilst some exploration of lower trial-level surrogacy has been conducted elsewhere,
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these are settings that are not directly relevant to the work of this thesis due to the large

sample sizes being considered (Renfro et al., 2012, 2015).

In order to address some of the limitations mentioned above and to try and improve the

two-stage meta-analytic copula method, a variety of additional work has been undertaken,

which is described in the next section.

2.3.5 Other Relevant Areas of Investigation

Burzykowski et al. (2001) recognise that when using the two-stage meta-analytic copula

method, the estimated treatment effects from stage one of analysis are used directly in

stage two of analysis, without taking into consideration that they are subject to measure-

ment error. Subsequent use of these treatment effects to estimate R2
trial may therefore

lead to bias, and so the methods of van Houwelingen et al. (2002) (used prior to formal

publication) and Fuller (1987) are proposed to provide an adjusted estimate of trial-level

surrogacy. Unfortunately, the simulation study of Burzykowski (2001) demonstrated that

there were substantial issues with non-convergence of these alternative methods that effec-

tively prevents their use in practice. To investigate further, Renfro et al. (2012) considered

Bayesian estimation of the R2
trial measure via simulations, and conclude that this approach

could offer improvements in estimation.

Further to this, Shi et al. (2011) examine the performance of the two-stage meta-

analytic copula modelling approach in evaluating R2
trial, as compared to the use of sim-

pler measures of correlation coefficients and least squares regression. Based on simulated

datasets, separate Cox proportional hazards models were used to estimate the treatment

effect for each endpoint in each trial. For comparison, R2
trial values were estimated from

these treatment effects using the square of Pearson and Spearman correlation coefficients,

the coefficient of determination from weighted regression of treatment effects (weighted

by sample size) and the two-stage meta-analytic copula method. Results demonstrated

that whilst the squared Spearman’s correlation coefficient performed poorly across most
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scenarios, the remaining measures performed similarly. Whilst low levels of trial-level sur-

rogacy were explored (0.2), the number of trials considered were N = 6, 12, 18 with a total

of n = 500, 1000, 2000 patients per trial, which provides a very large sample size overall.

This study therefore does not address the setting of interest in this thesis, when there

exist very little data on which to assess surrogacy.

Smaller sample sizes were considered by Renfro et al. (2014) as part of an extensive

investigation into the use of subgroups within clinical trials as the units for analysis rather

than entire clinical trials. Due to the relevance of this investigation on the use of surro-

gacy approaches by individual pharmaceutical companies, the work is described further in

Section 2.5.

Finally, Renfro et al. (2015) refer to the two-stage meta-analytic copula method as the

‘gold standard’ for surrogacy evaluation, highlighting a number of recent applications to

case studies. However, caution is recommended when considering use of the approach, to

ensure that the specification of the copula model, as well as the direction of dependence

between S and T , is appropriate for the dataset being analysed. As has been noted ear-

lier in this section, there is a need to choose both the copula function, for example the

Clayton, as well as the marginal distributions of S and T to use with this copula. The

description of the two-stage meta-analytic copula method above highlights that marginal

survival functions are proposed, in order to define the joint survival distribution between

S and T . This construct provides a dependence structure of strong association between S

and T at later survival times, and weaker association between S and T at earlier survival

times. Renfro et al. (2015) consider how an alternative choice of marginal distributions

can reverse this relationship, such that early survival times are strongly associated and

later survival times are weakly associated. This is achieved by assuming marginal distri-

bution functions for S and T , thereby defining the joint distribution function of S and

T using the copula. A joint survival function can be derived from this joint distribution

function, however it has a different likelihood function to the joint survival distribution

derived from the same copula based on marginal survivor distributions. This reverses
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the direction of the association between S and T , which can lead to biased estimates of

model parameters, including marginal treatment effects and the copula dependence pa-

rameter, if the dependence structure assumed by the model does not match that of the

observed data. Renfro et al. (2015) therefore recommend that careful selection of not only

the shape of association (by the copula model), but also the direction of association (by

the marginal distributions), is carefully considered before choosing the final copula imple-

mentation. Further detail on the shape and direction of the copula dependence structures

can be found in Sections 3.2.4 and 3.2.5.

One of the key findings from the literature described thus far is that the statistical

methodology proposed for the evaluation of surrogate endpoints, and in particular the two-

stage approach, must be re-defined for each different type of surrogate and true endpoint,

and combination thereof. Methods that are suitable for continuously distributed endpoints

are not immediately transferable to time-to-event or ordinal outcomes, and whilst measures

of surrogacy continue to take values within [0, 1] it is difficult to know whether such

measures are comparable. As a result, further approaches proposed for the evaluation

of surrogate endpoints have adopted a more unified framework, to enable their use with

any types of surrogate and true outcomes. These developments are described in the

forthcoming section.

2.4 Meta-Analytic Unified Measures

The development of unified measures for meta-analytic evaluation of surrogate endpoints

is based on key concepts of generalised linear models and the likelihood ratio test statistic

for comparing them, and so these are first defined below.

� Generalised Linear Models are a class of models that relate the mean (µ) of

an outcome variable Y to a linear combination of covariates (η = βTX) via a link

function, g, so that µ = E(Y ) = g−1(η). The benefit of such a class of models is the

flexibility in choice of link function, allowing use of the models for many different
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outcome types.

� The Likelihood Ratio Test is a method that is used to compare the likelihood

values of nested models, thereby determining whether the inclusion of additional

covariates can significantly improve the fit of a model to observed data. Suppose

that two models exist; a ‘reduced’ model (H0) and an ‘unrestricted’ model (HA),

where the ‘reduced’ model is a nested version of the ‘unrestricted’ model and contains

only a subset of the covariates of that full model. Let L0 and LA be the values of

the likelihood for models H0 and HA respectively, calculated under the maximum

likelihood estimates of the model parameters, or covariate coefficients, β̂. Then, the

likelihood ratio test statistic, G = −2 ln
(
L0

LA

)
, can be compared to the chi-squared

distribution to provide a test of whether there is a significant difference in the value

of the likelihood through inclusion of the additional covariate(s). The degrees of

freedom for this chi-squared distribution is equal to the difference in the number of

covariates between the two models. A higher value of G corresponds to a higher

likelihood from the alternative model (HA), and therefore evidence to suggest that

the additional covariates improve the model fit.

These concepts are highly relevant to the setting of surrogate endpoint evaluation.

When considering individual-level surrogacy, it would be of interest to determine whether

a model of the true outcome could be improved through inclusion of both treatment and

the surrogate outcome as covariates, as compared to a model containing treatment only.

At the trial-level, it would be of interest to determine whether a model of the treatment

effect on the true endpoint could be improved through inclusion of the treatment effect

on the surrogate outcome as a covariate. One key benefit of using the likelihood ratio test

together with generalised linear models for this purpose is that any type of endpoint, be

it continuous, binary or longitudinal, can be accommodated through the choice of model.

These ideas were therefore used to develop a unified framework for surrogacy evaluation.

One of the first unified approaches to the assessment of surrogate endpoints, the Vari-
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ance Reduction Factor, was proposed by Alonso et al. (2003) for the specific setting of

longitudinal surrogate and true endpoints, both being measured multiple times over the

course of the clinical trial. An extension to this measure that can handle different types

of endpoints was subsequently proposed by Alonso et al. (2006), the Likelihood Reduction

Factor (LRF).

Through the use of two generalised linear models, one containing a covariate of treat-

ment only, and one containing both treatment and the surrogate, the LRF was first pro-

posed as a measure of individual-level surrogacy based on the likelihood ratio test between

the two models as

LRF = 1− 1

N

∑
i

exp

(
−G

2
i

ni

)
,

where G2
i denotes the likelihood ratio test statistic for trial i containing ni patients, with

a total of N trials available for analysis. The LRF defines a unified measure of individual-

level surrogacy that is consistent across all endpoint types, lies within [0, 1] and takes

a value of zero when S and T are independent. However, O’Quigley and Flandre (2006)

argue that the LRF, despite being applicable to all endpoints, does not adequately account

for censoring when the surrogate and true endpoints are of a time-to-event structure. A

measure based on the same quantities, but weighted according to the number of events

per trial rather than the sample size per trial is therefore proposed (LRF-a), which can

also be estimated using standard software:

LRFa = 1− 1

N

∑
i

exp

(
−G

2
i

ki

)
,

where ki represents the number of events observed in trial i. O’Quigley and Flandre (2006)

recognise that the LRF and LRF-a are specific examples of a wider group of statistical

concepts, the use of which could provide further measures which would be applicable for

the assessment of surrogate endpoints. This framework is therefore described in the next

section.
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2.4.1 Information Theory

The underlying concept of LRF and LRF-a measures lies within a framework of statisti-

cal methodology focused on information gain, or explained randomness (O’Quigley and

Flandre, 2006). Within this framework, the distance between two nested models can be

measured in terms of the ‘information gain’ that comes from inclusion of covariates in

one model but not the other. Such information gain provides quantification of how much

uncertainty, or randomness, in an outcome can be explained by the addition of covariates

into the model, and therefore a measure of how much uncertainty can be removed by

accounting for a given covariate.

Such interpretation is highly relevant for the evaluation of surrogate endpoints; an

endpoint that can capture a large amount of the uncertainty in outcome could be con-

sidered a good candidate as a surrogate endpoint. Further, the level of uncertainty in

treatment effect on T that can be removed through knowledge of the treatment effect on

S would provide information as to the reliability of a surrogate at the trial-level (Alonso

and Molenberghs, 2007). The underlying concepts of the information theory approach are

now described in terms of two random variables A and B, and subsequently described in

the context of surrogate and true endpoints S and T .

The fundamental concept of information theory lies in the entropy of a random variable,

which provides a measure of the uncertainty of that random variable (Shannon, 1948). For

continuous variables B and A with density functions fB and fA respectively, the differential

entropy of B and conditional entropy of B|A are defined as

h(B) =

∫
b

fB(b) log fB(b)db

h(B|A) =

∫
b

fB|A(b|A = a) log fB|A(b|A = a)db,

where the conditional entropy h(B|A) provides a measure of the uncertainty in B that

remains after accounting for another random variable A. Using these quantities, Shan-

non (1948) further defines the concept of entropy power (EP), a measure which allows
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comparison of the entropy of multiple random variables;

EP (B) =
1

(2πe)n
e2h(B),

with n denoting the number of units in the sample. Based on these ideas, Alonso and

Molenberghs (2007) define a general measure that describes how much of the uncertainty

in a given outcome, B, can be removed through knowledge of another random variable,

A;

R2
h =

EP (B)− EP (B|A)

EP (B)
.

An alternative representation of R2
h can be described using the difference between the

entropy of B and the conditional entropy of B|A as

R2
h = 1− e−2I(A,B),

where I(A,B) = h(B) − h(B|A) denotes the mutual information between A and B; the

amount of uncertainty in B that is removed when A is known. When A and B are

independent, knowledge of A is irrelevant to the uncertainty in B and so h(B|A) = h(B)

and the mutual information is zero, leaving R2
h = 0. If A contains a large amount of

information about B, then knowledge of A reduces much of the uncertainty in B, leading

to h(B|A) close to zero. In this case, R2
h ≈ 1.

The interpretation of such a measure is then directly applicable to the evaluation of

surrogate endpoints, where the aim is to understand the amount of uncertainty in T that

can be explained by S at the individual-level, or, at the trial-level, the amount of uncer-

tainty in treatment effect on T that can be explained by the treatment effect on S. In

the remainder of this thesis, R2
h,i will be used to denote individual-level surrogacy, and

R2
h,t trial-level surrogacy, based on the information theory approach. Alonso and Molen-

berghs (2007) note that R2
h,i can be estimated using LRF, however, given the criticism

of this approach by O’Quigley and Flandre (2006) when using censored data, alternative

approaches to estimation of R2
h,i for time-to-event outcomes were explored by Pryseley
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et al. (2011). This investigation is highly relevant to the remainder of this thesis, and is

therefore described in detail next.

2.4.2 Time-to-Event Endpoints

Following the initial proposal of a more general information-theory approach to surrogacy

evaluation by Alonso and Molenberghs (2007), the extension to time-to-event endpoints

was immediate. However, the criticism that the measure, in the proposed form, did not

adequately account for the presence of censoring led to further work to determine which of

a selection of methods could be considered most appropriate for censored data. In order

to investigate this, Pryseley et al. (2011) conducted a simulation study comparing three

different methods to estimate R2
h,i in the assessment of individual-level surrogacy. Of note

is that the theory behind these measures is the same, the only difference is in how the

mutual information, I(S, T ), is estimated in the surrogacy measure R2
h,i.

The first measure that was considered was the LRF in the originally-proposed form,

weighting by the trial size. The second measure was LRF-a, with weighting based on the

number of events per trial rather than the number of patients (O’Quigley and Flandre,

2006). The third and final measure included in their simulation study was a measure

proposed by Xu and O’Quigley (1999) based on a dependence measure for proportional

hazards models, which can be denoted by R2
XOQ in line with Pryseley et al. (2011). Results

of the simulation study of Pryseley et al. (2011) demonstrated that LRF and LRF-a

performed poorly across all scenarios investigated, and so these measures are not further

discussed herein. R2
XOQ was recommended for further use, and is therefore described in

detail here, with further investigation of this measure presented in Chapter 4.

To describe R2
XOQ for the assessment of trial-level surrogacy, it is first necessary to

provide some notation and assumed models. First, a Cox proportional hazards model is

used to define the hazard function for the outcome T as

λ(t|X(t)) = λ0(t) exp(βX(t)),
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where λ0(t) denotes the baseline hazard at time t, β denotes a vector of covariate coef-

ficients, which are considered constant over time, and X(t) denotes a vector of covariate

values for each patient. For these models, X(t) includes treatment (Zij), the surrogate

endpoint (Sij), and any other relevant covariates. In future descriptions, only covariates of

treatment and surrogate outcome will be discussed; the addition of other covariates does

not impact the procedure for calculation of R2
XOQ.

When aiming to assess the value of a potential surrogate endpoint at the individual-

level, it is of interest to understand whether knowledge of that surrogate outcome provides

sufficient, reliable information on the true outcome to warrant future use. In the context

of information theory, comparison of a model of the true outcome containing covariates

treatment only, versus a model containing treatment and the surrogate outcome as covari-

ates, would provide an estimate of how much the uncertainty in the true outcome could

be reduced by accounting for the surrogate outcome.

To estimate R2
XOQ, two models are assumed. Splitting the coefficient vector β =

(β1, β2) to represent covariate coefficients for treatment and surrogate respectively, the

‘null’ model, H0, corresponds to a model where β2 is assumed to be zero, such that the

surrogate has no effect on T . An ‘alternative’ model, H1, corresponds to a model where

β2 has no restriction:

H0 : λ(t|Z(t)) = λ0(t) exp(β1Z), (2.2)

H1 : λ(t|Z(t)) = λ0(t) exp(β1Z + β2S). (2.3)

Using the notation of Pryseley et al. (2011), if the true value of β = (β1, β2) were denoted

by β0, and β̃1 denotes the value maximising the likelihood of the model with respect to β

under model H0, then the measure R2
XOQ between models H0 and H1 is defined as

R2
XOQ = 1− exp(−Γ(H1, H0; β0)),

where

Γ(H1, H0; β0) = 2

∫
T

∫
Z

log

[
g(z|t; β0)
g(z|t; β̃1)

]
g(z|t; β0)dzdF (t), (2.4)
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with g(z|t, β) denoting the conditional distribution of Z|T and F (t) the marginal distri-

bution function of T . In order to estimate R2
XOQ in practice, it is necessary to estimate

these conditional and marginal distributions.

To enable estimation over the entire domain of T , the values of the marginal and

conditional distributions are required at each event time, tk. For the marginal distribution

of T , the distribution that ignores all covariates, the Kaplan-Meier estimate of survival is

proposed (Kaplan and Meier, 1958), where the marginal distribution F (t) is then defined

as the step, or jump, in the Kaplan-Meier function at each event time, W (tk).

For the conditional distribution of Z|T at each event time, Xu and O’Quigley (1999)

propose to use the conditional probability of patient j having an event at time tk given

their covariate values at that time, which in a single trial (i.e. no subscript i for trial) is

defined as

πj(tk, β) =
Yj(tk) exp(βZj)∑n
l=1 Yl(tk) exp(βZl)

, (2.5)

where the sum over l = 1, ..., n denotes all patients at-risk of an event at time tk, and

Yj(tk) denotes an indicator variable to determine whether patient j is at risk of an event

at time tk. The product of these values over all event times forms the partial likelihood of

the Cox proportional hazards models which are used to estimate β1 and β2 in equations

(2.2) and (2.3) (Cox, 1972). Finally, Γ(H1, H0; β0) is then estimated from a single trial, i,

using:

Γ̂(H1, H0; β̂0) = 2
K∑
k=1

W (tk)
n∑
j=1

πij(tk; β̂0) log

[
πij(tk; β̂0)

πij(tk; β̃1)

]
,

where k = 1, ..., K denote the number of events for the true outcome, W (tk) the jumps in

the Kaplan-Meier function at time tk, and πij(.) the probability of individual j in trial i

being the patient having the event at tk.

This value ofR2
XOQ can be calculated using quantities estimated from standard software

packages, making it very appealing, and confidence intervals can be constructed easily by

re-calculating the measure using the confidence limits for the surrogate covariate coefficient

(βL, βU), i.e. [R2
XOQ(βL), R2

XOQ(βU)]. In a meta-analytic setting, R2
XOQ can be calculated
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for each trial and a weighted estimate provided for an overall measure. Xu and O’Quigley

(1999) note that the measure is dependent on the total duration of follow-up of the trial,

and propose a corrected version that divides by the sum of W (tk) values over all events.

Further, when covariates are categorical and have very few levels, R2
XOQ is bounded by

a number less than one, although this is considered to be irrelevant except for very high

values of R2
XOQ (Pryseley et al., 2011).

The description of the information theoretic approach has thus far been limited to

individual-level surrogacy, however the approach also has a useful interpretation at the

trial-level. Such a measure would estimate how much of the uncertainty in treatment

effects on the true endpoint can be reduced through knowledge of treatment effects on the

surrogate endpoint. Alonso and Molenberghs (2007) note that an information theoretic

measure of trial-level surrogacy reduces to the R2
trial measure of Buyse et al. (2000) when

a linear relationship between treatment effects is assumed, and therefore immediately has

an interpretation from the information theory perspective. This finding leads to the focus

of the work by Pryseley et al. (2011) being restricted to individual-level surrogacy.

2.4.3 Other Relevant Areas of Investigation

Motivation for the development of the information theory approach to evaluating surrogacy

stemmed from the challenges faced when attempting to use previously proposed measures

of surrogacy, such as the two-stage meta-analytic copula method. The need for endpoint-

specific modelling structures, and the complexity of the numerical processes involved in

some of those approaches, are not considered to be an issue for the information theory

method. However, there remain some questions that require further examination.

Pryseley et al. (2011) conducted a detailed simulation study to examine the perfor-

mance of R2
XOQ as an estimate of R2

h,i for time-to-event data, which highlighted a number

of aspects worthy of further discussion. Firstly, Pryseley et al. (2011) did not assess the

performance of R2
XOQ when based on a meta-analysis of multiple datasets. The measure
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was assessed using simulations for just one clinical trial, and so the performance of the

measure when based on multiple studies has not been investigated.

Additionally, as for the two-stage meta-analytic copula method, the simulation study

of Pryseley et al. (2011) considers a surrogate that is censored by the true endpoint (T -

dependent censoring of S), and does not explore the impact of the use of surrogates that

contain data directly related to the true endpoint, such as progression-free survival. Inter-

estingly, it is noted that when such an endpoint is being assessed, the information theory

measure can be directly applied to modelling of the post-progression survival time, T −S,

rather than the overall survival time. Such an approach would enable the dependency be-

tween endpoints to be accounted for without the need for a change in modelling approach.

This topic remains unexplored in the literature.

In addition to the simulation study presented by Pryseley et al. (2011), further inves-

tigation was conducted by Pryseley (2009), where the sensitivity of R2
XOQ to the propor-

tional hazards assumption was explored. Since the proposed information theory method

utilises proportional hazards models, it is of interest to understand the impact of use of

the approach when this assumption is violated. Results of this study showed that, encour-

agingly, R2
XOQ performs well when there is low to moderate censoring and large sample

sizes, therefore supporting the use of the information theory method in practice.

2.4.4 General Limitations of Surrogacy Evaluation Measures

In addition to limitations and outstanding questions specific to the two surrogacy evalu-

ation methods described in Sections 2.3.4 and 2.4.3, there are a number of more general

issues that are applicable to multiple surrogacy evaluation approaches.

Both the two-stage method for assessing surrogacy and the information theory ap-

proach, regardless of whether the outcome is continuous, binary or time-to-event, provide

individual and trial-level measures of surrogacy that lie within [0, 1], with ‘poor’ surro-

gacy demonstrated by values close to zero, and ‘good’ surrogacy by values close to one.
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However, there is currently no established threshold that has been considered to truly

demonstrate that a surrogate is reliable for use. There is therefore the potential for sub-

stantial subjectivity as to the level of evidence that must be demonstrated for a surrogate

to be established. It is also difficult to know whether surrogacy measures from differ-

ent endpoint types are comparable and have the same interpretation of the strength of

relationship.

In a recent meta-analysis evaluating a potential surrogate for a type of blood cancer, Shi

et al. (2017) estimated R2
trial using two methods; weighted least squares regression and the

two-stage copula approach. A pre-specified threshold for ‘success’ was defined as one of

these estimates of R2
trial being ≥ 0.80, with a lower bound of the 95% confidence interval

> 0.60, and both values of R2
trial ≥ 0.70. This appears to be the first example in the

literature where pre-specification has been made, and may set the precedent for future

requirements for surrogates to be accepted by regulatory authorities. Nevertheless, there

are likely to be arguments that such thresholds are extremely high, particularly when

surrogacy evaluation is based on a small number of trials where it can be difficult to

achieve such accurate predictions.

A further limitation, or challenge, is the need for large amounts of patient-level data

to be available to ensure that conclusions are representative for the widest possible range

of future clinical settings. In many cases, such data are very difficult to obtain, in par-

ticular for less severe diseases where patients can have a good prognosis and the time to

observation of clinical events of interest (e.g. disease progression or death) are very long.

This has led to many applications of surrogacy evaluations to small sample settings where

only a small number of clinical trials are available. In such settings, a common approach

is to split the studies into smaller subgroups, a topic that is discussed further in the next

section.

Finally, a difficult hurdle to overcome is gaining consensus amongst clinical and sta-

tistical researchers, as well as regulatory authorities, on the acceptability of the proposed

statistical methodology for use in practice. Whilst the two-stage meta-analytic copula
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method has commonly been used in surrogacy evaluations, as in the examples in Section

2.3.3, other methods have been described as a preferred approach, but not often used in

practice (Ensor et al., 2016). Currently, there is no general agreement on which methodol-

ogy should be applied in the assessment of surrogacy. Further research and collaboration

between research groups is therefore warranted.

2.5 Analysis of Trials versus Centres

Ideally, surrogacy evaluation would be conducted using multiple, large, clinical trial datasets,

so that estimates of model parameters are reliable and subsequent surrogacy measures are

robust. However, it is often the case that such large databases are not available, and in

these circumstances some researchers have opted to split the available studies into sub-

groups (e.g. Dimier et al. (2015) who split studies based on geographical location of the

investigational sites).

Such splitting of clinical trial data has been a commonly used approach to increase

the number of data points available for analysis, and has therefore been the subject of

investigation by a number of researchers. Shi et al. (2011) suggest that splitting studies

into arbitrary subgroups, or by investigational centre, leads to the need for consideration

of the balance between gain in precision and loss of accuracy, the effects of which are not

well understood. For the case of continuous surrogate and true outcomes, Burzykowski

et al. (2005) explore a number of strategies to assess the performance of modelling at trial

and centre levels, when the level of association at these levels is similar, or varies. When

similar levels of association are assumed, the measures under investigation were found to

provide reasonable results, whereas when the association levels differ, the use of centres

in analysis was found to lead to biased results. However, in some circumstances, notably

when the variability in centre-level treatment effects was assumed to be lower than that of

trial-level treatment effects, the estimated levels of association based on centres appeared

similar to the true trial-level association, thereby providing some rationale for the use of
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centre-level analysis in practice.

Further to this, Renfro et al. (2014) conducted a detailed examination of the perfor-

mance of the two-stage meta-analytic copula method and weighted least squares regression

when based on subgroups of trials, for time-to-event endpoints. Similar to Burzykowski

et al. (2005), estimation using centres was determined to be acceptable when the variabil-

ity between treatment effects at a centre-level is similar to or lower than that of treatment

effects at a trial-level. Since these scenarios are considered unlikely in practice, a simula-

tion study was conducted to assess the bias in estimation of R2
trial through use of centres as

the units for analysis. The authors consider a large range of scenarios, at a high-level and

at a more focused level. The high-level investigation considers some variation of the true

trial, centre and patient-level association, censoring, and numbers of trials, centres and

patients. However, the majority of these scenarios considered high sample sizes, varying

from a total of 1500 to 60,000 patients, and are therefore less relevant to the subject of

limited data. More focused scenarios considered smaller sample sizes of 1-5 trials, each

with 5-20 centres containing 10-50 patients, which is more relevant to the interest of this

thesis, but these scenarios did not consider any variation in association; all three levels

(trial, centre, patient) were held fixed at 0.9, with no censoring.

The results of this simulation study indicate that whilst centre-level analysis could be

considered reliable under some circumstances, it quite often leads to bias. Recommenda-

tions as to the most appropriate unit for analysis are therefore made based on the number

of trials available; when there exist at least ten trials, the analysis should be conducted

at a trial-level only, whereas when there are 5-9 trials available, the centre-level analysis

can also be used as supportive evidence of surrogacy. When a surrogacy evaluation is to

be based on data from only 3-4 trials, Renfro et al. (2014) recommend to conduct anal-

ysis both at a trial-level, centre-level across all trials, and centre-level within each trial

individually, with varying combinations of the results of these analyses used to determine

the final conclusion. Overall, it is considered that surrogacy evaluation based on a limited

number of trials is possible, with careful consideration of the available data.
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Despite the large number of scenarios investigated by Renfro et al. (2014), the majority

were based on the existence of large meta-analytic databases, which offers little insight

into the perspective of an individual pharmaceutical company which has very little data

on which to base a surrogacy assessment. The more focused scenarios provide some level

of insight, but have only been considered for truly high-levels of association, with no

consideration of whether centre-level analysis could be reliable when the association levels

are reduced. From the analysis of larger sample sizes, it was found that when the true

trial-level surrogacy is low (0.2) or moderate (0.5) and centre-level association is high,

estimation of R2
trial using centres could be biased upwards. Further investigation of the

impact of smaller sample sizes on this finding is therefore needed.

2.6 Other Surrogacy Approaches

The two methods for the evaluation of surrogacy described in detail in previous sections are

those that are used most commonly in practice (two-stage meta-analytic copula method)

or recommended as a preferred approach (information theory (Ensor et al., 2016)). How-

ever, there are a number of alternative measures that have been proposed in the litera-

ture. In this section, alternative approaches are briefly described for completeness. First,

other measures proposed specifically for time-to-event endpoints are briefly introduced.

Subsequently, the surrogate threshold effect (STE), which provides a convenient measure

of surrogacy that is easy for clinicians to interpret, is described. Finally, a framework

constructed to allow a causal interpretation of potential surrogate endpoints is briefly dis-

cussed, which is a relatively new field in the area of surrogate endpoint research and has

yet to be established as a standard approach.

2.6.1 Time-to-Event Endpoints

Recognising that the assumptions of the two-stage meta-analytic copula method, namely

symmetry of endpoints, may not always hold, Ghosh et al. (2012) propose an alternative
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approach that accounts for endpoint ordering by modelling the region where the surrogate

endpoint occurs before the true endpoint (S ≤ T ). The key difference between this

approach and the previously described surrogacy approaches is in the handling of the

time-to-event surrogate endpoint. For endpoints such as progression-free survival that

capture multiple event types, the method of Ghosh et al. (2012) separates these events,

and considers that the surrogate is dependently censored by the true endpoint. The

construction of composite endpoints, where multiple events are captured, is then removed.

Ghosh et al. (2012) consider the main advantage of the semi-competing risks approach

to be that it is possible to study the time to each individual event type separately, with-

out the need for creation of composite endpoints. Whilst this approach does avoid the

need for the symmetry assumptions, it is of concern that the surrogate endpoint being

evaluated differs from the composite endpoint that is well-understood and is desired for

use in subsequent clinical trials. Separation of the endpoint into the two components (dis-

ease progression and death) is not considered an appropriate approach for settings where

the combined endpoint is recognised by clinicians and regulators as a clinically relevant

measure. Hence, this approach is not considered further in this thesis.

Parast et al. (2017) consider the proportion of treatment effect explained when calcu-

lated from censored data, specifically for the setting where the true clinical endpoint may

be observed earlier than the surrogate endpoint, thereby introducing missing data into

the surrogate endpoint evaluation. This scenario could be considered to further examine

the impact of surrogacy evaluation when the surrogate is a composite of an intermediate

disease state and the true clinical outcome. However, this approach is founded in an area

of surrogacy evaluation literature that is relatively new and remains largely unestablished

in practical evaluations of surrogacy (see Section 2.6.3), and is therefore not considered

further here.
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2.6.2 Surrogate Threshold Effect

The majority of measures proposed for the evaluation of surrogate endpoints result in

a value lying within [0, 1], with values close to zero being evidence of a poor surrogate,

and values close to one demonstrating a good surrogate. Concerned that clinicians and

regulatory agencies may face difficulty in interpreting such a value in the context of the

potential patient benefit, Burzykowski and Buyse (2006) propose an additional measure

that has a clear clinical interpretation, the Surrogate Threshold Effect (STE).

To construct the measure, Burzykowski and Buyse (2006) use an estimated value of

R2
trial from a (meta-analytic) surrogate endpoint evaluation, together with an observed

treatment effect on S in a new clinical trial, to derive a prediction interval for the predicted

treatment effect on T in that new clinical trial. The width of this prediction interval defines

how large the treatment effect on S would need to be to ensure a statistically significant

difference between treatments on the true endpoint. The treatment effect on S that would

provide a lower bound of this prediction interval to be greater than some ‘null’ value,

indicating no treatment effect, then provides the minimum treatment effect that needs to

be observed on the surrogate to have confidence that the predicted treatment effect on T

would be statistically significant.

The STE provides a clinically interpretable measure of the treatment effect required

from a surrogate endpoint to be confident that a significant treatment effect on the true

endpoint would also exist. If this required treatment effect on S were too small to be

considered clinically meaningful, or indeed if it were felt to be so strong that it was

infeasible to achieve, then this provides an additional level of information that cannot

be captured by the previously described individual and trial-level surrogacy measures.

However, since the STE can only be estimated when the nature and strength of relationship

between S and T is reliably established, it is not considered to be a replacement for the

previously described surrogacy measures, but rather provides additional information to

aid interpretation. Hence, it is not discussed further in this thesis.
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2.6.3 Causal Inference

Some authors have argued that many of the proposed statistical methods for evaluation

of surrogate endpoints are flawed, in that they cannot be used to establish a causal link

between treatment and long-term clinical outcome (Frangakis and Rubin, 2002). By ad-

justing for the surrogate outcome, which is measured at some point after treatment has

started, it is not possible to conclude that differences in the true outcome are a result

of treatment alone. As a result, a further branch of statistical methodology aimed at

surrogacy evaluation has developed more recently, based on alternative approaches that

maintain a causal interpretation.

Two general frameworks for the assessment of surrogates using causal association have

been proposed by Frangakis and Rubin (2002) and Robins and Greenland (1992), with

an investigation into the relationship between these proposals conducted by VanderWeele

(2008). Further comparisons of surrogacy evaluation frameworks allowing causal interpre-

tation were conducted by Joffe and Greene (2009).

More recently, Alonso et al. (2015) investigate the relationship between the causal

effect and meta-analytic frameworks for surrogacy evaluation, comparing and discussing

the underlying theoretical components of both paradigms, and applying measures from

each to a case study. Overall, it is concluded that the meta-analytic approach has a number

of advantages as a method for evaluating surrogate endpoints. Firstly, whilst not having

a causal interpretation for the assessment of individual-level surrogacy, the assessment

of trial-level surrogacy maintains such an interpretation as it does not adjust for post-

treatment variables and is therefore not subject to this bias. Further, it is potentially

more useful in practice due to greater appeal and simplicity, particularly for regulatory

authorities.

Whilst a number of causal approaches have been proposed for both single-trial and

meta-analytic surrogate evaluation, Ensor et al. (2016) note that such measures remain

“in their infancy”, with no agreement on which may be the most suitable or appropriate
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for future use. The proposed approaches suffer from the need for strict and often unverifi-

able assumptions in order to estimate parameters, with poor estimation under even minor

violation of these assumptions. As such, there is currently no consensus as to how best

to estimate surrogacy using these methods, and no standard implementation. As a result,

none of these measures are considered further in the context of the research presented in

this thesis. Subsequent chapters of the thesis therefore focus on the two previously de-

scribed measures, the two-stage meta-analytic copula method, and the information theory

method.
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Chapter 3

Two-Stage Meta-Analytic Copula

Method for Evaluating

Time-to-Event Surrogate and True

Endpoints

3.1 Introduction

In Section 2.3.2, the two-stage meta-analytic copula method for assessing surrogacy of

time-to-event surrogate and true endpoints was described, alongside identification of the

limitations and some outstanding questions related to this approach. In this chapter, an

attempt to address these questions is made through the use of a simulation study. Data are

simulated according to two different underlying structures, to investigate the sensitivity of

the approach to correctly and incorrectly specified models. A wide range of scenarios are

considered, including consideration of different surrogate endpoints, different strengths of

individual-level and trial-level surrogacy (low, medium and high, for each) and different

sample sizes (both varied numbers of patients within each trial, and varied numbers of

trials). The impact of censoring is also considered through the proportion of censored
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observations, and the range of observed treatment effects on the true endpoint is also

varied. This work has also been published in Pharmaceutical Statistics (Dimier and Todd,

2017).

Whilst the performance of the two-stage meta-analytic copula method has been stud-

ied via simulation by Burzykowski (2001) (described briefly also by Burzykowski et al.

(2001)), a limitation of that study is that there was no exploration of one of the most

commonly used surrogate endpoints, progression-free survival. The use of PFS violates

the symmetry assumption of the copula modelling approach, and the impact of this on

parameter estimation remains unknown. Therefore, the impact of the use of PFS as the

potential surrogate is investigated within this chapter.

A second limitation with interpretation of the study conducted by Burzykowski (2001)

is that the simulations were constructed using reasonably large sample sizes (10-20 trials,

each consisting of 50-200 patients). In the setting of interest in this thesis, the assessment

of surrogacy is assumed to be undertaken by individual pharmaceutical companies who

have very limited data from individual clinical development plans available. One example

of this can be seen in the work of Dimier et al. (2015), who attempt to assess surrogacy

using data from only three trials. The simulation study described here therefore assesses

the performance of the two-stage meta-analytic copula method when there exist very

limited data.

Finally, whilst the aim is to identify surrogate endpoints that have high levels of predic-

tive strength, it is also important that any statistical methodology can correctly identify

those with truly low levels of predictive strength. This is increasingly important when small

sample sizes are used, since it could be hypothesised that this would lead to lower preci-

sion in parameter estimation, potentially leading to less reliable conclusions. Burzykowski

(2001) investigated only medium (0.5) to high (0.9) levels of association, and it remains

unclear whether the two-stage meta-analytic copula method can reliably identify poor

surrogates. Lower levels of both trial-level and individual-level association are therefore

explored in the simulation study described below.
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3.2 Simulation Study

3.2.1 Choice of Data Generation Procedure

One of the most important factors in setting up a simulation study is ensuring that the

individual and trial-level association can be accurately controlled, such that the input

values can be used as a reference against which the estimates provided by the modelling

can be compared. In order to achieve this, Burzykowski (2001) generated data using

a (Clayton) copula function, which allows for controlling of individual-level association

through the copula dependence parameter. Whilst this allows for consistency between the

underlying structure of the simulated data and the assumptions of the two-stage meta-

analytic copula method (also used with the Clayton copula), there could be concern that

this may lead to overly precise estimation of model parameters, as compared to real-life

application of the methodology where data may deviate from the assumed dependence

structure.

To address these concerns, two different copula functions, with two different underly-

ing data structures, are considered for the simulation study described herein. First, the

Clayton copula is used to generate data under ‘ideal’ circumstances where the dependence

structure matches perfectly that assumed by the surrogacy evaluation approach. Second,

to assess the impact of violating the assumed dependence structure, data generation is also

conducted using a Gumbel copula, which assumes a very different dependence structure.

In both cases, the two-stage meta-analytic copula method employs a Clayton copula mod-

elling approach, so that an assessment of the impact of using a correctly versus incorrectly

specified model can be made. Algorithms used to generate data are detailed in Sections

3.2.4 and 3.2.5 for the Clayton and Gumbel functions, respectively.
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3.2.2 Selection of Surrogate Endpoints

With respect to potential surrogate endpoints, two different time-to-event endpoints that

are commonly used in late-stage (Phase III) oncology clinical trials are considered as

replacement endpoints for a true endpoint of overall survival. In a clinical trial setting,

these endpoints are:

� Time-to-Progression (TTP), defined as the time from entry into a clinical trial

(e.g. from date of randomisation) until observation of disease progression. Patients

who do not experience disease progression are censored at the time that their disease

was last assessed by the treating physician.

� Progression-Free Survival (PFS), defined as the time from entry into a clinical

trial until the patient experiences disease progression or death, whichever occurs

first. Patients who do not experience disease progression or death during the period

of observation are censored at the time that their disease was last assessed by the

treating physician.

� Overall Survival (OS), defined as the time from entry into a clinical trial until

death. Patients who remain alive at the end of follow-up are censored at the time

they were last known to be alive.

The two endpoints being assessed as potential surrogates, TTP and PFS, are therefore

very similar, with the exception that PFS also includes death as an event of interest. Since

the true endpoint of interest here is OS, both TTP and PFS must be truncated at the

time of death, since no further follow-up is possible. However, the key difference between

the two surrogates is that an event of death censors TTP, whereas PFS includes this as

an event of interest. Therefore, for TTP it is assumed that the time to disease progression

could be longer than the time to death, but death precludes observation of the progression.

In contrast, PFS can never be longer than OS, since death is included as an event. This is

a critical observation, as the endpoint of PFS then violates the copula model assumption of
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symmetry of endpoints. The simulation study described here therefore includes both TTP

and PFS as surrogate endpoints and allows an assessment of the impact of this violation,

something which was not considered by Burzykowski (2001).

3.2.3 Defining Simulation Parameters

As described above, the data generation used in this simulation study was based on two

surrogate endpoints, TTP and PFS, and two copula functions, Clayton and Gumbel. Fur-

ther to this, a number of other variables were considered. Firstly, the number of trials

and respective sample sizes were selected to represent the setting of individual pharma-

ceutical companies, who have limited data from their own clinical development plans only.

Varied censoring proportions were assumed, to assess the sensitivity of the two-stage meta-

analytic copula method to the amount of censoring in the data. Finally, previous studies

have determined that the surrogacy evaluation approach may perform better when the

range of results across the clinical trials included in the analysis is wide (Burzykowski

et al., 2005), meaning that there is more variability in baseline hazards and treatment

effects on T . Whilst this is certainly important for meta-analyses including all available

trials, regardless of outcome, it may not be so relevant for the setting of interest here,

where pharmaceutical companies are likely to have consistent results across multiple tri-

als to warrant further development of the molecules(s). Nonetheless, different ranges of

treatment effects on OS were considered to assess the impact on the performance of the

surrogacy approach, and this is described further in Section 3.2.4. A summary of all

simulation parameters and selected values are shown in Table 3.1.

In order to assess the performance of the two-stage meta-analytic copula method across

this range of scenarios, both individual-level surrogacy (denoted τ due to use of this

parameter to represent R2
indiv) and trial-level surrogacy (R2

trial) were estimated for a total

of 5,000 repetitions per scenario. Given the total number of 1296 different scenarios,

and with each run taking approximately one second to complete, this was the largest
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Table 3.1: Simulation Scenarios

Factor Scenarios under simulation

Surrogate Endpoint TTP, PFS

Data Generation Clayton, Gumbel

Number of trials 4, 6

Number of patients per trial 80, 120, Mixed (50% each at n = (80, 120))

Trial-level association 0.2, 0.5, 0.8

Individual-level association 0.2, 0.5, 0.8

Censoring Rate (on T) 0%, 30%, 60%

Range of treatment effects∗, σ 0.1, 0.2

*Hazard ratios ranging 42% − 203% and 31% − 238% from the mean for

σ = 0.1, 0.2 respectively.

number of runs that was considered to be feasible, taking approximately 1800 hours.

Selecting the same number of runs across all scenarios ensured that each was examined

with consistent precision, and since previous studies have examined the performance of the

method under only 500 simulation runs, it is considered that 5,000 runs provides superior

reliability. In order to apply the two-stage meta-analytic copula method to the generated

datasets, code was taken from the website: http://ibiostat.be/online-resources/

online-resources/surrogate and adapted to add the simulation steps described below.

Testing of this code was conducted to ensure that results of previous simulation studies

could be replicated, as well as testing to ensure that results of previous case studies

reported in Burzykowski et al. (2005) could be replicated.

3.2.4 Clayton Copula Data Generation

The first copula model used to generate data according to the requirements listed in Table

3.1 is the Clayton copula, which is also used in the application of the two-stage meta-
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analytic copula method within this thesis. An illustration of this copula for a value of

τ = 0.5 can be found in Figure 3.1, with a surface plot on the left and scatterplot on the

right. The peak of the surface plot around (0, 0), and the increased correlation in the scat-

terplot at this point, demonstrate that the model exhibits strong late dependence between

endpoints, i.e. stronger dependence when values of both marginal survival functions are

close to zero, reflecting longer values of S and T .

0

0.1

0.2

0.3

0.4

0.5
0.6

0.7
0.8

0.9
1

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0

10

20

30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

v

Figure 3.1: Clayton Copula Model with τ = 0.5

The surrogacy evaluation approach, including the form of the copula function, is de-

scribed in detail in Section 2.3.2, and briefly highlighted within this section where such

explanation is helpful in detailing the structure and assumptions of the simulated datasets.

As a reminder, the general form of the Clayton copula is defined as

Cθc(u, v) =
(
u1−θc + v1−θc − 1

) 1
1−θc ,

where Cθc(u, v) represents the copula function with dependence parameter θc. This func-

tion leads to a joint survival function, S(s, t) between surrogate (S) and true (T ) endpoints,

S(s, t) = P (Sij ≥ s, Tij ≥ t) = Cθc{SSij(s), STij(t)}, s, t ≥ 0,
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3.2. SIMULATION STUDY

where SSij(s) and STij(t) denote the marginal survival functions for S and T , respectively,

for patient j in trial i. In order to generate data according to the Clayton copula, three

steps are taken:

1. Independent and identically distributed random variables Uij and Vij are generated

from a Uniform(0, 1) distribution for each patient j in trial i.

2. Uij and Vij are transformed according to the Clayton copula, with specified depen-

dence parameter θc, to provide two uniformly-distributed variables (S0
ij and T 0

ij) that

are associated according to the dependence structure and strength specified.

3. S0
ij and T 0

ij are transformed according to the selected marginal survivor distributions,

to obtain two time-to-event outcomes with the required association. Further details

of these three steps are provided below.

Once Uij and Vij are independently drawn from a Uniform(0, 1) distribution, they

are transformed to variables that have the specified dependence structure of the Clayton

copula, using the conditional distribution method (Nelsen, 1999) (Step 2 above). This

algorithm takes the first partial derivative of Cθc , with respect to one of the Uniform

variables (Uij), and inverts with respect to the remaining Uniform variable, (Vij), to derive

a transformation that provides the required copula dependence structure. For the Clayton

copula, the first partial derivative is defined as

∂Cθc(Uij, Vij)

∂(Uij)
= U−θcij

(
U1−θc
ij + V 1−θc

ij − 1
) θc

1−θc ,

and equating this to Vij leads to the following transformation:

Vij = U−θcij

(
U1−θc
ij + V 1−θc

ij − 1
) θc

1−θc

=⇒
(
U θc
ij Vij

) 1−θc
θc = U1−θc

ij + V 1−θc
ij − 1

=⇒ Vij =
(
U1−θc
ij V θ−1

c −1
ij − U1−θc

ij + 1
) 1

1−θc
. (3.1)
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3.2. SIMULATION STUDY

Applying this transformation leads to two uniformly-distributed variables with joint dis-

tribution defined by the Clayton model, with strength of association denoted by θc:

S0
ij = Uij, and

T 0
ij =

(
U1−θc
ij V θ−1

c −1
ij − U1−θc

ij + 1
) 1

1−θc
.

Although the copula parameter is used to control the level of dependence between

the endpoints, it is not always interpretable as a measure of association. As described in

Section 2.3.2, Kendall’s τ is instead used to measure the individual association between

endpoints, and so this parameter is also used to control the individual association in data

generation. For the Clayton copula, θc can be calculated directly from Kendall’s τ using

θc = 1+τ
1−τ , and so values of θc of 1.5, 3 and 9 achieve ‘true’ individual-level association of

0.2, 0.5 and 0.8 respectively.

Finally, the Uniform variables S0
ij and T 0

ij must be transformed to be time-to-event

variables (Step 3 above), Sij and Tij, according to the choice of marginal survivor functions.

These marginal survivor functions are denoted as SSij(s) for the surrogate endpoint and

STij(t) for the true endpoint, where SSij(s) = P (Sij ≥ s) and STij(t) = P (Tij ≥ t). To be

consistent with Burzykowski et al. (2001), these marginal survivor functions are assumed

to follow an exponential survival distribution, such that the final random variables Sij and

Tij follow

SSij(sij) = exp{−sijλS exp{µSi + (α + ai)Zij}},

STij(tij) = exp{−tijλT exp{µT i + (β + bi)Zij}},

where λS, λT are baseline hazard functions specific to each endpoint (assumed to be

constant), reflecting the expected survival for a patient with covariate values of zero, and

α and β represent the treatment effects on the surrogate and true endpoints respectively,

corresponding to the natural logarithm of the required hazard ratios in Table 3.1. The

selection of values for λS, λT , α and β are discussed in Section 3.2.6. The assigned

treatment group is represented by a binary covariate, Zij, taking values of zero (control
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arm) versus one (experimental arm) and is drawn from a Bernoulli distribution assuming

equal randomisation (parameter value 0.5). The remaining parameters, (µSi, µT i, ai, bi),

represent trial-specific random effects, to account for variability across different clinical

trials (further described below).

In order to convert the Uniform random variables, S0
ij and T 0

ij, to be exponentially

distributed, the following transformation is made:

Sij = −λ−1S exp{µSi + (α + ai)Zij} log
(
S0
ij

)
, (3.2)

Tij = −λ−1T exp{µT i + (β + bi)Zij} log
(
T 0
ij

)
. (3.3)

The trial-specific random effects and treatment effects control the level of trial-level as-

sociation between the surrogate and true endpoints, and are used to estimate R2
trial. To

control the strength of this association, the parameter vector (µSi, µT i, ai, bi) is assumed

to follow a zero mean normal distribution with covariance matrix

D = σ


1 ρ 0 0

ρ 1 0 0

0 0 1 ρ

0 0 ρ 1


,

where σ is the parameter value from Table 3.1 chosen to control the level of variation in

the random effects (and therefore the range of treatment effects in the trials), with larger

values of σ leading to larger trial-specific random effects and therefore a larger range of

treatment effects across simulated trials. The parameter ρ is chosen to be the square

root of the required ‘true’ trial-level association (R2
trial). The random effects are derived

by generating vectors of independent standard-normal variables (R1,i, R2,i, R3,i, R4,i) and

transforming using the Cholesky decomposition matrix
µSi

µT i

ai

bi


=
√
σ


1 0 0 0

ρ
√

1− ρ2 0 0

0 0 1 0

0 0 ρ
√

1− ρ2




R1,i

R2,i

R3,i

R4,i


.
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By following this 3-step algorithm, resulting datasets consist of two separate time-to-event

endpoints (S and T ) that have a joint distribution fitting the Clayton copula model, with

strength of association defined by the copula parameter. Censoring is applied by drawing

a random exponential variable Cij and comparing to the values of Sij and Tij. Since the

true endpoint is assumed to be overall survival, the value of TTP as the surrogate is also

censored by the true endpoint, if it occurs first. For PFS, when death occurs prior to

progression the patient is considered to have an event at the time of death and censoring

is not applied. This is discussed further in Section 3.2.6.

3.2.5 Gumbel Copula Data Generation

As noted previously, since the Clayton copula function is chosen for use in the two-stage

meta-analytic surrogacy approach, generating data according to this same function may

be considered to be an ‘ideal’ case, where the underlying data structure fits perfectly the

assumptions of the modelling approach. To assess the impact of this on the precision of

parameter estimation, data were also generated using an alternative copula function, to

enforce a different dependence structure than that assumed by the model.

The alternative copula function selected was the Gumbel copula, since this has a very

different dependence structure to that of the Clayton copula and would therefore be a good

candidate for assessing the impact of model misspecification. The dependency structure

is different in that the Gumbel copula exhibits strong dependence for early event times,

whereas the Clayton copula exhibits strong dependence for late event times. This can be

seen in Figure 3.2, which demonstrates two peaks of the Gumbel copula function, with the

greatest peak occurring where the marginal survival distributions are close to (1, 1), and

the scatterplot showing stronger correlation at this point. These reflect low event times,

where the probability of survival remains high.

The general form of the Gumbel model for two random variables u and v is

Cθg(u, v) = exp

[
−
{

(− lnu)
1
θg + (− ln v)

1
θg

}θg]
, for 0 < θg < 1.
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Figure 3.2: Gumbel Copula Model with τ = 0.5

For this copula, the dependence parameter and Kendall’s τ are linked via θg = 1− τ . The

conditional distribution method used to generate data from the Clayton copula cannot be

so easily used to generate from the Gumbel copula, since the first derivative of the Gumbel

copula is not invertible. Using this method, data generation therefore requires an iterative

solution which is computationally intensive. An R package is available to generate such

data, however since the application of the two-stage meta-analytic copula method within

this simulation study was conducted using SAS® software, data were instead generated

using the mixtures of powers algorithm described by Trivedi and Zimmer (2007), to avoid

mixing between different statistical software packages. This algorithm is based on the

work of Marshall and Olkin (1988), and describes how mixture distributions can be used to

represent copulas and allow data generation from the marginal distributions, thus removing

the need for any iterative procedures. New code was therefore created to generate datasets

with the dependence structure of the Gumbel copula as well as the underlying trial-level

surrogacy.

The algorithm for data generation from a Gumbel copula can also be simplified into

three steps:
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3.2. SIMULATION STUDY

Step 1:

The first step of the algorithm starts by generating two independent and identically dis-

tributed uniform variables from Un(0, 1), Uij and Vij, exactly as was done for the Clayton

copula. In addition, a random variable, γ, also needs to be generated from a positive

stable distribution. In order to generate γ, a number of steps need to be taken:

� Variables η and w are drawn from U(0, π) and the standard exponential distribution,

respectively.

� A value z is derived using η and the copula parameter θg as z = sin(η(1−θg))(sin(ηθg))
θg

1−θg

sin(η)
1

1−θg
.

� A value of γ is subsequently derived using γ =
(
z
w

) 1−θg
θg .

Step 2:

Using the derived value of γ, the two uniform draws Uij and Vij are transformed to be

uniform variables which are distributed according to the Gumbel copula, using

S0
ij = exp

(
−
(
− log(Uij)

γ

)θg)
,

T 0
ij = exp

(
−
(
− log(Vij)

γ

)θg)
.

For the Gumbel copula, the parameter θg can be calculated directly from Kendall’s τ using

θg = 1− τ , and so values of θg of 0.8, 0.5 and 0.2 achieve ‘true’ individual-level association

of 0.2, 0.5 and 0.8 respectively.

Step 3:

S0
ij and T 0

ij are transformed to exponentially distributed time-to-event variables, Sij and

Tij, using the same method used in Equations 3.2 and 3.3. Again, this provides two time-

to-event variables that are associated according to the underlying data structure of the

Gumbel copula, with strength of association controlled by the parameter θg. Censoring was

applied by generating an exponential variable Cij and comparing to Sij and Tij. As with

the Clayton copula, the required trial-level association is controlled within the covariance
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3.2. SIMULATION STUDY

matrix D used in the marginal survivor functions, setting ρ equal to the square-root of

the required association level.

3.2.6 Selection of Simulation Parameters

In addition to simulation factors presented in Table 3.1, and the values of θc and θg defined

in Sections 3.2.4 and 3.2.5, appropriate values of the fixed parameters used to transform the

uniform variables to time-to-event outcomes, including treatment effects, baseline hazards

and the censoring distribution, need to be selected. These parameters define the average

time to disease progression and death, as well as the proportion of patients in the simulated

clinical trial datasets who remain event-free at the end of observation.

Following consideration of multiple clinical trial datasets as case studies, parameters

were selected based on results of two Phase III clinical trials investigating two molecules

for the treatment of HER2 positive gastric cancer (Hecht et al., 2016; Bang et al., 2010).

These trials were selected as they investigated different molecules with the same intended

mechanism of action (targeting the HER2 protein) and provided very similar median PFS

and OS times. Whilst the hazard ratios varied slightly between the trials, the observed

values represent the general strength of treatment effect that is often planned for new

clinical trials for these endpoints. The following values were therefore selected to generate

the simulated datasets:

λS = 0.18, baseline hazard function for a median time to surrogate outcome of approxi-

mately 5− 6 months;

λT = 0.07, baseline hazard function for a median time to true outcome of approximately

10− 11 months;

α = −0.4 (logarithm of hazard ratio), corresponding to a hazard ratio for S of approxi-

mately 0.67;
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β = −0.2 (logarithm of hazard ratio), corresponding to a hazard ratio for T of approxi-

mately 0.82;

λC = 0, 0.027 and 0.1, used to derive censoring proportions of 0%, 30% and 60% by

generating a value from a standard exponential distribution and dividing by λC .

Use of these simulation parameters allowed for a number of realistic scenarios that are

commonly encountered in the analysis of clinical trial data. First, the time to observation

of the surrogate endpoint was considered to be approximately half of that for the true

endpoint, representing scenarios where surrogates would be considered worthy of use.

Further, the treatment effect on the surrogate is assumed to be slightly stronger than that

on the true endpoint, since such a relationship is commonly observed, where overall survival

can be confounded by additional follow-on therapies administered to a patient once they

have experienced disease progression. A Phase III trial designed with a primary endpoint

of OS using these parameter values, with commonly used Type I error of 5% and Type II

error of 20%, would lead to a study of approximately 850 patients over a total expected

duration of 120 months. Use of the surrogate endpoint would reduce this significantly to

approximately 230 patients with a total duration of 36 months. These parameters are

therefore considered to reliably reflect a setting where there would be strong interest in

evaluating potential surrogate endpoints. Additional assumptions were imposed on the

simulated datasets to accurately reflect situations observed in real-life clinical trial data:

� A small proportion of patients who ‘died’ were considered censored for PFS but an

event for OS, to reflect patients who initiate alternative anti-cancer therapy without

evidence of disease progression, or experience an extended period of time prior to

death during which disease assessments are not performed (≈ 5% using a Bernoulli

distribution).

� When the generated time for OS was censored, and the generated time of TTP or

PFS was shorter (i.e. S < T ), the surrogate was considered as an event 80% of
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the time. This allows approximately 20% of subjects to be censored for TTP/PFS

earlier than OS, representing scenarios where subjects withdraw consent from further

invasive medical procedures to determine disease status, or to allow for the time-lag

between disease assessments (i.e. last known alive date may be later than the last

known disease state).

A total of 5,000 repetitions for each scenario were run, with simulation and analysis

conducted on a Windows 7 64-bit machine with 4GB RAM, using macros based on SAS®

software, Version 9 for Windows. Across all scenarios, copula model parameters, including

the dependence parameter (and therefore the individual-level surrogacy) and the trial-

specific treatment effects were estimated based on the maximum likelihood approach using

a Newton-Raphson procedure. This was implemented using SAS® software procedure

NLPNRR (Newton-Raphson ridge optimisation method).

3.3 Results

Results of the simulation study are presented for each of the factors described in Section

3.2. In order to improve readability of the large number of scenarios, the results are

presented first for the surrogate endpoint of time-to-progression in Section 3.3.1, followed

by progression-free survival in Section 3.3.2. Within each of these sections, estimation

of individual-level surrogacy and trial-level surrogacy are presented separately. Due to

similarity of results between the parameter controlling the ranges of treatment effects

across trials (σ = 0.1, 0.2), only the results for the smaller ranges are presented herein;

remaining results can be found in Appendix A (Figures A.1 to A.8) for both individual

and trial-level surrogacy.

Within each section, the convergence of the two-stage meta-analytic copula method is

first discussed. Following this, a review in the performance of the method in estimating τ

and R2
trial is provided. Results across all 5,000 simulated datasets are presented in the form

of boxplots. Each scenario is presented using a figure containing nine individual plots,
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showing all combinations of the individual and trial-level surrogacy; each row contains

a fixed individual-level value, and each column a fixed trial-level value. Within each

of these individual plots are results for the fixed combination of τ and R2
trial across all

numbers of trials (N=4, 6), patients within each trial (n=80, 120, mixed) and proportions

of censoring (0%, 30%, 60%). Labels above each plot indicate which combination of

surrogacy values is being displayed, and labels underneath the overall figure detail the

scenario being presented. Estimates considered to be outliers are not presented (values are

considered outliers if they lie below the first quartile or above the third quartile by a margin

of 1.5 times the inter-quartile range). To support the graphical displays, summary tables

are included to show the median percentage bias across all simulation runs (calculated

as the percentage difference between the estimated value of τ or R2
trial and the reference

value, as a proportion of the reference value). To improve readability, only the largest

sample sizes are included in these summary tables (N = 6, n = 120).

3.3.1 Time-to-Progression

Convergence

When using TTP as the surrogate endpoint, there were very few issues of non-convergence,

with a maximum of 56/5000 runs (1.12%) across all scenarios investigated. The majority

of this non-convergence was for low true individual-level association, however the very low

number of simulation runs with convergence problems indicates that this issue is not of

concern when considering TTP as the surrogate endpoint.

Estimation of τ

Figure 3.3 presents estimated values of τ when using TTP as the surrogate endpoint and

a Clayton copula model to generate the data. As noted previously, this data generation

algorithm is considered to be the ideal case where the assumptions of the model are
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‘correct’, such that there is no model misspecification. In this scenario, it is therefore

expected that the performance of the two-stage meta-analytic copula method would be

reasonable, subject to the small sample sizes used in estimation of model parameters.
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Figure 3.3: Boxplots of estimates of τ : TTP, Clayton Copula Data Generation, Clayton

Copula Application
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Results of the simulations demonstrate that estimation of τ is generally good, with

estimates being close to the reference value and variability increasing only slightly with

censoring. For high levels of individual association, there is very little variability in esti-

mates, even for the smallest sample sizes, and identification of a strong surrogate endpoint

is therefore possible with high reliability. However, as the true level of individual asso-

ciation decreases, the variability increases, with high variability observed in results for

true τ = 0.2. That said, in these scenarios the estimated τ values do not exceed 0.4 even

under the highest level of censoring, a value which could be considered as sufficiently low

to conclude that surrogacy is poor. The higher variability does not therefore prevent a

reliable conclusion. For the medium level of individual association (τ = 0.5), the range

of estimates is approximately 0.4 to 0.65, reflecting moderate strength of association and

reasonably representing the input value. Across all scenarios, variability appears to reduce

slightly with increased sample size and number of trials, as expected, however the perfor-

mance of the method appears generally good even when limited data are available. This

finding is supported by the summary of percentage bias presented in Table 3.2, where the

(median) absolute bias of τ never exceeds 1.5%. Whilst not of primary interest here, con-

fidence intervals for τ based on the example scenario of Clayton copula generated datasets

with R2
trial = 0.5, N = 4 and n = 80 are presented in Appendix Figure A.11 to illustrate

the certainty in the estimates of τ .
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Table 3.2: % Bias of Estimates of τ and R2
trial: N = 6, n = 120, TTP with Clayton Data

Median % bias

τ R2
trial % Censoring τ R2

trial

0.2 0.2 0% 0.413 22.745

0.2 0.5 0% 0.859 -14.362

0.2 0.8 0% 0.787 -24.833

0.2 0.2 30% 1.303 12.427

0.2 0.5 30% 0.984 -24.244

0.2 0.8 30% 0.717 -33.441

0.2 0.2 60% 0.491 -4.296

0.2 0.5 60% 0.951 -41.116

0.2 0.8 60% 0.803 -50.992

0.5 0.2 0% -0.111 62.096

0.5 0.5 0% -0.153 16.741

0.5 0.8 0% -0.212 -0.293

0.5 0.2 30% 0.424 64.362

0.5 0.5 30% 0.472 11.617

0.5 0.8 30% 0.484 -4.880

0.5 0.2 60% 1.046 57.105

0.5 0.5 60% 1.515 -3.911

0.5 0.8 60% 1.422 -22.402

0.8 0.2 0% -0.834 72.064

0.8 0.5 0% -0.852 22.395

0.8 0.8 0% -0.937 7.298

0.8 0.2 30% -0.300 88.767

0.8 0.5 30% -0.286 28.222

0.8 0.8 30% -0.382 7.102

0.8 0.2 60% 0.250 111.625

0.8 0.5 60% 0.256 28.112

0.8 0.8 60% 0.195 2.467
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In order to examine the impact of model misspecification, estimates of τ from the

data generated using a Gumbel copula are presented in Figure 3.4, with supportive data

provided in Table 3.3.
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Figure 3.4: Boxplots of estimates of τ : TTP, Gumbel Copula Data Generation, Clayton

Copula Application
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Table 3.3: % Bias of Estimates of τ and R2
trial: N = 6, n = 120, TTP with Gumbel Data

Median % bias

τ R2
trial % Censoring τ R2

trial

0.2 0.2 0% -37.568 4.231

0.2 0.5 0% -37.752 -26.393

0.2 0.8 0% -37.197 -34.250

0.2 0.2 30% -23.508 4.649

0.2 0.5 30% -24.112 -30.855

0.2 0.8 30% -22.758 -38.200

0.2 0.2 60% 5.505 0.071

0.2 0.5 60% 5.113 -41.681

0.2 0.8 60% 5.971 -48.630

0.5 0.2 0% -29.488 45.069

0.5 0.5 0% -29.152 0.870

0.5 0.8 0% -29.052 -13.298

0.5 0.2 30% -16.593 46.099

0.5 0.5 30% -16.353 -2.023

0.5 0.8 30% -16.241 -19.336

0.5 0.2 60% 6.212 47.851

0.5 0.5 60% 6.008 -7.867

0.5 0.8 60% 5.709 -27.353

0.8 0.2 0% -18.374 95.934

0.8 0.5 0% -18.388 29.514

0.8 0.8 0% -18.462 3.736

0.8 0.2 30% -9.448 93.187

0.8 0.5 30% -9.571 23.929

0.8 0.8 30% -9.688 0.574

0.8 0.2 60% 2.261 102.216

0.8 0.5 60% 2.182 21.023

0.8 0.8 60% 2.021 -2.674
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Given the very different dependence structures assumed by the Clayton and Gumbel

copula functions, it is expected that estimation of τ would be poorer when based on the

Gumbel data generation, and the results show that this is the case, with two notable

changes.

Firstly, regardless of the underlying strength of association, the method appears to

provide higher estimates as the percentage of censoring increases. Based on the increasing

estimates, it is considered likely that higher censoring would lead to slight over-estimation

of the true underlying τ , hence the method could be considered to be reasonably accurate

when approximately 50% of patients are censored, but not with lower (causing under-

estimation) or higher (likely causing over-estimation) proportions of censoring. There

appears to be only minor improvement through increasing the number of trials or sample

sizes within trials. Data in Table 3.3 also support these findings, with median percent-

age bias reaching as low as −38% under no censoring, and +6% for the highest level of

censoring. This issue is discussed further in Section 3.4.

Secondly, the level of variability in the estimated values of τ has increased as com-

pared to the Clayton generated data, and this is apparent across all levels of association.

Estimates of truly low levels of association appear to remain low across all scenarios, not-

ing that higher values may be observed when the level of censoring increases above 60%.

However, the increased variability in the results for τ = 0.5 means that, particularly when

the level of censoring is low, there is overlap in results between truly low and medium

levels of surrogacy. Further, whilst the highest levels of association remain with the low-

est variability, the medium level of association now provides estimates of individual-level

surrogacy that reach as high as 0.7, in some cases with overlap with the lower tails of

estimates for truly high surrogacy. This increase in estimates could potentially lead to

mediocre surrogates being considered to have high levels of individual association. These

results therefore demonstrate that whilst low (τ = 0.2) and high (τ = 0.8) surrogacy can

be reliably identified, medium levels of association are less clear, and with small sample

sizes could be misleadingly interpreted as being either too weak or too strong. The im-
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portance of verifying the underlying dependence structure of the data, and the adequacy

of model fit of the selected copula, is therefore apparent. There is marginal improvement

with increases in sample size and numbers of trials, but it is considered that substantially

more data would be required to improve estimation.

Overall, the two-stage meta-analytic copula method for assessing TTP as a surrogate

endpoint at the individual-level has demonstrated good performance under correctly spec-

ified models, with additional variability in the incorrectly specified model that can lead to

under- or over-estimation, particularly when sample sizes are small.

Estimation of R2
trial

Estimates of R2
trial are provided in Figures 3.5 (for Clayton generated data) and 3.6 (for

Gumbel generated data). In these figures, the left column shows R2
trial = 0.2, middle

column R2
trial = 0.5 and right column R2

trial = 0.8, with the rows showing the impact of

increasing the individual-level association. Since the results appear very similar between

the two data generation algorithms, description of the results will not distinguish between

the two. Supportive data are again included in Tables 3.2 and 3.3 for the largest sample

sizes.
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Figure 3.5: Boxplots of estimates of R2
trial: TTP, Clayton Copula Data Generation,

Clayton Copula Application
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Figure 3.6: Boxplots of estimates of R2
trial: TTP, Gumbel Copula Data Generation,

Clayton Copula Application

As might be expected from the small number of trials, estimation of R2
trial is overall

poor, with severe under- or over-estimation of the true value and very high variability.

Although the median results are sometimes close to the true value, the estimates lie across

the entire unit interval in the majority of scenarios. This is considered to be a result of the

95



3.3. RESULTS

small number of trials used in the simulation. Although the estimates appear to increase

slightly with increased underlying association, they are far from the true (reference) values

and do not provide reliable interpretation.

There are two notable features of the results; the impact of increasing the number of

trials, and the dependency between R2
trial and τ . It is evident that the increase from 4

to 6 trials has reduced the variability, with a smaller interquartile range as depicted by

the grey shaded boxes, although the impact decreases with higher R2
trial values. Despite

this, the range of estimates remains across the unit interval, and it can be reasonably

concluded that estimation of R2
trial cannot be reliably achieved with such low numbers of

trials. Splitting the trials into smaller subsets would increase the number of units available

for analysis, however this is not recommended for these small sample settings since each

study has only 80−120 patients each; splitting these into multiple subgroups would likely

lead to increased bias in estimation of R2
trial, as was observed by Renfro et al. (2014).

With regards to dependency between R2
trial and τ , it can be seen from the right column

(R2
trial = 0.8) that estimates are increasing in value across the rows of the figure, showing

an increase in estimates of R2
trial with increasing τ . The effect is less pronounced for the

low and middle values of R2
trial, but appears to remain present. This finding was also

observed by Burzykowski (2001) and is a result of the use of the estimated treatment

effects from stage one of the analysis without correcting for the estimation error. When

this is not corrected for, the correlation between estimated treatment effects can under- or

over-estimate the true correlation between the treatment effects depending on the size of

correlation between the measurement errors. Whilst the use of adjusted estimators would

be preferred, such approaches are currently considered to be difficult to use in practice due

to issues of non-convergence, as noted in Section 2.3.5. Overall, results have demonstrated

that for the scenarios under investigation here, the estimation of R2
trial cannot be reliably

performed using the two-stage meta-analytic copula method.
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3.3.2 Progression-Free Survival

Convergence

The change in surrogate endpoint from TTP to PFS has a notable effect on the non-

convergence of the two-stage meta-analytic copula method, which increases to a maximum

of 61.3% (3063/5000 runs). However, such high rates of non-convergence occur exclusively

for scenarios based on low individual-level surrogacy. For medium-high individual-level

surrogacy, the non-convergence remains at a rate of zero for the majority of scenarios,

reaching a maximum of 1.06%. The complex nature of the joint modelling required by the

two-stage meta-analytic copula method therefore appears to cause significant problems

when used with an endpoint that does not satisfy the symmetry assumption of copula

models.

Estimation of τ

Based on outcomes simulated using the Clayton copula, the estimates of τ from the ap-

plication of PFS as the surrogate endpoint are presented in Figure 3.7, with supportive

information in Table 3.4. Given the correct model specification in terms of the dependence

structure, the results provide a direct assessment of the impact from incorrectly assuming

symmetry of surrogate and true endpoints.

These plots of individual estimates of τ highlight several aspects worthy of consider-

ation. First, it is apparent that even under correctly specified models, the method sub-

stantially over-estimates low individual-level association across all 5,000 simulation runs,

with over-estimation of moderate level association also being observed. Further, in both

of these settings, there is a notable worsening caused by increased censoring within the

datasets, with little overlap between estimates of τ between the datasets with no censoring

and those with high (60%) censoring. Under this highest level of censoring, a true level

of association of 0.2 could be estimated as high as 0.7 (median bias approximately 150%),
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which would almost certainly be considered encouraging enough to move forward with a

surrogate. This over-estimation is considered a key finding, since many of the applications

of the two-stage meta-analytic copula approach in practice have evaluated the surrogacy

of PFS for OS. Indeed, many clinical trials that have already achieved regulatory approval

based on an alternative endpoint to overall survival have done so through use of PFS, and

this endpoint remains the first choice for many settings where OS is not feasible. These

results therefore demonstrate that this could be a major issue in practice. Interestingly,

the truly high level of association continues to be estimated with high reliability and pre-

cision, reflected by a median bias of < 5% across all scenarios with the largest sample

sizes, and estimates of τ ranging from approximately 0.75 to 0.92.

Whilst the variability in estimates is high, particularly for low levels of association, it is

reasonably similar to that observed when TTP was used as the surrogate. Consistent with

that setting, the variability remains low for the highest level of association, and increases

as the true τ decreases. Variability is also higher for censored data. However, when PFS

is used as the surrogate, there is greater improvement in the variability of estimates by

increasing the number of trials and the sample sizes. The range of estimates of τ appears

to be half for the largest sample sizes (N = 6, n = 120) as compared to the smallest

sample sizes (N = 4, n = 80). This improvement is greater than was observed for TTP.

Given this deterioration in performance under correct model specification, it could be

expected that the results would be impacted further when the model being used does not

follow the underlying structure of the data, and results of the Gumbel data generation

confirm that this is the case (Figure 3.8, Table 3.5).

From Figure 3.8, it can be seen that for low levels of association, the two-stage meta-

analytic copula method continues to over-estimate quite substantially the true τ , with

estimates reaching as high as 0.69 (median bias for largest sample sizes of approximately

150%), and not lower than the reference value of 0.2. Whilst the absolute value of the

estimates has decreased slightly for low-medium levels of association as compared to the

Clayton data, the severe over-estimation under high censoring remains.
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Table 3.4: % Bias of Estimates of τ and R2
trial: N = 6, n = 120, PFS with Clayton Data

Median % bias

τ R2
trial % Censoring τ R2

trial

0.2 0.2 0% 53.960 132.166

0.2 0.5 0% 52.052 23.194

0.2 0.8 0% 51.533 -7.494

0.2 0.2 30% 105.392 122.543

0.2 0.5 30% 103.747 20.894

0.2 0.8 30% 102.839 -15.145

0.2 0.2 60% 152.067 113.914

0.2 0.5 60% 149.861 4.969

0.2 0.8 60% 147.605 -28.031

0.5 0.2 0% 11.776 119.562

0.5 0.5 0% 11.296 30.187

0.5 0.8 0% 10.634 4.140

0.5 0.2 30% 18.391 125.809

0.5 0.5 30% 17.750 27.614

0.5 0.8 30% 17.118 -1.369

0.5 0.2 60% 29.994 120.573

0.5 0.5 60% 29.735 15.281

0.5 0.8 60% 29.112 -13.597

0.8 0.2 0% 1.696 110.874

0.8 0.5 0% 1.406 26.389

0.8 0.8 0% 1.177 7.596

0.8 0.2 30% 2.913 126.163

0.8 0.5 30% 2.565 31.577

0.8 0.8 30% 2.351 6.838

0.8 0.2 60% 4.838 128.277

0.8 0.5 60% 4.652 29.855

0.8 0.8 60% 4.375 1.915
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Figure 3.7: Boxplots of estimates of τ : PFS, Clayton Copula Data Generation, Clayton

Copula Application

For medium individual-level association, results for the highest level of censoring also

remain similar, whereas estimates for the low and no censoring scenarios have reduced,

again reflecting the larger spread of results across the censoring proportions when using the

Gumbel generated data. Variability in the estimates of τ has also increased, with ranges
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of approximately 0.35 right up to very high values of 0.7, again highlighting the risk of

incorrectly declaring PFS to have strong predictive power for OS. As compared to TTP,

all estimates of true τ = 0.5 appear to be slightly higher, leading to reasonable estima-

tion under 30% censoring, but under-estimation under no censoring and over-estimation

under censoring > 60%. The impact of censoring between the two potential surrogates is

therefore consistent, with higher proportions of censoring leading to higher estimates of τ ,

which could potentially lead to incorrect conclusions.

Encouragingly, for the highest level of true association between PFS and OS, the

method appears to perform reasonably well, with the lowest variability and lowest spread

of results between censoring proportions. This is consistent with results from TTP, and

in fact there is little difference between the endpoints in this scenario. That said, the

increased variability and spread in estimates of τ across all true levels of association

suggest that any true underlying association strength could be estimated to be very high.

Overall, the variability in results for PFS limits interpretability. When the true association

is very strong, the method appears to continue to perform well when the model is specified

correctly, but any deterioration from this specification appears to cause issues. There is

significant overlap in the estimates of τ across scenarios, whereby mediocre or even poor

surrogates could incorrectly be concluded as having strong predictive ability. This is of

great concern, since this could lead to such endpoints being used in confirmatory clinical

trials.
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Figure 3.8: Boxplots of estimates of τ : PFS, Gumbel Copula Data Generation, Clayton

Copula Application
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Table 3.5: % Bias of Estimates of τ and R2
trial: N = 6, n = 120, PFS with Gumbel Data

Median % bias

τ R2
trial % Censoring τ R2

trial

0.2 0.2 0% 34.734 127.501

0.2 0.5 0% 34.969 18.919

0.2 0.8 0% 34.950 -12.692

0.2 0.2 30% 95.729 149.653

0.2 0.5 30% 92.908 19.584

0.2 0.8 30% 92.372 -18.033

0.2 0.2 60% 152.443 112.511

0.2 0.5 60% 149.963 2.270

0.2 0.8 60% 148.064 -26.445

0.5 0.2 0% -14.651 143.254

0.5 0.5 0% -15.245 27.578

0.5 0.8 0% -16.106 -4.548

0.5 0.2 30% 3.457 136.919

0.5 0.5 30% 2.437 22.696

0.5 0.8 30% 1.381 -10.465

0.5 0.2 60% 29.191 121.701

0.5 0.5 60% 28.365 9.262

0.5 0.8 60% 27.726 -20.645

0.8 0.2 0% -15.364 152.165

0.8 0.5 0% -15.989 37.061

0.8 0.8 0% -16.573 5.359

0.8 0.2 30% -5.942 140.408

0.8 0.5 30% -6.740 28.608

0.8 0.8 30% -7.265 2.202

0.8 0.2 60% 5.256 141.179

0.8 0.5 60% 4.773 26.758

0.8 0.8 60% 4.259 -2.650
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Estimation of R2
trial

As for the TTP setting, the performance of the two-stage meta-analytic copula method

in estimating R2
trial is very similar for both Clayton and Gumbel generated data, and so

discussion of the results for the individual data generation structures will not be separated.

The estimated R2
trial values for the Clayton and Gumbel datasets can be found in Figures

3.9 and 3.10 respectively, with supportive data in Tables 3.4 and 3.5.

Overall, results are broadly consistent with those from data generated using TTP as

the surrogate endpoint. Whilst estimates of R2
trial appear very slightly higher across the

majority of scenarios (with the exception of τ = 0.5, R2
trial = 0.8 and τ = 0.8, R2

trial = 0.8

where results are of a similar magnitude), the range of estimates stretches across the

entire unit interval. Whilst Burzykowski et al. (2005) consider 100 − 200 patients per

trial to be sufficient to use R2
trial to generate “reasonable” results, the current simulation

study demonstrates that this is likely only possible when there are a larger number of

trials containing this number of patients. Even in the largest sample sizes investigated

here (N = 6, n = 120), estimation of R2
trial is poor, with median bias ranging from

approximately −30% to approximately 150%. As shown in Figures 3.9 and 3.10, this is a

slight improvement over the scenarios with only four trials included, but not sufficient to

consider the method to provide reliable results. There was also no impact from increasing

sample size within trials, and no difference among datasets with different proportions of

censoring. Finally, the dependency between R2
trial and τ that was observed for the TTP

is also present for the PFS setting.
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Figure 3.9: Boxplots of estimates of R2
trial: PFS, Clayton Copula Data Generation,

Clayton Copula Application
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trial: PFS, Gumbel Copula Data Generation,

Clayton Copula Application
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Summary of Results

The extensive results from all simulation scenarios can be summarised by:

� The two-stage meta-analytic copula method generally performs well in estimating τ

when TTP is used as the surrogate endpoint and the correct model specification is

assumed. Variability in results increases as τ decreases, but this does not impact

interpretation.

� For TTP, changing the dependence structure in the data led to a greater impact

of censoring and deteriorated performance, but truly high and truly low surrogacy

could be reliably identified. Mediocre surrogates may incorrectly be concluded to be

poor or strong predictors for OS.

� When considering PFS as the surrogate endpoint, the method suffers from severe con-

vergence issues and over-estimation of individual-level surrogacy, particularly when

the true level of association is low. This finding is apparent even for correctly spec-

ified models.

� Under incorrectly specified models, the deterioration with the use of PFS continues,

with severe under- or over-estimation of individual-level surrogacy:

– Severe over-estimation when τ = 0.2, regardless of the level of censoring.

– Reasonable estimation when τ = 0.5 and there is a low level of censoring, but

under-estimation when there is no censoring, and over-estimation under high

levels of censoring.

– Slight over-estimation when τ = 0.8 and there is high censoring, and under-

estimation otherwise.

� Regardless of the surrogate endpoint, the method cannot be considered to provide

reliable estimates of R2
trial when only a small number of trials are available.
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3.4 Understanding the Results

In this section, notable features of the results are described with the aim to understand

their cause. First, comparisons with a previous simulation study of the two-stage meta-

analytic copula method will be made, followed by discussion of individual elements of the

results that require further investigation.

3.4.1 Comparison to Previous Simulation Study

Estimation of τ

The simulation study of Burzykowski (2001) also considered the performance of the two-

stage meta-analytic copula method for TTP data generated using the Clayton copula.

Although the range of simulation scenarios was slightly different, comparisons between

the study of Burzykowski (2001) and that presented in this chapter can be discussed.

Burzykowski (2001) found that estimates of τ were generally positively biased, with

< 1% bias for true τ = 0.9 and < 4% bias for true τ = 0.5. This bias decreased with

increased patient numbers, with a slight increase in bias for increased censoring when

τ = 0.9. These findings are consistent with the current study, where absolute percentage

bias for the largest sample size ranged from 0.1% to 1.5% for true τ = 0.5 and 0.2% to

0.9% for true τ = 0.8. Similarly, estimation improved marginally when increasing the

number of trials and patients within trials.

Whilst Burzykowski (2001) does not provide graphical representation of results to

enable a visual assessment of variability, the standard errors of estimates for τ are provided.

These values suggest that the standard error decreases as both the number of trials and

sample sizes increase, but rises with censoring, and this appears to be independent of

the trial level strength of association. Results presented in Section 3.3.1 demonstrate

a consistent pattern, with the increase from 4 to 6 trials and 80 to 120 patients per

trial leading to reduced ranges of estimates. The increase in variability due to increased
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censoring is also present, although this is much more pronounced for the lower levels of

association, a scenario not explored by Burzykowski (2001). Overall, results between the

two studies are similar, and suggest that altering the treatment effects and other simulation

parameters has had minimal impact on estimation of τ .

Estimation of R2
trial

Burzykowski (2001) examined true trial-level association of 0.5 or 0.9, and concluded that

the bias in estimates of R2
trial were dependent on the level of τ due to the level of correlation

between the measurement errors in the trial specific treatment effects. Results showed a

positive bias in estimates of R2
trial for true τ = 0.9 and R2

trial = 0.5, and negative bias

when τ = 0.5 and R2
trial = 0.9. Results from the current study are broadly consistent in

that positive bias was observed when τ = 0.8 and R2
trial = 0.5, and negative bias observed

when τ = 0.5 and R2
trial = 0.8 and there was censoring present within the data.

Whereas no difference was observed when increasing the number of trials from 10 to

20 in the study of Burzykowski (2001), improvement was seen in the current study when

increasing from 4 to 6 trials. This difference in conclusions is considered to be as a result

of the low number of trials included in the current study, where the addition of just two

trials could be expected to improve the estimation. Conversely, the current study showed

no improvement in estimation through an increase in sample size per trial from 80 to 120,

whereas Burzykowski (2001) demonstrated an improvement when increasing sample size

from 50 to 200 per trial. It would seem reasonable to assume that this larger (four-fold)

increase in sample size has a more substantial impact on parameter estimation than the

more modest increase from 80 to 120. Interestingly, Burzykowski (2001) conclude that

sample sizes of 100 − 200 patients per trial is sufficient to reduce the percentage bias to

10% or lower, which is far lower than the results observed in the current study. This is

likely due to the low number of trials included in the current simulations.
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3.4.2 Variability and Model Misspecification

With regard to results of the current study, it has been demonstrated that the variability

in estimates of τ appears to decrease as the absolute value increases, and this is consistent

across both Clayton and Gumbel data generation, and for both surrogate endpoints. This

result is considered to be due to the use of the Clayton copula function in the surrogacy

evaluation approach. Based on this copula model, the variance of Kendall’s τ is calculated

as

V (τ̂) =
4V (θ̂c)

(θ̂c + 1)4
,

where θ̂c is the estimated value of the copula dependence parameter (Burzykowski, 2001).

Therefore, the variance in τ̂ decreases as the absolute value of θ̂c increases. Since the value

of θc increases as the strength of association increases, this variability decreases as τ gets

larger, likely leading to estimates of τ that are smaller in range.

When investigating the impact of model misspecification, the Clayton copula was ap-

plied to data generated using a Gumbel copula. Since the Clayton model assumes strong

late-tail dependence, it could be expected that the model under-estimates τ when applied

to data that is designed to have weak late-tail dependence, as in the Gumbel data. Hence,

lower estimates of τ under 0% censoring based on Gumbel data are not unexpected. Un-

der TTP, the increase in estimates with increasing proportion of censoring appears present

only for the Gumbel generated data, suggesting that this also is caused by the inappro-

priate model assumptions. In this case, it is likely that the longest values of S and T are

truncated through the censoring, and these values are likely those that have the weakest

association. Elimination of such values from the dataset may therefore lead to the effect

of stronger association overall, and subsequent increases in values of estimated τ . This

can be seen in the scatterplots presented in Figure 3.11, which contain values of S and T

generated for 1,000 patients from the Gumbel copula with τ = 0.8. As the percentage of

censoring increases (Figure 3.11(a) to 3.11(c)), the weakly correlated values in the upper

tail are removed, and overall association between endpoints appears stronger.
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3.5. IMPLICATIONS OF RESULTS

3.4.3 Endpoint Symmetry

Arguably, the most impactful finding of the current study comes from the switch of surro-

gate endpoint from TTP to PFS. Whilst the highest underlying value of τ appears mostly

unaffected by this, the lowest value (0.2) was substantially over-estimated across all scenar-

ios when based on PFS. Results of this simulation study have demonstrated that truly low

values of individual-level association between PFS and OS cannot be reliably identified,

and this is considered to be a result of the composite nature of the PFS endpoint. For this

study, datasets were simulated to provide a date of progression and date of death for each

patient, with the required strength of association between these two separate outcomes.

In re-defining a surrogate endpoint to be a combination of the two events, such that it

also includes data from the true endpoint, it is reasonable to assume that the intended

association between PFS and OS would be higher than that between TTP and OS for the

same set of data values. Therefore, values of τ could be expected to be over-estimated

by the two-stage meta-analytic copula method when based on such a composite endpoint.

However, this is the approach that is taken to analyse PFS as an endpoint, and which

would be reflected if PFS were used as a surrogate endpoint.

3.5 Implications of Results

The simulation study has revealed a number of topics that require consideration before

implementing the two-stage meta-analytic copula method to evaluate a surrogate endpoint.

In particular, it must be considered how the method can be practically applied in the

setting of PFS, and how to determine whether such a surrogate endpoint is truly reliable

for future use. Such practical implications are now described, followed by some recognised

limitations of the simulation study conducted, and further work.
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3.5. IMPLICATIONS OF RESULTS

3.5.1 Practical Implications

The results of the simulation study described in this chapter have raised one very im-

portant issue that is not otherwise identified in the current literature; the low reliability

of the method when applied to endpoints that are not symmetrical and/or that incorpo-

rate data from the true endpoint, such as PFS. The poor performance of the two-stage

meta-analytic copula method in estimating individual-level surrogacy when the proposed

surrogate endpoint incorporates data from the true clinical endpoint is evident, yet this key

assumption of the copula model has previously been ignored when applying the approach

to the assessment of PFS as a surrogate for OS. This clearly has the potential for severe

consequences. None of the previous simulation studies conducted in the literature have

addressed this question, yet the results here have demonstrated high cause for concern.

Secondly, it has been shown that the method cannot be considered uniformly applica-

ble when there exist only a small amount of data on which to base a surrogacy evaluation.

Whilst this is expected for the estimation of trial-level surrogacy, the large variability

present in estimates of individual-level surrogacy (with the exception of symmetrical sur-

rogate and true endpoints under correctly specified models) indicate that applications of

the method to such small samples may lead to incorrect conclusions, and inappropriate

use of a surrogate endpoint.

The third and final aim of the simulation study was to determine whether the method-

ology could reliably identify truly low levels of association between surrogate and true

endpoints. The results demonstrated that this is possible for the case of symmetrical

endpoints under correct model specification, albeit with higher variability than higher

levels of association, but that reliability of estimates deteriorates as model assumptions

are violated. Such violations can be in the form of non-symmetry of surrogate and true

endpoints, or a change in the dependence structure of the data. As a result, use of the

two-stage meta-analytic copula method in such scenarios is likely to lead to results that

over-estimate the strength of association between endpoints, and incorrect conclusions that
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a surrogate is reliable enough to use in future clinical trials. The importance of ensuring

that the copula model being used to estimate the parameters adequately fits the data is

therefore critical, consistent with the finding of Renfro et al. (2015). This can be achieved

through inspection of Akaike’s Information Criterion (AIC) (Akaike, 1974) or Schwarz’s

Bayesian Information Criterion (BIC) (Schwarz, 1978), where both criteria penalise the

(log) likelihood by a value linked to the total sample size, n, of all clinical trials included in

the meta-analysis, and the number of parameters in the model, p. The AIC is penalised by

subtraction of p from the log-likelihood value, whereas the BIC penalises by subtracting

a value of p log(n)
2

. A higher value for either criterion therefore indicates a better fit.

In addition to the above, the complex joint modelling required by the two-stage meta-

analytic copula method leads to many issues of non-convergence when using PFS as a

surrogate for OS. The lack of non-convergence from the TTP scenarios suggests that this

is caused by the change in surrogate endpoint, and in some cases the values are so high that

more than half of the simulation runs failed to provide estimated values of τ and R2
trial.

This implies that, in practice, it may be very difficult to apply the method, particularly

when the true underlying individual association is low.

3.5.2 Limitations of the Simulation Study

Although investigating a large number of scenarios, the simulation study described in this

chapter is subject to some limitations. Firstly, data generation was based on two different

copula models, one that was consistent with the analysis approach and one that was not.

The purpose of using two different copulas was to assess the impact on performance when

the underlying data structure does not match that assumed by the model. However, since

both approaches were based on a copula function, as is used by the surrogacy evaluation

approach, this may have had the potential to bias the results in a favourable way. To

address this concern, further examination of the two-stage meta-analytic copula method

was conducted using data that was generated using a bivariate lognormal distribution,
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and the results of this third data generation algorithm indicate that the approach of using

Clayton and Gumbel data generation did not bias the findings. Results from the lognormal

data generation can be found in Appendix A, Figures A.9 and A.10, and a brief description

of the data generation procedure is provided in Section 4.2.2.

A second limitation is that all scenarios considered the same treatment effect in

TTP/PFS (hazard ratio ≈ 0.67) and OS (hazard ratio ≈ 0.82) between experimental

and control arms. These values were selected to reflect real-life scenarios, where the time

required to run a new study could be substantially shorter if based on the surrogate end-

point rather than the true endpoint. Although these treatment effects were held constant

across all simulations, Burzykowski (2001) considered variation in treatment effects from

no difference (on S or T ) to hazard ratios of 0.67 for both surrogate and true endpoints,

and observed no major differences in results. Further, the strength of association defined

by the copula data generation is fixed prior to selection of the treatment effects. Mono-

tonic transformation of the event times to reflect the treatment effects therefore does not

impact the underlying values of τ . Based on this structure and the findings of Burzykowski

(2001), no change in conclusion is therefore expected if the treatment effects were to be

varied.

A third limitation is that the simulation study conducted and described in this chapter

considers use of only one copula model when evaluating the potential surrogate endpoint;

the Clayton copula. As described by Burzykowski et al. (2001), any choice of copula

could be used. This choice should be based on the best fit to the data, and so results

may vary slightly when using another copula function. However, the use of two different

copula models in the data generation process demonstrates how the method performs

under correctly and incorrectly specified models, and it is considered unlikely that use of

a different copula under these two scenarios would give results that dramatically change

the findings.

A recognised issue with the two-stage meta-analytic copula method is the potential bias

in the estimation of R2
trial from the use of estimated treatment effects in Stage 1 of the
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modelling approach without correction for estimation error. Whilst adjusted estimators

have been proposed to correct for this issue, this simulation study used the unadjusted

estimators only. The reason for this approach is that the investigation of Burzykowski

(2001) demonstrated that the application of the adjusted estimators is hampered by is-

sues with convergence. These issues were considered severe enough to conclude that the

adjusted measures cannot be used in practice (Burzykowski et al., 2005). Hence, the

unadjusted estimators are considered the most appropriate method with which to assess

the performance of the two-stage meta-analytic copula method via simulations. Of note,

while the unadjusted estimates cannot range outside of the unit interval [0, 1], confidence

intervals of these unadjusted estimates can take values outside of this range due to the

approximation used in the delta method to calculate the parameter variance. When this

occurs, it is recommended to truncate the confidence intervals to the admissible range.

Adjusted estimators, based on the methods proposed by Burzykowski et al. (2005), can

take values outside of the unit interval, further hampering their interpretation.

Finally, what this simulation study has shown is that having up to six clinical trials

with data available for analysis is insufficient to provide a reliable assessment of trial-level

surrogacy. Findings from Burzykowski (2001) suggest that having 10−20 trials is sufficient

for this purpose, and so the question remains as to the minimum number of trials (> 6

but ≤ 10) that could be considered necessary for an evaluation of this association. One

important element to this question is whether the underlying individual and trial-level

strengths of association are consistent across multiple trials, which may be dependent on

the patient population, trial design and treatment under investigation.

3.5.3 Further Work

The findings from the simulation study presented in this chapter suggest that the complex

joint modelling of surrogate and true endpoints can lead to difficulty in implementing the

two-stage meta-analytic copula method. Further, when the method provides estimates of

116



3.5. IMPLICATIONS OF RESULTS

trial and individual-level surrogacy, these can be misleading when the strong assumptions

of the copula models being used are not appropriate, in particular under non-symmetry of

surrogate and true endpoints. Whilst the latter has been demonstrated for the first time

in this research, the former is a known concern, which many have tried to address through

the use of unified approaches to evaluating surrogacy.

A number of unified approaches have been described in Section 2.4, one of which shows

promise and has been recommended as the preferred choice of measures for the evaluation

of surrogacy (Ensor et al., 2016). This information theory method, described in Section

2.4.2, is therefore investigated further in the next chapter, with the aim to determine

whether this approach can reduce the complexity of the modelling process, and provide

more reliable estimates of surrogacy for the PFS setting.
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Chapter 4

A Unified Approach Based on

Information Theory

4.1 Introduction

A desirable feature of statistical methodology designed to evaluate surrogate endpoints is

that there is consistency in interpretation of the results across different endpoint types. In

particular, when researchers are investigating multiple potential surrogates with a desire to

determine which may be the most reliable for future use, it is important that the surrogacy

measures, be they of an R2 type or otherwise, are reflecting the same underlying concepts.

This avoids a situation where different conclusions may be drawn purely due to the choice

of statistical methodology. As was described in Section 2.3, many of the methods currently

available to assess potential surrogates have different assumptions and modelling structures

depending on the endpoints under investigation, and comparability of surrogacy measures

across these different techniques has not been established. The need for unified approaches

that can incorporate many different endpoint types is therefore apparent.

In a recent systematic review of surrogate endpoint methodology, Ensor et al. (2016)

recognise this and note that the information theory method described in Section 2.4.1

has an advantage over the two-stage meta-analytic approach in that it offers a unified
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interpretation. The time-to-event application of the approach (Section 2.4.2), offers a

number of further potential advantages. Firstly, there is no need to define complicated joint

distributions; measures are based on parameters of individual models which are available

in many standard software packages. Secondly, there are no assumptions of endpoint

symmetry, something that has been shown to adversely impact surrogacy assessment when

based on a copula modelling approach. The same underlying theory is also applicable to

both individual-level and trial-level surrogacy, as well as being applicable across all types

of surrogate and true endpoints. Finally, it has been suggested that the information theory

method can also be considered appropriate for the evaluation of time-ordered endpoints

such as exploration of PFS as a surrogate for OS (Pryseley et al., 2011).

Pryseley et al. (2011) conducted a simulation study to assess a number of different

approaches to estimate surrogacy parameters based on the information theory concept,

however there are a number of relevant topics that remain unexplored. As a result, this

chapter contains details of a simulation study designed to examine these previously un-

explored areas. Firstly, it is of interest to determine whether the performance of the

information theory method is impacted when measures are based on a meta-analysis of

similar clinical trials, rather than being based on one trial only. This also allows estima-

tion of trial-level association, and to be consistent with the two-stage meta-analytic copula

investigation in Chapter 3, a linear relationship between treatment effects is assumed. Sec-

ondly, since there is no need for definition of the joint distribution between endpoints, it

is of interest to assess whether the method is sensitive to the underlying data structure.

Further, given the over-estimation of the two-stage meta-analytic copula method when

evaluating the commonly used endpoint of PFS, it is of interest to determine whether

the information theory approach would be able to provide more reliable results for the

surrogacy of this endpoint against a true endpoint of overall survival. The robustness of

the results from the simulation study is also improved as compared to that of Pryseley

et al. (2011) through the use of a tenfold increase in the number of simulation runs (5, 000

compared to 500).
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4.2 Simulation Study

4.2.1 Choice of Data Generation Procedure

As noted previously, a key consideration in the set-up of a simulation study to assess any

surrogacy evaluation method is how the underlying surrogacy (trial and individual) can be

adequately controlled. Ideally, the parameter being estimated by the surrogacy approach

would be directly controlled, however the parameters that are required in calculation

of the information theory method of association, R2
h, make this very difficult, as they are

estimated from conditional models using the likelihood ratio (see Equation (2.4)), meaning

that each sample would have a slightly different underlying R2
h. The measure of surrogacy

is estimated using (conditional) model coefficients for both the surrogate and treatment

(from two models), as well as the Kaplan-Meier survival estimates for each sample, and it

would be very difficult to simultaneously control each of these parameters such that the

overall strength of association was preserved.

Previous investigations of the R2
XOQ measure (described in Section 2.4.2) were based

on datasets simulated according to a Cox proportional hazards model (Xu and O’Quigley,

1999). In this set-up, one covariate was included in the model and the coefficient of

this single covariate, β, was used to control the overall strength of association between

the covariate and outcome. Whilst this allows for specification of the strength of this

relationship, it is not clear what value of covariate coefficient would be reflective of ‘poor’,

‘medium’ or ‘strong’ surrogacy, since there is no bound on the range of values that can be

selected. Further, the strength of covariate coefficient may depend on the disease setting,

or be impacted by other covariates in the model, such as treatment. There could therefore

be considerable subjectivity in the selection of coefficient values, and the impact of this

on the resulting estimation of R2
XOQ is not currently clear.

Instead, the study of Pryseley et al. (2011) was based on data generated using a Clayton

copula function, controlling association between endpoints through the copula parameter,
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τ . Whilst the value of τ may not perfectly reflect the true information theoretic measure of

association, such an approach allows for overall control of the true individual (τ) and trial

(R2
trial) association levels, subject to sample variability, and conveniently allows indirect

comparison with results of the two-stage meta-analytic copula method. The strength of

surrogacy is also unaffected by other covariates in the model, as these are incorporated

later and do not affect the underlying value of τ .

Despite the potential limitations of conducting a simulation study of the information

theory approach based on data generated using a copula model, it is considered important

to understand how the estimates of individual and trial-level surrogacy would compare

between the two-stage meta-analytic and information theory methods when applied to

the same datasets. It would seem relevant that any practical application of surrogacy

evaluation would be based on a number of different methods, including some sensitiv-

ity analyses. A substantial limitation to interpretation of surrogacy would occur if the

available methods gave conflicting results for the same dataset. As such, the information

theory method was applied to the identical datasets generated as part of the simulation

study of the two-stage meta-analytic copula method described in Section 3.2, for the same

scenarios. As a reminder, these scenarios are displayed in Table 4.1.

Despite the information theory method not making assumptions around the joint de-

pendency structure between S and T , both Clayton and Gumbel copula generated datasets

were re-used such that an assessment of the sensitivity of the approach to the dependency

could be made. To examine whether use of the copula-generated data could lead to bias

in estimation of information theory surrogacy measures, selected scenarios were also run

using data generation that did not involve a copula model, and this process is described

further in the next section.
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Table 4.1: Simulation Scenarios

Factor Scenarios under simulation

Surrogate Endpoint TTP, PFS

Data Generation Clayton, Gumbel

Number of trials 4, 6

Number of patients per trial 80, 120, Mixed (50% each at n = (80, 120))

Trial-level association 0.2, 0.5, 0.8

Individual-level association 0.2, 0.5, 0.8

Censoring Rate (on T) 0%, 30%, 60%

Range of treatment effects∗, σ 0.1, 0.2

*Hazard ratios ranging 42% − 203% and 31% − 238% from the mean for

σ = 0.1, 0.2 respectively.

4.2.2 Lognormal Data Generation

One alternative approach to data generation that does not employ a copula function is

based on a bivariate lognormal distribution, previously used in the context of comparing

estimators of Kendall’s τ (Hsieh, 2010). Using this method, the parameter that controls

the association between endpoints remains as Kendall’s τ , which is transformed and used

within the covariance matrix between S and T . Although this method also makes use

of the joint distribution between the two endpoints, it does not use a copula model, and

therefore provides a data generation algorithm that can adequately control the association

parameter, but is not reliant on the choice of copula. In addition, the association between

endpoints can be controlled using the same parameter as that used in copula data genera-

tion, τ , with the same values (0.2, 0.5, 0.8). This alternative approach was used to explore

whether the results of the information theory method of estimating individual-level as-

sociation are consistent with those based on copula-generated data. Since exploration of

the lognormal data generation approach was considered a sensitivity analysis to confirm
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whether any bias may have been introduced through use of the copula generation, only

selected scenarios were re-run, shown in Table 4.2.

Table 4.2: Selected Simulation Scenarios for Lognormal Data Generation

Factor Scenarios under simulation

Surrogate Endpoint TTP, PFS

Number of trials 6

Number of patients per trial 120

Trial-level association 0.5

Individual-level association 0.2, 0.5, 0.8

Censoring Rate (on T) 0%, 30%

Range of treatment effects∗, σ 0.1

*Hazard ratios ranging 42%− 203% from the mean.

For lognormal data generation, surrogate and true endpoint values Sij and Tij need

to be generated for each patient j from trial i, with required underlying individual and

trial level association. This is consistent with the copula data generation as described in

Sections 3.2.4 and 3.2.5. To generate these values, a three-step process was created, which

was able to also incorporate the range of simulation parameters listed in Table 4.1 and

allow consistency with previous simulated datasets.

Step 1:

First, two variables, log(S0
ij) and log(T 0

ij), were generated from a bivariate Normal distri-

bution with log(S0
ij)

log(T 0
ij)

 ∼ N2

 0

0

 ,

 1 ρ

ρ 1

 ,

where ρ is Spearman’s correlation between log(S0
ij) and log(T 0

ij), reflecting Kendall’s τ

through the relationship between these two parameters; ρ = sin
(
τπ
2

)
(Kruskal, 1958). As
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such, values of τ of 0.2, 0.5 and 0.8 are represented by correlation values of 0.309, 0.707

and 0.951, respectively.

Step 2:

In order to generate time-to-event data with the required characteristics, the second step

of the process is to rescale the values of log(S0
ij) and log(T 0

ij) to ensure that the final

distributions of the generated Sij and Tij are similar to those generated using the copula

models. This is achieved by transforming using a specified mean and variance, which can

be considered equivalent to applying selected baseline hazard functions when converting

copula-generated uniform endpoints to have exponential distributions. Since the parame-

ters log(S0
ij) and log(T 0

ij) follow a bivariate Normal distribution, the transformation based

on the mean and variance follows the standard process for converting from a standard Nor-

mal distribution with mean of 0 and variance of 1 to a Normal distribution with chosen

mean and variance, using

S∗ij = mS +

(√
σ2
S log(S0

ij)

)
,

T ∗ij = mT +

(√
σ2
T log(T 0

ij)

)
,

where mS, mT are the means and σ2
S, σ2

T the variances of the required distributions of

S∗ij and T ∗ij respectively. The choice of these mean and variance values is described below,

after Step 3 of the data generation algorithm.

Step 3:

The third step of the process is to transform the values S∗ij and T ∗ij by exponentiating, to

obtain lognormally distributed time-to-event values. In addition, the effect of treatment

and the underlying trial-level association value need to be incorporated. Since a restricted

selection of simulation parameters are being explored for this data generation method,

trial-level association is held fixed at a value of 0.5 to demonstrate a ‘medium’ level of

association. In order to incorporate the required treatment effect, as well as take into

consideration the underlying trial-level association, the same approach as used for copula

simulation was applied. This was achieved by multiplying the lognormally distributed
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time-to-event variables according to

Sij = exp(µSi + (α + ai)Zij) exp(S∗ij), (4.1)

Tij = exp(µTi + (β + bi)Zij) exp(T ∗ij), (4.2)

where Zij denotes treatment and takes a value of 0 or 1, α = −0.4 and β = −0.2 represent

the treatment effects (HR of 0.67 and 0.82 for S and T respectively), and µSi , µTi , ai and

bi are random effects introduced to control the underlying trial-level association. Further

details of the derivation of these random effects are described in Chapter 3. This approach

of multiplying the generated outcome time by the exponential terms including treatment

and random effects is identical to the approach used in the copula-generated data to control

these parameters.

In order to ensure that the datasets simulated according to this algorithm were com-

parable to those generated using the Clayton and Gumbel copula functions in terms of the

summary statistics, the mean and variance parameters, mS, mT , σ2
S and σ2

T were selected

based on the observed values of these parameters in the copula-generated datasets. To es-

timate these, the random variables Sij and Tij derived from the copula model in Equations

(3.2) and (3.3) were equated to those in Equations (4.1) and (4.2) above, leaving

−λ−1S exp(µSi + (α + ai)Zij) log(S0c
ij ) = exp(µSi + (α + ai)Zij) exp(S∗ij),

−λ−1T exp(µT i + (β + bi)Zij) log(T 0c
ij ) = exp(µTi + (β + bi)Zij) exp(T ∗ij),

where log(S0c
ij ) and log(T 0c

ij ) denote the values of log(S0
ij) and log(T 0

ij) based on the copula

model in Equations (3.2) and (3.3), λS and λT are the baseline hazards selected for the

copula data generation, and the vector of random effects, exp(µSi + (α+ ai)Zij), contains

the trial-specific parameters as described previously. Since this vector of random effects

in both sides of the equations is the same, it follows that

log(−λ−1S log(S0c
ij )) = S∗ij,

log(−λ−1T log(T 0c
ij )) = T ∗ij,
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and so the mean and variance of the left hand side of these equations can be used to

provide an estimate of the mean and variance of S∗ij and T ∗ij. Values of the mean and

variance were therefore considered from both the Clayton and Gumbel generated values

of log(S0c
ij ) and log(T 0c

ij ), and were selected as mS = 1.1, mT = 2.1, σ2
S = σ2

T = 1.6. Since

Kendall’s τ is based on ranks of variables rather than specific values, the simulated value

of τ is unaffected by such a monotonic transformation.

4.2.3 Modelling Structure

The information theory method of evaluating surrogacy is based on individual models

of the true outcome, one with treatment only and one with treatment and surrogate as

covariates. The estimated coefficients of these covariates are then used to compare the two

models to determine how well the addition of the surrogate in the model can improve the

model predictions. In order to include the surrogate endpoint in the model, it is necessary

to express it as a time-dependent covariate, to reflect that it is measured post-baseline and

to appropriately estimate the respective model coefficient. This is achieved by splitting

the time period from baseline to the true endpoint, [0, T ), into two intervals that reflect

the potential change in surrogate outcome at time S; [0, S) and [S, T ). During the first

interval there is no progression, and during the second interval there may or may not be

disease progression dependent on the disease status at time S. Time-dependent indicator

variables are used to denote disease status both at time T and for the surrogate outcome.

When TTP is used as the surrogate, the covariate status during the interval [S, T )

is based only upon the disease status provided by the surrogate endpoint at time S.

Therefore, if a patient experiences disease progression at time S, this is accounted for in

parameter estimation through a change in the value of the time-dependent covariate from

zero to one. If a patient does not experience disease progression during their period of

observation, their time-dependent covariate remains at a value of zero across the entire

interval [0, T ).
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For PFS, the set-up is slightly different due to the need for PFS to reflect both disease

progression and death. In particular, when a patient experiences death without prior

disease progression, the value of S would be truncated to the value of T , and both endpoints

would be considered as events. In a time-dependent covariate setting, this equality of time

values would lead to the interval [S, T ) having zero length, and so the surrogate outcome

not being accounted for. To avoid this, in cases where patients had death without prior

progression, the interval [S, T ) was assumed to have length of one day, such that the data

reflects the surrogate outcome.

An alternative representation of PFS as the surrogate endpoint is also suggested by Pry-

seley et al. (2011), although not explored in their study. Given the non-symmetric nature

of endpoints used as potential surrogates for survival, the suggestion is that the outcome

T could be replaced by post-progression survival, T − S. The restriction that S must

be shorter than T can then be immediately implemented within the information theory

approach. This offers a benefit over the two-stage meta-analytic copula method, where

the endpoint symmetry cannot be easily adjusted for. As a result, further investigation

of this approach was also considered, where the outcome T was replaced with a value of

T − S, and the surrogate endpoint S was considered as a covariate that was no longer

required to be time-dependent. This is the first known evaluation of this key advantage

of the information theory approach.

To estimate trial-level association, treatment effects on S and T were estimated through

the use of separate proportional hazards models; one with T as outcome and treatment as

the only covariate, and one with S as the outcome and treatment as the only covariate. A

linear relationship between these estimated treatment effects on S and T is assumed, and

the square of the correlation coefficient is used as an estimate of R2
trial. Using a normal

linear model for association between treatment effects on S and T , this estimated trial-

level association has an information theoretic interpretation, as described by Alonso and

Molenberghs (2007).
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4.3 Results

Surrogacy measures based on the information theory approach will be denotedR2
h,i andR2

h,t

for individual-level and trial-level surrogacy respectively. Results are presented for each of

the factors described in Table 4.1, first for TTP (Section 4.3.1) and then for PFS (Section

4.3.2). Similar to the two-stage meta-analytic copula method, results between values of

the parameter controlling the ranges of treatment effects across trials (σ = 0.1, 0.2) were

comparable, hence only the results for the smaller ranges are presented herein; remaining

results can be found in Appendix B (Figures B.2 to B.9) for both individual and trial-level

surrogacy.

Presentation of results based on the Clayton and Gumbel copula-generated data is con-

sistent with that of the previous chapter. Each scenario is displayed in a figure containing

nine individual plots, showing all combinations of the investigated values of individual and

trial-level surrogacy; each row contains a fixed individual-level value, and each column a

fixed trial-level value. Within each of these nine individual plots are all results for the

fixed combination of τ and R2
trial across all numbers of trials (N=4, 6), patients within

each trial (n=80, 120, mixed) and proportions of censoring (0%, 30%, 60%). Within the

plots, estimates considered to be outliers are not presented (values are considered outliers

if they lie below the first quartile or above the third quartile by a margin of 1.5 times the

inter-quartile range). To support the graphical displays, summary tables are included to

show the median percentage bias across all simulation runs (calculated as the percentage

difference between the estimated value of R2
h,i or R2

h,t and the respective value used in data

generation, τ or R2
trial, as a proportion of the value used in data generation). To improve

readability, only the largest sample sizes are included in these summary tables (N = 6,

n = 120). Results of the scenarios selected for further investigation using lognormal gen-

erated data are presented separately in Figures 4.3 (TTP) and 4.8 (PFS). These figures

include three individual plots of the estimates of R2
h,i for varied underlying τ and a fixed

underlying value of R2
trial = 0.5. In these additional figures, results from the Clayton and
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Gumbel copula-generated data are also included for easier comparability.

Overall, there were very few issues with model convergence for the information the-

ory method, with non-convergence of 0.04% for TTP and 0.14% for PFS. This reflects

the simpler computational properties of the method as compared to the two-stage meta-

analytic copula method, and demonstrates that the method is much easier to implement

in practice.

4.3.1 Time-to-Progression

Estimation of R2
h,i

Estimated values of R2
h,i for the Clayton generated data based on TTP are presented in

Figure 4.1. Horizontal dashed lines represent the true value of τ used in data generation,

and whilst the true value of R2
h,i may not perfectly match τ , it is important to understand

whether the approach can reliably identify ‘poor’ from ‘good’ surrogates, and provide

estimates that are broadly comparable to the underlying association within the data.

Confidence intervals around the estimates of R2
h,i for the example scenario of TTP with

Clayton generated data (R2
trial = 0.5, N = 4, n = 80) are presented in Appendix Figure

B.1 for information, but are not discussed further herein.

It is clear from the results of the TTP Clayton data that the information theory method

consistently provides estimates of R2
h,i that are lower than the value of τ used in data gen-

eration, and this is true across all levels of individual and trial association, and for all

proportions of censoring. Encouragingly, the estimates increase as τ increases, suggesting

that whilst they are far from the input value, they do reflect increasing magnitude of as-

sociation. However, the main concern is the very large ranges of results, which increase as

the true level of association increases. Under the lowest strength of association, estimates

appear to have low variability, suggesting that truly poor surrogates could be reliably

identified, however the estimates of medium (τ = 0.5) and high (τ = 0.8) strengths of

association are widely spread, which hampers interpretation. Coupled with the overall
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Figure 4.1: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application
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lower estimates of individual-level association, it is unlikely that even the strongest sur-

rogates could be identified, with estimates of R2
h,i ranging from approximately 0.2 to 0.7

when the true association is strong. Importantly, the estimated measures appear to be

generally robust to the proportion of censoring in the data, with similar results across

most scenarios and only slight increases in estimates under the setting with highest τ .

Further, as could be expected, the variability appears to improve slightly with increased

number of trials and patients within trials. However, even under the largest sample sizes

(N = 6, n = 120), the median bias remains large (Table 4.3), reaching as low as −84%.

It is unlikely that individual pharmaceutical companies would have more available data

than this, and so even with some allowance for R2
h,i to deviate from the true τ , it is clear

that truly high surrogacy cannot be identified.

Since the information theory method does not employ a copula function in the mod-

elling, it is not expected that results will vary substantially when switching to Gumbel

data generation. However, it is of interest to understand whether the approach is sensitive

to the dependence structure of the underlying data. Results of the method applied to

Gumbel generated datasets are presented in Figure 4.2.

Overall, estimates are broadly consistent with those based on Clayton generated data.

Across all scenarios, estimates of R2
h,i are lower than the value of τ used for data generation,

but increase as the underlying strength of association increases, which is encouraging.

However, as for the Clayton data, the large variability in results limits interpretation and

does not allow for clear conclusions to be made, particularly when trying to identify strong

surrogates (where estimates of R2
h,i range 0.2 to 0.8, median bias as low as −47%).

In addition, there are a few subtle changes in the results based on the Gumbel data.

Values are very slightly higher than those based on the Clayton generated data, with

median bias reducing by values up to 10% when no censoring is present. Whilst such

marginal changes reflect stronger surrogacy, the increase is not sufficient to reflect the

strength of association present in the data. More impactful, however, is the proportion

of censoring within the datasets, with higher estimates of R2
h,i resulting from datasets

131



4.3. RESULTS

Table 4.3: % Bias of Estimates of R2
h,i and R2

h,t: N = 6, n = 120, TTP with Clayton Data

Median % bias

τ R2
trial % Censoring R2

h,i R2
h,t

0.2 0.2 0% -83.744 -0.651

0.2 0.5 0% -83.375 -30.177

0.2 0.8 0% -83.192 -34.706

0.2 0.2 30% -80.372 -6.649

0.2 0.5 30% -80.425 -38.448

0.2 0.8 30% -80.098 -43.224

0.2 0.2 60% -76.185 -20.801

0.2 0.5 60% -76.269 -54.325

0.2 0.8 60% -75.758 -59.756

0.5 0.2 0% -66.774 7.275

0.5 0.5 0% -66.285 -15.243

0.5 0.8 0% -65.683 -16.448

0.5 0.2 30% -62.395 3.029

0.5 0.5 30% -61.452 -21.479

0.5 0.8 30% -61.083 -25.610

0.5 0.2 60% -58.326 -4.899

0.5 0.5 60% -57.590 -38.881

0.5 0.8 60% -57.035 -46.030

0.8 0.2 0% -54.776 18.594

0.8 0.5 0% -53.984 -0.539

0.8 0.8 0% -54.206 -3.189

0.8 0.2 30% -47.687 14.707

0.8 0.5 30% -46.827 -5.222

0.8 0.8 30% -46.659 -10.005

0.8 0.2 60% -40.003 11.091

0.8 0.5 60% -39.188 -19.980

0.8 0.8 60% -38.536 -25.438
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Figure 4.2: Boxplots of estimates of R2
h,i: TTP, Gumbel Copula Data Generation,

Information Theory Application
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with the highest level of censoring (60%). Whilst there was no impact from censoring

under Clayton data generation, these results suggest that the information theory method

may be impacted in some circumstances, particularly for medium to high association

levels. In addition, the increased censoring also appears to reflect larger variability for the

low and medium association levels. Whilst increased sample size reduces variability, the

improvement is not sufficient to allow reliable conclusions to be drawn when based on the

small numbers of trials and patients investigated in this study.

Lognormal Data

As described previously, further simulations were conducted to assess the performance of

R2
h,i in estimating individual-level surrogacy when a copula model was not used to generate

the data. The lognormal data described in Section 4.2.2 was used to determine whether

there was any bias introduced through use of the copula models, and was run 5, 000

times for a selected number of scenarios from the main simulation study. These scenarios

considered both TTP and PFS, with N = 6 trials each containing n = 120 patients, trial-

level association fixed at 0.5, with no censoring and under censoring of approximately

30%, for the smallest range of treatment effects. To explore the comparability of the final

values of Sij and Tij to those generated from the copula models, histograms and summary

statistics were used, which demonstrated high consistency between all methods.

Results for the TTP scenarios are presented in Figure 4.3. To aid interpretation, the

results from the Clayton (light blue) and Gumbel (dark blue) copula functions for the

same scenario are also included in the plots. Horizontal dashed lines represent the true

value of τ used in data generation.

Results demonstrate some variability across the different data generation mechanisms,

with estimates of R2
h,i from the Gumbel data being slightly higher than those from the

Clayton data as previously noted. The white boxes, representing the estimates based on

the lognormal data, appear to be consistent with those from the copula generated datasets,
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Table 4.4: % Bias of Estimates of R2
h,i and R2

h,t: N = 6, n = 120, TTP with Gumbel Data

Median % bias

τ R2
trial % Censoring R2

h,i R2
h,t

0.2 0.2 0% -86.787 -9.456

0.2 0.5 0% -86.455 -34.330

0.2 0.8 0% -86.129 -40.796

0.2 0.2 30% -80.134 -9.933

0.2 0.5 30% -79.820 -40.837

0.2 0.8 30% -79.456 -44.411

0.2 0.2 60% -64.779 -10.309

0.2 0.5 60% -64.479 -51.774

0.2 0.8 60% -64.065 -56.653

0.5 0.2 0% -66.971 -1.453

0.5 0.5 0% -65.630 -25.284

0.5 0.8 0% -64.377 -25.537

0.5 0.2 30% -54.965 -2.139

0.5 0.5 30% -53.276 -27.844

0.5 0.8 30% -52.203 -30.784

0.5 0.2 60% -34.101 -4.992

0.5 0.5 60% -32.787 -36.197

0.5 0.8 60% -31.196 -40.726

0.8 0.2 0% -46.510 12.718

0.8 0.5 0% -44.586 -4.658

0.8 0.8 0% -43.269 -6.064

0.8 0.2 30% -35.663 15.084

0.8 0.5 30% -33.231 -7.275

0.8 0.8 30% -31.960 -9.366

0.8 0.2 60% -21.409 20.813

0.8 0.5 60% -19.443 -11.171

0.8 0.8 60% -18.286 -18.530
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Figure 4.3: Boxplots of estimates of R2
h,i: TTP, Information Theory Application to All

Data Generation Methods (N=6, n=120)

being slightly higher than the Clayton-based estimates but similar to the Gumbel-based

estimates. Variability in results appears also comparable to the copula-based estimates.

Overall, these additional simulations confirm that there was no detrimental effect on the

conclusions of the simulation study through the use of copula-generated data. Results

have demonstrated that even general conclusions around the predictive strength of TTP

as a surrogate for OS are difficult to make.

Estimation of R2
h,t

Results of the estimation of trial-level association are presented in Figures 4.4 for Clayton-

generated data and 4.5 for Gumbel generated data. Due to the similarity of results between

the two data generation mechanisms, they will not be described separately here.

Overall, and as per expectations, estimates of R2
h,t were substantially variable, with

values extending across the unit interval in almost all settings. Whilst there is a slight
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upwards trend as the true R2
trial increases, this increase is minor in comparison to the large

variability, and does not allow for reliable conclusions. The increase in numbers of trials

from 4 to 6 appears to reduce the variability, but not sufficient to consider this a large

enough number of trials on which to base an assessment of surrogacy.

As was observed in results of the two-stage meta-analytic copula method (Section

3.3.1), there appears to be a link between the true value of τ and R2
h,t, with higher estimates

being observed when τ increases. As discussed previously, this is considered a result of the

use of estimated treatment effects on S and T to calculate R2
h,t, without any correction for

estimation error. Whilst the procedure for estimation of treatment effects differs between

the two-stage meta-analytic copula method and the information theory method, both use

their respective estimates in calculation of trial-level association (R2
trial or R2

h,t). The

issue caused by the potential under- or over-estimation of true correlation depending on

the measurement errors therefore remains. Overall, results have demonstrated that when

there are very few trials available, estimation of R2
trial using the information theory method

is poor.
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Figure 4.4: Boxplots of estimates of R2
h,t: TTP, Clayton Copula Data Generation,

Information Theory Application
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Figure 4.5: Boxplots of estimates of R2
h,t: TTP, Gumbel Copula Data Generation,

Information Theory Application
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4.3.2 Progression-Free Survival

Estimation of R2
h,i

Estimates of R2
h,i based on Clayton copula-generated PFS data are presented in Figure

4.6, with median bias for the largest sample sizes (N = 6, n = 120) provided in Table 4.5.

Given that the information theory method does not assume any symmetry between the

surrogate and true endpoint, it is anticipated that results would not be impacted by the

change in surrogate endpoint to the same degree as those based on the two-stage meta-

analytic copula method. In addition, the data structure used in the information theory

approach is very similar between TTP and PFS, with the time-dependent covariate used

to represent the surrogate differing only for patients who experience death without prior

progression.

Results highlight strong similarities between TTP and PFS when based on Clayton

generated data, with estimates of R2
h,i being reasonably comparable across the two end-

points. Values are marginally higher for the PFS data than the TTP data, likely due

to those patients for whom the surrogate is impacted by the true endpoint (i.e. those

who have death as the contributing PFS event). As for the TTP setting, the information

theory method appears to be robust to the proportion of censoring in the data, except

for the highest levels of association, where estimates increase slightly as the percentage of

censoring increases.

Unfortunately, the large variability in estimates of R2
h,i is also present for PFS, par-

ticularly for medium to high levels of association. This means that for even the highest

association, estimates of R2
h,i could be as low as 0.35, which could convince clinicians that

the surrogate was not worthy of further consideration. The variability decreases slightly

for larger sample sizes, but the bias remains at a value of up to −75% as compared to the

value of τ used in data generation. The large negative bias together with the wide ranges

of estimates that overlap between different underlying strengths of association hamper the
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Figure 4.6: Boxplots of estimates of R2
h,i: PFS, Clayton Copula Data Generation,

Information Theory Application
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Table 4.5: % Bias of Estimates of R2
h,i and R2

h,t: N = 6, n = 120, PFS with Clayton Data

Median % bias

τ R2
trial % Censoring R2

h,i R2
h,t

0.2 0.2 0% -74.694 144.127

0.2 0.5 0% -74.161 27.848

0.2 0.8 0% -73.650 -6.378

0.2 0.2 30% -63.644 141.623

0.2 0.5 30% -63.127 21.988

0.2 0.8 30% -62.717 -10.983

0.2 0.2 60% -57.327 135.138

0.2 0.5 60% -56.599 15.921

0.2 0.8 60% -56.014 -19.731

0.5 0.2 0% -49.276 150.994

0.5 0.5 0% -47.943 37.677

0.5 0.8 0% -47.030 4.953

0.5 0.2 30% -43.223 155.004

0.5 0.5 30% -42.130 35.527

0.5 0.8 30% -41.406 -0.638

0.5 0.2 60% -40.996 156.077

0.5 0.5 60% -40.176 25.556

0.5 0.8 60% -39.132 -10.450

0.8 0.2 0% -34.575 130.150

0.8 0.5 0% -33.110 36.726

0.8 0.8 0% -32.648 8.802

0.8 0.2 30% -29.376 143.886

0.8 0.5 30% -28.140 36.209

0.8 0.8 30% -27.659 3.919

0.8 0.2 60% -25.548 155.958

0.8 0.5 60% -24.424 30.165

0.8 0.8 60% -23.882 -5.231
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interpretation. Again, it would appear difficult to conclude that a surrogate endpoint was

a reliable predictor for OS, even when the true underlying association is strong.

Based on the results of TTP, and on the lack of dependence structure assumption within

the information theory approach, it is expected that results of Gumbel data generation

(Figure 4.7) would be similar to those from the Clayton generated data, with values being

potentially slightly higher. Further, since there was some increase in values of R2
h,i when

moving from TTP to PFS in the Clayton generated data, it is anticipated that the same

pattern would occur for the PFS setting.

Figure 4.7 indeed shows that the pattern of increase in values of R2
h,i between data

generation methods and surrogate endpoints is consistent, with values being slightly higher

than both the PFS Clayton data and the TTP Gumbel data. The median percentage bias

reduces by approximately 10% between the PFS Clayton and PFS Gumbel generated

data under no censoring; a similar level to that observed under the TTP scenario. Under

censoring, the reduction in bias is much greater (up to 30%), reflecting that increased

censoring leads to higher estimates of R2
h,i, which occurs for all strengths of association.

Further, the variability also increases as the proportion of censoring increases, partic-

ularly for low to medium association levels. This variability continues to hamper inter-

pretation since there is very little to distinguish between truly medium and high levels of

association. Whilst truly poor surrogates appear to be reliably identifiable, it is not pos-

sible to conclude that truly strong surrogates can be identified. Again, increasing sample

sizes appears to reduce the variability marginally, but not sufficiently to conclude that the

information theory method can detect promising surrogate endpoints.

Lognormal Data

As for the TTP setting, additional simulations were conducted to assess whether there was

any impact on estimation through the use of a copula model to generate datasets. Given

that results were broadly comparable across all three data generation algorithms for the
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Table 4.6: % Bias of Estimates of R2
h,i and R2

h,t: N = 6, n = 120, PFS with Gumbel Data

Median % bias

τ R2
trial % Censoring R2

h,i R2
h,t

0.2 0.2 0% -78.845 122.174

0.2 0.5 0% -78.438 20.046

0.2 0.8 0% -78.086 -12.192

0.2 0.2 30% -61.409 132.872

0.2 0.5 30% -60.677 20.012

0.2 0.8 30% -60.199 -13.982

0.2 0.2 60% -38.759 130.115

0.2 0.5 60% -38.231 12.594

0.2 0.8 60% -37.683 -19.833

0.5 0.2 0% -46.736 136.205

0.5 0.5 0% -44.948 29.746

0.5 0.8 0% -43.289 -2.761

0.5 0.2 30% -31.258 152.665

0.5 0.5 30% -29.428 30.428

0.5 0.8 30% -28.247 -5.278

0.5 0.2 60% -11.555 151.035

0.5 0.5 60% -10.083 21.245

0.5 0.8 60% -7.982 -11.285

0.8 0.2 0% -22.998 125.080

0.8 0.5 0% -20.012 32.275

0.8 0.8 0% -17.930 4.564

0.8 0.2 30% -14.752 139.266

0.8 0.5 30% -12.381 33.562

0.8 0.8 30% -10.674 2.245

0.8 0.2 60% -6.470 151.237

0.8 0.5 60% -4.447 29.312

0.8 0.8 60% -3.137 -4.477
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Figure 4.7: Boxplots of estimates of R2
h,i: PFS, Gumbel Copula Data Generation,

Information Theory Application

investigation based on TTP as the surrogate endpoint, it is expected that the same would

be true when using PFS. Figure 4.8 presents results for the lognormal data (white boxes),

alongside Clayton (light blue) and Gumbel (dark blue) for easier comparison. Horizontal

dashed lines represent the true value of τ used in data generation.
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Figure 4.8: Boxplots of estimates of R2
h,i: PFS, Information Theory Application to All

Data Generation Methods (N=6, n=120)

The estimates ofR2
h,i based on data generated using the lognormal approach are broadly

comparable with those using the copula data. Across all settings, the estimates were higher

for the lognormal than for Clayton generated data, but were consistent with those from the

Gumbel generated data, and conclusions would remain consistent regardless of the data

generation procedure. The pattern of increased results under censoring remained present,

as did the large variability. Although results show that there is no overlap between medium

and high levels of association, these results are based on the largest sample sizes of six

trials each containing 120 patients. Results therefore demonstrate further consistency,

between all three data generation algorithms, and between surrogate endpoints of TTP

and PFS.

Overall, the results for PFS are consistent with what was observed for the TTP scenar-

ios, and show that the information theory method is reasonably robust to both different

data structures and surrogate endpoints that also incorporate data from the true clinical
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endpoint. This is a key finding, since this provides more confidence in these settings where

the two-stage meta-analytic copula method provided unreliable results. However, the wide

ranges of estimates observed for the scenarios investigated here mean it is very unlikely

that reliable conclusions can be made for truly strong surrogates. Further discussion of the

comparison between the information theory and two-stage meta-analytic copula method

is provided in Section 4.5.1.

Estimation of R2
h,t

As for the TTP setting, there is very little difference in the estimates of R2
h,t between

Clayton and Gumbel generated data, and so discussion of the results will be given for the

two settings together. Results can be found in Figure 4.9 and 4.10, with supporting data

presented in Tables 4.5 and 4.6 respectively.

Consistent with the two-stage meta-analytic copula method described in Chapter 3,

estimates of trial-level association appear generally higher for the scenarios based on PFS

than those for TTP. Where there was severe over- or under-estimation observed for the

TTP scenarios, estimates of R2
h,t based on PFS as the surrogate endpoint are mostly over-

estimated and rarely under-estimated, except where R2
trial = 0.8. Estimates range across

the entire [0, 1] interval, with median values generally lying in the range of 0.5 to 0.8, and

never lower than 0.4 even for the lowest true association level.

Whilst variability decreases slightly when the true association is at its highest (R2
trial =

0.8), there is little that can be concluded due to the wide range of results. Again, im-

provement is observed when the number of trials increases from four to six, but this still

does not allow for meaningful conclusions.
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Figure 4.9: Boxplots of estimates of R2
h,t: PFS, Clayton Copula Data Generation,

Information Theory Application
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4.3.3 Further Exploration of Time Ordered Endpoints

Pryseley et al. (2011) note that the information theory model can be modified for explo-

ration of time-ordered endpoints where S ≤ T , such as the exploration of surrogates for

overall survival. They suggest to replace the outcome of the proportional hazards models

with the time difference between the surrogate and true outcomes, rather than the true

endpoint value itself. This suggestion was made as part of the discussion of their findings,

with a note that the computations and measure of association remain unaffected by this

change. However, no examination of this alternative approach is made by Pryseley et al.

(2011), and no further investigation of this suggestion appears to have been conducted in

the literature. Since the ordering of endpoints appeared to cause significant issues in the

performance of the two-stage meta-analytic copula method, having an approach that can

appropriately handle such situations would be of great benefit.

To investigate further, the alternative modelling approach was explored for all scenarios

under consideration in this simulation study. The outcome variable was taken to be post-

progression survival (T −S), with the surrogate outcome accounted for through describing

the progression status (progression [1] or not [0]) as a binary covariate. In this setting,

there is no need to consider a time-dependent covariate to represent the surrogate, since

the time period being modelled is that occurring after observation (or censoring) of S.

Across all scenarios, it was unfortunately found that the proposed adjustment to the

model leads to extremely poor estimation of both R2
h,i and R2

h,t. Changing the endpoint

from TTP to PFS, and altering between Clayton and Gumbel-generated data had no

impact on the results, with values of R2
h,i rarely exceeding a value of 0.2 even for the

largest values of τ . Results can be found in Appendix B, Figures B.11 to B.18.

The most likely cause of the poor performance is that modelling of post-progression

survival (T − S) ignores the entire interval of time during which the patient remained

alive and progression free, [0, S). Since the modelling is based only on the time after

the surrogate outcome has occurred, information on the duration of this prior period is
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completely lost. The design of the simulation study aimed to achieve median times for

PFS and OS of approximately 5− 6 and 10− 11 months, respectively, and so removal of

the first portion of data leads to a substantial loss of information relevant to the surrogacy

relationship.

When the true level of association is low, it could be expected that the impact could be

the lowest, since knowledge of the surrogate time and outcome does not provide much pre-

dictive information on the true endpoint. However, increasing the strength of association

between endpoints such that knowledge of the surrogate becomes highly predictive of the

true outcome could be expected to have a substantial effect. The information captured by

the surrogate includes not only the disease status but also the time at which the disease

status changed. The modelling of T − S does not reflect the time of disease progression,

only the duration of time after progression that a patient survived, and so removal of this

key information could be expected to weaken the relationship between disease status and

true outcome, and therefore reduce the strength of surrogacy.

The overall implication of these results is that the alternative proposal for handling

time-ordered endpoints can not be considered worthy of use. The information theory ap-

proach is not based on joint modelling of endpoints and does not assume any endpoint

symmetry. The attempt to correct for a problem that did not exist with this modelling

approach demonstrated that results were vastly inferior. Future use of the information

theory method should therefore maintain the outcome variable T and allow for the as-

sessment of time-ordering of endpoints through the use of a time-dependent covariate to

represent S.
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Summary of Results

Results of investigation of the information theory approach lead to the following conclu-

sions:

� The method is easy to implement and suffers minimal convergence issues.

� The sensitivity analysis using data generated from a lognormal model demonstrates

that results based on copula generated data are interpretable and broadly robust.

� The highly consistent pattern of results observed between different surrogate end-

points and various data generation algorithms provides confidence that the method

is robust to changes in dependence structure and symmetry of surrogate and true

endpoints.

� Whilst there is no true reference value against which to compare estimates of individual-

level association, increasing τ leads to larger estimates of R2
h,i which reflects the

stronger relationship between endpoints.

� Large variability, particularly for medium to high association, limits interpretation

and makes it difficult for the method to reliably identify good surrogate endpoints.

� There is evidence to suggest that the proportion of censoring in the data may affect

estimation, with values increasing as the censoring proportion increases.

� Adjusting for time-ordered endpoints, such as modelling post-progression survival,

does not provide reliable results and cannot be recommended.

� Estimation of R2
h,t based on only four or six trials is poor and cannot be recom-

mended.
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4.4 Understanding the Results

4.4.1 Comparison to Previous Simulation Study

The only known simulation study of the information theory approach to assessing time-

to-event surrogate and true endpoints was conducted by Pryseley et al. (2011). Their

study examined a number of approaches designed to estimate R2
h,i, concluding that the

estimation procedure of Xu and O’Quigley (1999), R2
XOQ, could be recommended for

future use. This estimation method was therefore used in the current simulation study, as

described in Section 2.4.2.

Pryseley et al. (2011) generate TTP (as S) and OS (as T ) data using the Clayton

copula model, according to the same procedure as that used in the current study, but

without controlling the trial-level surrogacy. All other steps of the data generation were

identical between the two studies, aside from the range of simulation parameters being

explored, the selected treatment effects on S and T and the chosen median survival times.

Based on their 500 replicates of each simulation scenario, Pryseley et al. (2011) concluded

that the method performs well, with slight under-estimation when the true τ is high (0.9),

and absolute bias of < 10% for τ = 0.3, 0.5 and < 20% for τ = 0.9. There was little

change through an increase in sample size, although this did improve estimation when the

censoring was high (50%). When there was a high proportion of censoring on T , such

that the T -dependent censoring of S (from the TTP setup) was ≥ 40%, the method was

found to perform poorly, exhibiting under-estimation of high τ and over-estimation of

low-medium τ .

The downward bias observed in the study of Pryseley et al. (2011) is consistent with the

current study, however the bias values are substantially smaller. For the highest sample

sizes, with τ ≤ 0.5 absolute bias in the current study reached as high as 84%, and for

τ = 0.8 as high as 55%, compared to < 10% (τ = 0.3, 0.5) and < 20% (τ = 0.9) from

the previous study. To explore the reasons for this, a number of steps were taken. Firstly,
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the R-program used by Pryseley et al. (2011) was obtained via a request to the author,

and applied unedited to determine whether the results could be replicated. Following

this, the code was closely examined to identify any differences in the modelling approach,

and a number of issues were identified. Each of these will be described, with the aim of

understanding their impact on the current study.

Replicating Results of Pryseley et al. (2011)

Results from the direct application of the unedited R-program provided by Pryseley et al.

(2011) are provided in Table 4.7. All simulation parameters remain unchanged from this

unedited program. As demonstrated in Table 4.7, bias values are very similar to those

reported by Pryseley et al. (2011), suggesting that the code can reliably reproduce the

published results and thus can be used as a basis to further investigate the differences in

observed results between the two simulation studies.

Table 4.7: Results Using Code of Pryseley et al. (2011)

Median % bias

τ % Censoring Pryseley et al. (2011) Re-Run

0.3 0% −2.7% −3.0%

0.3 20% −3.0% −3.0%

0.5 0% −1.2% 1.6%

0.5 20% −1.0% 1.0%

0.9 0% −18.8% −22.4%

0.9 20% −18.7% −22.7%

Simulation Procedure

The first discrepancy noted in the code used by Pryseley et al. (2011) is in the Clayton

copula simulation. According to Equation (3.1) and the published article of Pryseley

et al. (2011), the initially generated Uniform variables, Uij and Vij are transformed to be

associated with strength θc and dependence structure of the Clayton copula through the
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transformation

Vij =
(
U1−θc
ij V θ−1

c −1
ij − U1−θc

ij + 1
) 1

1−θc
,

however the code from Pryseley et al. (2011) has a change in sign, using

Vij =
(
U1−θc
ij V θ−1

c −1
ij + U1−θc

ij + 1
) 1

1−θc
.

The data are therefore not generated according to the intended strength of association,

and the value of τ , used as reference for the bias calculations, is subsequently incorrect.

Updating the code to correct this sign leads to lower estimates of R2
h,i and therefore larger

bias, as shown in Table 4.8.

Table 4.8: Results Using Code of Pryseley et al. (2011) with Corrected Sign

τ % Censoring Median % bias

0.3 0% −78.7%

0.3 20% −79.1%

0.5 0% −67.2%

0.5 20% −68.4%

0.9 0% −28.7%

0.9 20% −28.6%

These new bias values are closer to those observed in the current study, acknowledging

the small differences in τ and the censoring proportions, as well as the variability that

is likely present when only 500 simulations are run. Whilst the bias values for τ = 0.9

are lower than those for the value of τ = 0.8 observed in Table 4.3, it can be seen that

as τ increases, the bias values are reducing, hence it is expected that this pattern would

continue for higher values of association. These findings confirm that the information

theory method demonstrates under-estimation (of τ) and suggests that the method may

not be as appropriate as previously thought.

Although the study of Pryseley et al. (2011) is the only known investigation of the

information theory approach in assessing surrogacy, the underlying measure of associa-

tion, R2
XOQ has previously been studied in a small simulation study of 100 runs (Xu and
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O’Quigley, 1999). Since the context of this earlier study is not surrogacy, the data genera-

tion procedure used is simpler, with data being simulated according to the Cox regression

model with a chosen strength of covariate coefficient. Although the covariate coefficient

is not the eventual measure of association, selection of weaker (β = log(1)), medium

(β = log(2)) and higher (β = log(64)) model coefficients allows a general assessment of

whether the measure R2
XOQ is increasing with increased predictive value of the covariate.

Results of this study showed R2
XOQ values of approximately zero for β = log(1), of 0.1

for β = log(2) and in the range of 0.68 − 0.86, depending on censoring, for β = log(64).

Despite the limitations of the small number of simulation runs and differences in data

generation, these results would suggest that a hazard ratio of approximately 2 could be

expected to achieve a value of R2
XOQ in the region of 0.1.

In order to investigate further, estimation of the β values and hazard ratios for TTP

Clayton data generation are presented in Figure 4.11 for a variety of underlying values of

τ (0.1− 0.9), based on six trials each containing 120 patients. On the left are the model

coefficient values, β, and on the right are the corresponding hazard ratios, exp(β).

These estimates suggest that a hazard ratio approximately equal to a value of 2 could

reflect a true underlying τ of close to 0.3, and so this level of individual association between

TTP and OS, as explored by Pryseley et al. (2011), could have been expected to lead to

estimates of R2
h,i close to 0.1. However, Pryseley et al. (2011) reported bias values for R2

h,i

of approximately −3% for τ = 0.3, suggesting that estimates were closer to a value of

approximately 0.3. This further supports that the findings of Pryseley et al. (2011) were

adversely affected by the apparent error in the simulation code.

Modelling Time-to-Event Outcomes

As part of the evaluation of code from Pryseley et al. (2011), another difference was dis-

covered, relating to how patient risk-sets are defined. As per Equation 2.5, the information

theory method is based on estimation of the conditional distributions of T |S,Z and T |Z
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Figure 4.11: Boxplots of estimates of β and HR for OS: TTP, Clayton Copula Data

Generation

at each event time, tk. This requires calculation of the conditional probability of patient

j having an event at time tk, given their covariate values at that time:

πj(tk, β) =
Yj(tk) exp(βZj(tk))∑n
l=1 Yl(tk) exp(βZl(tk))

, (4.3)

where the risk-set Yj(tk) denotes an indicator variable to determine whether patient j is

at risk of an event at time tk (similar for patient l in the denominator) and Zj(tk) denotes

the covariate values for patient j (similar for patient l in the denominator) at that time.

Given that a time-dependent covariate is used to represent the surrogate outcome, the

Zj used in this calculation must reflect the covariate values that exist at each time tk. The

study described in this chapter therefore uses the covariate values from the interval [0, S)

when tk < S and covariate values from the interval [S, T ) once tk ≥ S, to ensure that

the correct surrogate outcome is used at each tk. In contrast, the code of Pryseley et al.

(2011) considers patients at risk at each event time whenever tk is lower than the upper

end of the respective time interval ([0, S) or [S, T )), leading to patients contributing twice
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to the likelihood function for all tk that are smaller than both S and T . Such a modelling

approach is not felt to be appropriate, since the surrogate status changes between these two

intervals. When tk < S, the covariate values from the interval [S, T ) are not applicable,

since this would be looking into the future; at time tk the only covariate values should be

those that are present just prior to that time. The impact of this is that the likelihood

contributions are duplicated for these patients when calculating the probability of an

event, biasing the estimates of πij(tk, β) and potentially leading to incorrect results. Since

the approach taken by Pryseley et al. (2011) was not felt to be appropriate, no further

investigation of this was conducted.

This investigation of the Pryseley et al. (2011) simulation study has demonstrated that

results of the study may be misleading, with the error in simulation meaning that the value

of τ used to estimate the bias is not accurately reflected in the data. Correction of this

error led to bias values that are comparable with the findings of Section 4.3.1. It should be

noted that further examination of the two alternative measures investigated by Pryseley

et al. (2011) has not been conducted, and may be a topic for future research.

4.4.2 Underestimation

The downward bias in surrogacy estimates observed in the simulation study presented

in this chapter occurs across almost all scenarios explored, particularly for TTP and for

Clayton generated data. Results of PFS were slightly higher than for TTP, which could

be expected since the former considers information from the true endpoint through the

inclusion of death events in the definition. This additional information likely increases

the strength of association between PFS and OS, thereby improving the under-estimation

observed for TTP.

Results from Gumbel generated data were slightly higher than for Clayton data, and

this is likely due to the difference in dependence structures induced by these two models.

Where the Clayton copula demonstrates stronger late tail dependence, the Gumbel copula
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exhibits more early tail dependence of event times. This early tail dependence suggests

that it may be easier to predict which patients will be most likely to experience the OS

event, therefore leading to a stronger relationship between the outcome and the covariate

representing the surrogate endpoint. A subsequent increase in the estimates of the surro-

gate covariate coefficient was observed for the Gumbel data as compared to the Clayton

data generation, thus leading to the higher values of R2
h,i. The impact of censoring is con-

sidered to magnify this effect, with loss of the later, weakly associated event times leading

to even stronger values for the covariate coefficient and therefore an increase in R2
h,i under

censoring for the Gumbel generated data. The impact of censoring was substantially lower

for the Clayton generated data, suggesting that there is minimal effect when event times

demonstrate strong late-tail dependence.

Despite these particular cases where estimates are slightly higher, R2
h,i values continue

to be lower than expected in the majority of scenarios. One potential reason for this is that

the measure is known to be bounded by a number less than one when the covariates are

discrete (with few levels) and the true association between outcome and a given covariate

is very high (i.e. as β → ∞). This is recognised by Pryseley et al. (2011), however Xu

and O’Quigley (1999) note that this bound does not usually require ‘special attention’,

and O’Quigley (2008) consider that it can be ‘practically ignored’. Whilst this may be

suitable when using the measure to generate prognostic models, the context of surrogacy

requires high estimates of R2
h,i to demonstrate that the evidence supporting a surrogate

endpoint is overwhelming. Results from the simulation study presented in this thesis show

that it therefore may not be appropriate to disregard the issue of boundedness, since it

may preclude observation of the levels of surrogacy that would be considered necessary

for a surrogate endpoint to be considered reliable for future use. However, whilst this

boundedness may contribute to the lack of observation of very high values of R2
h,i, it does

not help to explain why the lower levels of association are also estimated at values below

those used in data generation. Overall, these issues demonstrate that the information

theory approach has limitations in the setting of surrogacy of time-to-event outcomes.
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Increased levels of association

Within the scenarios explored in this simulation study, the true underlying levels of individ-

ual association were restricted to 0.2, 0.5 or 0.8. Across all scenarios, results demonstrated

that the estimated R2
h,i values are increasing with true underlying association, but not to

the same degree as the true association value, particularly for TTP. It is not possible to see

from the range of true τ values explored whether the level of association estimated by the

information theory method reaches a plateau, or what strength of true association, if any,

would result in truly high estimates of association (> 0.8). As such, further simulations

based on TTP Clayton data generation were conducted with a wider range of τ values

(N = 6 and n = 120, without censoring), to examine the full pattern of R2
h,i. Results are

presented in Figure 4.12.

As can be seen from this plot, high values of R2
h,i remain difficult to achieve, with

maximum values reaching a value of only 0.66. However, at the highest level of τ = 0.9,

the Cox model coefficient for the surrogate endpoint, estimated as an intermediate step

within the information theory method, reaches very extreme values (refer to Figure 4.11,

left hand plot). Whilst such values would be a very good indication that a surrogate is

highly predictive of long-term outcome, it is considered extremely unlikely to be achieved

in practice, reflected by the large hazard ratios corresponding to these covariate coefficients

(right hand side of Figure 4.11).

Although these additional results have therefore demonstrated that values of R2
h,i con-

tinue to increase as the true level of τ increases, the strength of surrogacy that would be

required to attain high estimates of individual-level association become infeasible. Fur-

ther exploration of PFS was not conducted with higher τ values, since the treatment

effect here is expected to be even more extreme due to the composite nature of the PFS

endpoint. From these additional simulations, it is concluded that whilst the information

theory method can theoretically estimate very high levels of prediction, this would appear

to be rarely feasible in practice.
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Figure 4.12: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application

4.4.3 Variability

A striking feature of the simulation results presented in this chapter is that the variability

in estimates of R2
h,i appears to increases as the strength of association increases. For the

highest association level of τ = 0.8, the results across all scenarios are highly variable, with

the range stretching up to half of the unit interval. This is one of the major drawbacks of

the approach, as it limits the interpretability of results and prevents reliable conclusions.

Further investigation into this issue has demonstrated that the increase in variability is

likely due to the variability in estimation of Cox proportional hazards model coefficients,
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particularly for the surrogate endpoint. Whilst the range of parameter estimates increases

slightly as the strength of association increases, the effect of taking the exponential of this

parameter, as is done when calculating the conditional probability of each subject having

an event (Equation 4.3), means that the small increases in variability go on to have a large

impact in subsequent estimation procedures. Since these exponentiated values are key in

calculation of R2
h,i, this leads to a much larger range of estimates of R2

h,i, as evidenced in the

simulation study results. The issue, therefore, is not directly with the information theory

approach, but with the underlying modelling structure. This is demonstrated in Figure

4.11, where the modest increase in covariate coefficients (β, left hand side of the plot)

leads to very large increases in variability when the hazard ratio (exp(β)) is calculated

(right hand side of the plot).

Therefore, as the strength of association increases, it is considered that there is in-

creased uncertainty in the parameters of the Cox proportional hazards model, leading to

increased variability in parameters that are subsequently used to estimate R2
h,i. It is ex-

pected that increased sample sizes would improve the estimation of parameters, thereby

reducing variability and leading to more reliable conclusions from R2
h,i. For completeness,

this aspect has been considered and discussion is provided in Section 4.4.4. Nevertheless,

specifically for the sample sizes examined in this study, the wide variability reflects the

uncertainty introduced through the lack of available data.

4.4.4 Larger Sample Sizes

Although the simulation study of Pryseley et al. (2011) considered larger sample sizes in

their assessment of the information theory approach to evaluating surrogate endpoints, the

issues described in Section 4.4.1 suggest that these results may not be entirely accurate,

leading to no published literature on the performance of the measure under the ideal

setting of larger sample sizes.

As a result, additional simulations were conducted for a selection of the scenarios
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considered in the simulation study described in Section 4.2, with larger numbers of trials

and patients within trials, to allow a more general interpretation of the performance of the

surrogacy approach. A total of 5, 000 simulations were conducted using both TTP and

PFS as surrogate endpoints for OS, with 0% and 30% censoring and with ten trials each

containing 500 patients. To achieve such sample sizes would likely require a wide range

of clinical trial datasets, potentially combining data from multiple molecules and different

companies. Results of these additional simulations are presented in Figures 4.13 and 4.14

for TTP and PFS, respectively.
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Figure 4.13: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application (larger sample sizes: N = 10, n = 500)

For both TTP and PFS scenarios, the availability of larger clinical trial databases has

improved estimation, in particular with respect to the variability in estimated values of

R2
h,i. The wide ranges of estimates observed with smaller sample sizes was considered to

hinder the interpretation of the results, whereas these additional scenarios demonstrate

reasonably similar estimates across all simulation runs. While variability increases slightly

with censoring, the results remain interpretable and there is no overlap of estimates be-

tween true underlying surrogacy values.
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Figure 4.14: Boxplots of estimates of R2
h,i: PFS, Clayton Copula Data Generation,

Information Theory Application (larger sample sizes: N = 10, n = 500)

However, it remains evident that even under truly strong association, the method

cannot reach values of R2
h,i greater than approximately 0.5 for TTP and 0.7 for PFS.

The drawback to the reduced variability is reflected in the tighter ranges of estimates,

which have led to a reduction in the maximum value of R2
h,i achieved during simulation.

Therefore, while improved variability can be achieved through increased data, the under-

estimation remains of concern and promising surrogates may be overlooked.

4.5 Implications of Results

4.5.1 Comparison to Two-Stage Meta-Analytic Copula Method

The simulation studies and deeper investigation of the information theory approach de-

scribed in this chapter and of the two-stage meta-analytic copula method described in

Chapter 3 examined the performance of the two surrogacy evaluation approaches for the

same scenarios and using identical datasets. Although these two methods are estimating

different quantities, it is important to understand how consistent the conclusions of sur-
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rogacy would be between the two. Despite the potential bias in direct comparison due

to the use of copula functions in the data generation algorithms, both approaches were

also applied to datasets that were not based on a copula function, and these sensitivity

results demonstrated that there was no impact from the selected simulation algorithm

(Figures 4.3, 4.8 for information theory, Appendix Figures A.9 and A.10 for the two-stage

meta-analytic copula method). Therefore, a comparison of the performance of the two

methods is considered appropriate.

As expected, when considering a surrogate endpoint of time-to-progression under per-

fect model specification of the Clayton copula, the two-stage meta-analytic copula method

demonstrated superior performance in estimating individual-level surrogacy. This was ev-

ident across all scenarios. Despite high variability of the approach under some scenarios,

the under-estimation of the information theory method means that even very promising

surrogates would likely be rejected, limiting the interpretability of the method. Even when

the two-stage meta-analytic copula method is subject to model misspecification such that

performance deteriorates, it remains superior to the information theory method, which

continues to demonstrate under-estimation to a level that does not allow for truly strong

surrogates to be identified. Even with allowance for the parameter τ being different to

that estimated by the information theory method, it appears difficult to achieve truly high

estimates of individual-level surrogacy.

The arguably more impactful comparison arises when considering progression-free sur-

vival as a potential surrogate endpoint. Violation of the symmetry assumption of copula

models led to significant deterioration in the two-stage meta-analytic copula method, and

this is where the information theory method provides potentially superior performance.

Despite the large variability in the results for the sample sizes investigated here, the in-

formation theory approach appears insensitive to both the underlying data dependence

structure and the choice of surrogate endpoint. Violation of the symmetry assumption

therefore has minimal impact, with changes reflecting what could reasonably be expected

from the change in endpoint. This is considered a notable advantage, since the poten-

165



4.5. IMPLICATIONS OF RESULTS

tially misleading results of the two-stage meta-analytic copula method could lead to very

poor surrogates being used in practice in new Phase III trials, and potentially leading to

regulatory approval of new treatments that ultimately will not offer benefit to patients in

the most clinically relevant true endpoint. Whilst the under-estimation of the information

theory approach is of concern, the consequences of making a decision of poor surrogacy

are far less harmful.

In addition to these findings of relevance to the estimation of individual-level surrogacy,

both surrogacy evaluation approaches were also used to estimate trial-level surrogacy.

Uniformly across both methods and all simulation scenarios explored, performance was

poor, and neither method can be recommended for use in estimating trial-level surrogacy

when there exist data from only a small number of clinical trials each containing a small

number of patients.

4.5.2 Practical Implications

As has been previously described, the non-convergence rate observed in the simulation

study of the information theory method was lower than 1% across all simulation scenarios.

This reflects the ease of computation, helped by the fact that the measure is based on

quantities that are estimated by standard software packages. The software procedures

that are needed to estimate the model parameters are those well known to researchers

who work in the analysis of time-to-event endpoints, and this allows quick understanding

of the underlying concept of the approach.

Further, the lack of assumptions around the joint distribution of endpoints means that

the information theory approach can be considered applicable to a wide range of datasets

without the need to change the modelling structure. This is an additional advantage,

and again improves the ease of use. The only assumption that needs to be satisfied is

that the data demonstrate proportional hazards, such that the Cox proportional hazards

model is appropriate for use and resulting model parameter estimates are robust. Any
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deviations from this assumption need to be taken into account, for example through the

use of multiple time dependent covariates, potentially including treatment.

Whilst the potential benefits of the information theory method are clear, results of the

simulations have shown two areas of concern; the high variability in estimates and the

potential under-estimation of the strength of association between endpoints. The level

of variability observed in the results suggests that whilst truly poor surrogates can be

reliably identified, there is substantial overlap in estimates of medium to high individual-

level surrogacy that prevents a clear conclusion. This unfortunately hinders the use of

the information theory method for the setting of interest in this thesis. The inability of

the information theory approach to reach truly high values of individual-level surrogacy

also prevents recommendation of the measure for use in practice. It is critical that any

surrogacy measure can reliably predict which surrogates have strong association with the

true endpoint. A τ value of 0.8 demonstrates a very strong relationship, however the

information theory method could provide a surrogacy measure lower than 0.2 in this

scenario. Whilst some variation from the true input value of τ should be expected, this

result is greatly contradictory, and could result in the rejection of truly beneficial surrogate

endpoints. Whilst vast improvements were seen when examining much larger sample sizes,

the issue remains and would certainly be of concern for the majority of practical surrogacy

evaluations.

4.5.3 Limitations of the Simulation Study

The main limitation of the simulation study described herein has been noted previously;

the true underlying individual-level surrogacy cannot be controlled via simulation. Since

the R2
h,i parameter is calculated from conditional models and is based on a likelihood ratio,

each generated sample can have a slightly different value. An alternative representation

of the individual-level surrogacy is therefore needed to ensure that each sample is being

compared to an intended level of association between endpoints, and for this purpose
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Kendall’s τ was used. The impact of this is that bias estimates may be incorrectly over

or under-estimated. However, three different data generation algorithms were explored,

and the results were consistent across all scenarios investigated, therefore the conclusions

are considered to be robust. The results of the simulation study clearly suggest that the

information theory approach struggles to reach a level that would enable confidence in the

strength of a given surrogate endpoint.

A further limitation of the simulation study is that only one set of treatment effects

were examined (HR ≈ 0.67 for PFS and ≈ 0.82 for OS). In the data generation procedure,

a change in treatment effect has no impact on the underlying strength of association, τ ,

however it could be possible that a change in treatment effect could cause a difference

to the Cox model parameters that are estimated within the information theory approach.

Stronger treatment effects were therefore also considered as a sensitivity analysis (HR

≈ 0.50 for PFS and ≈ 0.67 for OS) based on TTP using Clayton copula data generation.

The range of simulation scenarios included τ of 0.2, 0.5 and 0.8, with R2
trial fixed at a

value of 0.5, under no censoring and moderate (30%) censoring. Results are presented in

Appendix B, Figure B.10, and demonstrate findings that are highly consistent with the

originally selected treatment effects, with the median and ranges of estimates of R2
h,i being

very similar across all levels of τ . Hence, the selection of specific treatment effects is not

considered to have confounded the results of the simulation study.

Finally, the information theory approach is based on an assumption of proportional

hazards, such that Cox models can be used to estimate treatment and surrogate co-

variate coefficients. The data generation procedure forced proportional hazards through

implementation of a time constant treatment effect, and there was no consideration of

the impact on modelling when this assumption was violated. Since the Cox model can

be used with time-dependent covariates, it is possible to adjust for some forms of non-

proportional hazards, but such settings were not investigated in this study. Examination

of non-proportional hazards was conducted by Pryseley (2009), who concluded that the

measure R2
h,i performed acceptably well when the proportion of censoring was low to mod-
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erate, however further work could be considered to understand the extent of violation that

must be observed for the information theory approach to show evidence of significantly

deteriorated performance.

4.6 Further Work

The extensive simulation study and subsequent investigation of the information theory

method described within this chapter has led to the conclusion that whilst the approach

is subject to limitations through the high variability and difficulty identifying truly high

levels of association between endpoints, the underlying concept has potential. It is easy

to understand, and the avoidance of the joint modelling required by the two-stage meta-

analytic copula method makes the information theory approach very easy to implement

in practice. Further examination of larger sample sizes has demonstrated that estimation

can be improved when there exist large amounts of data, and assessment of alternative

representations of PFS as a surrogate endpoint has allowed recommendation of the most

appropriate approach.

A substantial amount of literature has been published in the field of dependence mea-

sures for survival outcomes, including studies comparing multiple proposed measures of

association. Many of these measures are based on the same underlying approach as that

used within the information theory method for assessing surrogacy, potentially provid-

ing alternative methodological approaches to estimate the strength of association between

surrogate and true endpoints.

The next steps of the research described in this thesis are to explore these alternative

proposals and consider whether any of these may provide interpretable measures in the

context of surrogacy. Discussion of alternatives, as well as development of a new approach

to the evaluation of surrogacy, will be described in the next chapter.
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Chapter 5

A Novel Approach to Evaluating

Time-to-Event Surrogate Endpoints

5.1 Introduction

Despite the identified limitations of the information theory approach to evaluating sur-

rogate endpoints, the underlying concept has appeal; it is computationally simple, easy

to understand and implement, and appears insensitive to the type of surrogate endpoint

or dependence structure within the data. As a result, alternative measures of association

based on similar models are worthy of consideration as potential candidates for surrogacy

evaluation.

The information theory method is based upon a measure of explained randomness

in proportional hazards models, and is a measure of how much of the ‘randomness’ in

the survival outcome can be explained through the inclusion of covariates, including the

potential surrogate endpoint(s). This is analogous to measures of explained variation

in linear models, however extension to survival models is non-trivial due to the necessary

incorporation of censored information, the need to incorporate a time-dependent surrogate

outcome and the fact that, when used, the proportional hazards model does not have a

distributional assumption. The topic of association measures for survival data is one that
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has undergone much research, with many different approaches being proposed for use.

Within this chapter, alternative measures of association for time-to-event data are dis-

cussed, and their application to the context of surrogacy evaluation is assessed (Section

5.2). Following a review of the applicability of available methods, one particular measure

proposed for use in creating prognostic models for patient subgroups is selected for further

consideration (Section 5.3). In contrast to prognostic modelling, this measure is evaluated

and applied in the new context of assessing surrogate endpoints, to determine whether it

may offer improvements over those measures already investigated within this thesis (Sec-

tion 5.4). Subsequently, an extension of the approach to improve reliability in surrogacy

evaluation is described in Section 5.5, and investigated via a simulation study. Multiple

sensitivity analyses conducted to critically examine the new approach are described in Sec-

tion 5.6. Further discussion of the results can be found in Section 5.7, with implications

discussed in Section 5.8 and suggestions for further work presented in Section 5.9.

5.2 Measures of Association for Time-to-Event Endpoints

Association measures are intended to reflect and quantify the strength of relationship

between an outcome variable and a set of one or more covariates. In linear modelling,

such measures are well defined and are commonly used, however the complexities inherent

in survival data mean that extension to time-to-event endpoints is challenging. There have

been a number of approaches proposed and tested, yet there is no overarching consensus

as to which may be the most reliable for practical use.

In an attempt to address this, Choodari-Oskooei et al. (2012a,b) consider a total of

17 different measures that have been proposed for survival models to provide an estimate

of how accurately covariates can predict a survival outcome. These in-depth explorations

of methods focus on the prognostic value of patient characteristics, and in particular how

these characteristics can be used to build prognostic models for particular diseases. The

17 methods are categorised into measures of explained variation, explained randomness
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or predictive accuracy. Explained variation methods quantify the proportion of outcome

variability that can be predicted through the covariates included in the model. Explained

randomness methods, such as the information theory method described in Chapter 4,

are based upon the information, or entropy, of a distribution and estimate the improved

precision in prediction of survival outcomes based on having knowledge of given covariates.

Predictive accuracy measures compare the survival status for an individual at a given time

to the predicted survival probability from models with and without covariates, providing

an estimate of how well the addition of covariates to the model can improve this prediction.

Many of these ‘R2-type’ measures have an intuitive interpretation that could also be

considered appropriate for an evaluation of surrogacy. Rather than building prognostic

models based on patient demographic and disease characteristics, which is the current

proposed use of the methods, they could be considered applicable to assessing whether a

surrogate endpoint can reliably predict true long-term outcome, with the prognostic value

of the surrogate endpoint being captured via use of a time-dependent covariate. Rele-

vant findings of the studies conducted by Choodari-Oskooei et al. (2012a,b) are therefore

described in subsequent sections, with the aim to assess which, if any, of the proposed

measures could be potential candidates in a new context of surrogacy evaluation.

5.2.1 Performance of R2 Measures Using Survival Data

Explained Variation

The study of Choodari-Oskooei et al. (2012a) examined the performance of five different

measures from the explained variation category (Kent and O’Quigley, 1988; O’Quigley

and Flandre, 1994; O’Quigley and Xu, 2001; Royston and Sauerbrei, 2004; Royston, 2006).

This investigation was conducted using simulations, in particular investigating the impact

of censoring, different covariate distributions and robustness against influential (extreme

and outlier) observations. Whilst each of the five selected approaches was shown to have

limitations, two of the proposed explained variation measures were recommended for use
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based on their ease of understanding to non-statisticians and their satisfactory perfor-

mance under the simulation scenarios investigated (Kent and O’Quigley, 1988; Royston

and Sauerbrei, 2004). Use of both of these measures together is recommended, to ensure

that the limitations of each approach are considered and accounted for. However, since

neither of these two approaches is able to incorporate time-dependent covariates, they are

not applicable in a surrogacy context and will not be discussed further here.

Explained Randomness

Subsequently, Choodari-Oskooei et al. (2012b) further examine the remaining categories

of measures; those based on explained randomness or predictive accuracy. Investiga-

tions of explained randomness measures include the information gain approach of Xu and

O’Quigley (1999) which is implemented within the information theory surrogacy evalu-

ation method described in Chapter 4. The other investigated measures can be found

in Kent and O’Quigley (1988) and O’Quigley et al. (2005). The authors assess various

factors of interest such as the distribution of covariates, varied proportions of censoring

and the impact of influential observations. Based on simulation studies, estimated val-

ues of explained randomness appeared to be higher than those of explained variation,

however all of the explained randomness measures investigated were impacted by the dis-

tribution of the covariates and the presence of influential observations. Choodari-Oskooei

et al. (2012b) suggest that two of the measures performed well, however these are either

complex to calculate or may be impacted when the linear combination of covariates and

model coefficients is skewed (Kent and O’Quigley, 1988).

Overall, it is concluded that all of the explained randomness measures investigated

have shortcomings that prevent a universal recommendation as to which demonstrates the

best performance. Interestingly, the information gain method of Xu and O’Quigley (1999)

is found to be influenced by the covariate distribution and by influential observations in

the data, preventing a recommendation for its use in practice. In fact, it is concluded
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that only one of the measures under investigation (and approximations thereof) could be

considered reliable enough for use (Kent and O’Quigley, 1988), and this method cannot

incorporate time-dependent covariates, preventing the application of the approach within

the surrogate context.

Predictive Accuracy

The final category of measures explored by Choodari-Oskooei et al. (2012b) are those

which evaluate predictive accuracy. Rather than estimating how much of the variability

or randomness in survival outcomes can be explained by the covariates, these measures

assess how well the covariates can predict the overall survival status of individuals at a

given time. Choodari-Oskooei et al. (2012b) conduct a simulation study of two predictive

accuracy measures, concluding that the measures can depend on the size of the covariate

effect and the covariate distribution (Graf et al., 1999; Schemper and Henderson, 2000).

However, neither measure was found to be sensitive to influential observations and both

performed satisfactorily under small to moderate censoring. Importantly, the observed

values of predictive accuracy measures tended to be smaller than the explained variation

or randomness measures, as they quantify the uncertainty in prediction of a binary survival

status at a given time rather than the uncertainty in the actual survival time itself. The

predictive accuracy measures were also found to depend on the follow-up period. Since

survival status and survival probabilities change over time, an arbitrary timepoint must

be selected at which predictive accuracy is estimated, and results showed that this can

have an impact on the result, with the measures generally increasing as time increases.

These detailed studies of measures proposed to quantify how well covariates can predict

outcome in survival models demonstrate that measures based on explained variation are

considered the preferred option, but provide estimates that are lower than those based

on explained randomness. Therefore, if considered in the surrogacy setting of interest in

this research, such measures are unlikely to provide estimates higher than those from the
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information theory method, and are unlikely to improve the under-estimation observed

with this approach. Similarly, the two predictive accuracy measures were found to provide

the lowest estimates of association across all categories explored, suggesting that these

also may not offer improvements over the information theory approach. In addition, the

two measures of explained variation and one measure of explained randomness that were

considered to be the most reliable cannot incorporate time-dependent covariates, and are

therefore unsuitable for use in evaluation of surrogate endpoints. These comparison studies

therefore do not provide alternative approaches that could be considered superior to the

information theory method if applied in a surrogacy setting.

Since these investigations, Choodari-Oskooei et al. (2015) have proposed an alterna-

tive approach which quantifies how much the prediction of survival status can be improved

through consideration of covariates. This measure is based upon the difference between

the predicted survival probability from a model with covariates, and the average survival

probability for all patients in the sample without accounting for covariate values. The

difference between these two values, across all patients in the data, then provides a sum-

mary of how much improvement in prediction of survival status can be gained through

the inclusion of covariates in the model. Originally proposed for binary outcomes (Bura

and Gastwirth, 2001), the measure is explored in a survival setting by Choodari-Oskooei

et al. (2015) through the use of simulations, again assessing the impact of censoring, co-

variate distributions (including time-dependent covariates) and influential observations. It

is concluded that the proposed measure performs well with regards to characteristics that

a measure of predictive ability needs to demonstrate, and is recommended as a measure

to quantify predictive ability in survival models. This measure, termed Total Gain, is

therefore described next, with an aim to further develop the approach to be applicable in

the evaluation of surrogate endpoints.
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5.3 Total Gain

5.3.1 Background

Bura and Gastwirth (2001) introduced the concept of ‘Total Gain’ (TG) to quantify the

explanatory power of a model in predicting binary outcomes. By comparing the predicted

probability of a binary outcome after adjusting for covariates to that based only on the

average probability for the sample, the approach provides a measure of how much better

the prediction can be once the covariates are taken into account. In particular, Bura and

Gastwirth (2001) display this graphically, to allow for a visual representation of the model

as well as visual comparison between models which contain different sets of covariates.

TG is calculated using two quantities; (1) the average probability of the event of

interest, unadjusted for covariates, and (2) the predicted probability of the event of interest

from a model adjusted for covariates. These two probabilities are defined for each patient

within a sample, with the former remaining constant for all patients, and the latter being

defined by the combination of covariate values for each individual patient. The absolute

difference in these two probability values, taken across all patients, provides estimation of

how much more accurate the prediction of outcome can be when covariates are taken into

account.

In the binary setting, the average probability is calculated as the mean of the response

variable, and the predicted probability is derived from a logistic regression model which

contains one or more covariates. Since such models can include an arbitrary number

and selection of covariates, Bura and Gastwirth (2001) propose to calculate TG over the

percentiles of the distribution of linear predictors, where the linear predictors are calculated

as the linear combination of covariate values and respective covariate coefficients estimated

by the model fitting process. Basing calculations on the percentiles of these predictors

rather than the values themselves allows multiple models to be compared on the same

scale.
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Further description on the calculation of TG, with example graphics, are provided in

the next section, after the measure has been described in the context of survival outcomes.

5.3.2 Application to Survival Data

The extension of the TG measure to survival outcomes was proposed by Choodari-Oskooei

et al. (2015), who recognised that improvement in prediction of survival status could

provide a measure of the importance of available demographic or prognostic information.

This may be particularly important in oncology settings, where overall survival continues

to be a primary measure of outcome and is often a question that arises from patients to

their physicians at the time of diagnosis. The use of TG potentially allows the practical

value of baseline characteristics to be assessed via a simple, easy to calculate approach,

and the graphical representation improves the ease of understanding for non-statisticians.

As described in the previous section, calculation of TG is based on two probabilities.

The first is the average probability of the outcome of interest for all patients in the sample,

with no adjustment for covariates. This provides the most basic prediction and creates a

baseline against which improvements would be sought. In the binary setting, the mean of

the response variable is used. For the time-to-event case, the outcome of interest is the

occurrence of a particular event (e.g. survival) at a given time, and so the Kaplan-Meier

function is proposed by Choodari-Oskooei et al. (2015) as a suitable method to provide

an overall estimate of the probability of remaining event-free. Such a method provides an

estimate of the probability of remaining event-free for all patients in the sample, whilst

appropriately accounting for patient censoring. The second quantity that needs to be

estimated is the predicted probability from a model containing covariates. In the binary

setting, this is represented by a logistic regression model, which allows for prediction

of the probability of experiencing the event of interest based on given covariate values.

Similarly, for the time-to-event setting, a Cox proportional hazards model can be used to

provide the estimated probability of remaining event-free at a given time, based on a set
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of (possibly time-dependent) covariates. One advantage of the TG approach is that any

survival model could be used in this step, depending on the best representation of the

data. Linear predictors are constructed from the model in the same way as for a logistic

regression model, using the linear combination of covariate values and estimated covariate

coefficients from the chosen model. These linear predictors are then scaled based on their

percentiles for the calculation of Total Gain, to allow direct comparison between different

models.

Given that time-to-event data incorporate a time element, each of these two predicted

probabilities must be estimated at a given, fixed time, t. This issue will be discussed fur-

ther in the forthcoming sections, and the notation TG(t) will be used when describing the

measure in the survival setting. To illustrate the graphical representation of TG(t), a the-

oretical example is provided in Figure 5.1, based on a single continuous covariate. In this

graphic, the predicted probabilities of remaining event-free at the selected time, t, based

on the Cox proportional hazards model are plotted (solid line) against the percentiles of

the linear predictors from the same model. These predicted probabilities are termed the

predicted risks, R(v, t), where v is the proportional rank of the linear predictors and t is

the selected time. The horizontal dashed line represents the Kaplan-Meier estimate for

remaining event-free at the same time, t, with no covariates taken into account (p0(t)).

The grey shaded area between the two lines then represents the value of TG(t), that is the

increase in accuracy of the predicted probability at time t through use of the Cox propor-

tional hazards model, with covariates, as compared to the reference estimated probability

from the Kaplan-Meier curve.

The value of TG at time t is calculated as

TG(t) =

∫ 1

0

|R(v, t)− p0(t)|dv,

where R(v, t) denotes the predicted probability from the Cox proportional hazards model,

Pr[T > t|v], v is the proportional rank of the linear predictors, and p0(t) is the Kaplan-

Meier estimate of remaining event-free at time t. Since the predicted probabilities are
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Figure 5.1: Hypothetical Example of TG(t) with one continuous covariate

distinct for each value of the linear predictors and form a step function, the value of TG

can be estimated by summing the individual differences between the two curves for each

value of the scaled linear predictor, such that

TG(t) =
v∗∑
0

(R(v, t)− p0(t)) +
1∑
v∗

(p0(t)−R(v, t)),

where v∗ represents the point at which the two lines intersect (seen in Figure 5.1).
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For both the binary and survival definitions of TG, there is an upper bound which

occurs when there is complete separation of outcomes (yes or no/survival or not) across the

range of linear predictors, such that knowledge of the covariates and respective coefficients

guarantees knowledge of the outcome. The estimate of TG must then be scaled for this

maximum value, to achieve values within the range [0, 1]. For survival data, this must

occur when the event status of all patients is known, when there is no censoring. This is

illustrated in Figure 5.2, where the separation of outcomes is demonstrated through the

predicted probability of one for a proportion p0(t) of the sample, and a value of zero for

the remaining (1−p0(t)) of the sample. With no censoring, this value of p0(t) corresponds

exactly to the average event-free probability from the Kaplan-Meier function as described

above, since this proportion of patients remains without an observed event at time t.
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Figure 5.2: Maximum TG(t)

180



5.3. TOTAL GAIN

The maximum value of TG(t) is then derived as the sum of the two grey-shaded areas

in Figure 5.2, by

TG(t)max =
v∗∑
0

(R(v, t)− p0(t)) +
1∑
v∗

(p0(t)−R(v, t))

= (1− p0(t))p0(t) + p0(t)(1− p0(t))

= 2p0(t)(1− p0(t)) (5.1)

and so a standardised, or scaled, version of TG(t) is proposed for use, defined as

TGSTD(t) =
TG(t)

2p0(t)(1− p0(t))
, (5.2)

and Choodari-Oskooei et al. (2015) recommend bootstrap resampling to construct confi-

dence intervals for the measure. Some of the benefits of this TGSTD(t) measure include

the ease of computation, particularly since the quantities needed can be calculated very

simply from standard software packages. The final value of TGSTD(t) lies between 0 and

1, allowing simple interpretation for non-statisticians as well as informal comparison to

other association measures lying on this same scale. Further, when considering the use of

the measure from the perspective of surrogate endpoint evaluation at the individual-level,

it is possible to include time-dependent covariates that can reflect changing disease states

(e.g. no progression to progression). In fact, the use of the Kaplan-Meier function and Cox

proportional hazards model is consistent with estimation within the information theory

approach to evaluating individual-level surrogacy described in Chapter 4, with only the

final stages of the approaches differing in how the parameters estimated from these models

are summarised.

Choodari-Oskooei et al. (2015) conducted simulation exercises to thoroughly assess

the performance of TGSTD(t) when used to build predictive models, including the impact

of censoring, covariate distributions (including time-dependent covariates) and strength of

covariate effects. Most notably, the measure is found to be independent of random cen-

soring, which is a strong advantage when considering survival data. Further, the measure

is found to increase with increasing strength of covariate effect, therefore reflecting the
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increased association between an outcome and set of one or more covariates. In simula-

tions, TG(t) was found to plateau at a value of approximately 0.5, which led to values

of TGSTD(t) close to one for large covariate effects, suggesting that it is possible for the

measure to reflect large associations between outcomes and covariates.

One highlighted feature of TGSTD(t) is that it can be measured at a specific point in

time. This allows for calculation and comparison of the measure across multiple studies

with differing periods of observation, since the fixed time, t, can be selected such that

it is relevant to all studies. This also introduces some element of subjectivity, since the

value may not remain constant over the full period of observation. The simulation study

of Choodari-Oskooei et al. (2015) demonstrated that the pattern of TGSTD(t) over time

can depend on the effect size and distribution of the covariate. To address this, sensitivity

analyses should be conducted to evaluate TGSTD(t) across a range of times. Additionally,

specific times that are most relevant to the disease being studied can also be selected.

Indeed, Choodari-Oskooei et al. (2015) highlight the need for careful selection of the

timepoint of evaluation, and this topic will be further discussed in subsequent sections.

Based on the simulations, Choodari-Oskooei et al. (2015) recommend TGSTD(t) as a

measure of association, and with the benefits highlighted above it also appears worthy of

further consideration as a potential approach for the evaluation of surrogate endpoints.

The interpretation of TGSTD(t) is highly relevant to a surrogacy setting, since it would

be possible to use the measure to determine whether, and by how much, predictions of

a long-term true clinical endpoint could be improved through knowledge of the surrogate

endpoint as a covariate. The suitability of TGSTD(t) as developed by Choodari-Oskooei

et al. (2015) as an individual-level surrogacy evaluation measure is therefore discussed in

Section 5.4, with continued focus on the evaluation of time-to-event surrogate endpoints of

time-to-progression and progression-free survival for the true endpoint of overall survival.

First, selection of an appropriate timepoint at which to measure TG(t)STD is discussed.
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5.3.3 Selection of t

As discussed above, TG(t) and TGSTD(t) are time-dependent measures of association,

with t selected as the timepoint at which to assess the relationship between covariates and

outcome. There appears, therefore, to be an arbitrary choice of timepoint, with Choodari-

Oskooei et al. (2015) noting that the value of TGSTD(t) may increase over time, and

specifically that there is minimal discrimination of predictions in event-free probabilities

near the origin and near maximal timepoints. Choodari-Oskooei et al. (2015) recommend

that the timepoint selected for evaluation of TG(t) and TGSTD(t) should be clinically

relevant to the disease under study, and will therefore vary depending on the application of

the methodology to each specific setting. Importantly, the ability to choose the timepoint

allows for estimation of the association across studies with differing periods of follow-up,

which is an advantage for survival studies, which may differ substantially in the maturity

of data at the time of analysis.

When investigating diseases with specific timepoints of relevance, such as those where

treatment has a curative intent and the number of OS events is expected to reduce sig-

nificantly after a certain timepoint, there will generally be clinical consensus as to which

timepoint is most useful. For other disease settings, it will need to be a discussion between

statistician and clinical expert, to establish a point at which the data are mature and ro-

bust enough to make inferences, whilst remaining relevant. One summary statistic that

is frequently used in oncology indications is median survival; the earliest time at which

the probability of remaining alive drops below a value of 0.5. Given that this is a key

parameter used and understood by statisticians and clinicians, further consideration of

TGSTD(t) in this thesis focuses on estimation at the time of median OS. Selection of the

median OS time also allows for data relating to the surrogate endpoint to be reasonably

mature, when assuming that the surrogate outcome will be reached sooner than that of the

true endpoint. Additional sensitivity analyses of other percentiles of the OS distribution

(20% to 80%) are also considered to assess the sensitivity of the measure to changes in
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both the timepoint and the amount of information available (see Section 5.6). As noted,

for diseases where there is a clinically relevant timepoint of interest, or indeed when the

time to median survival is so long that it is not feasible to reach in a reasonable period of

patient observation, alternative choices should be taken.

5.4 TGSTD(t) as a Measure of Individual-Level Surrogacy

Choodari-Oskooei et al. (2015) proposed the TGSTD(t) measure in the context of building

and evaluating prognostic models, to identify factors that could be considered useful in

predicting survival status at a given time. However, the predictive ability of a set of co-

variates in determining survival status is highly relevant to surrogate endpoint evaluation,

where, at the individual level, it is of interest to identify whether an intermediate disease

state can reliably predict true long-term outcome. A high predictive ability would indi-

cate that knowledge of the surrogate outcome can allow for reliable prediction of the true

endpoint, thereby allowing the surrogate outcome to be used for the purpose of regulatory

decision making. A low predictive ability would suggest that the surrogate cannot reli-

ably predict long-term outcome, and therefore should not be used as a primary endpoint

in confirmatory clinical studies. Furthermore, the TGSTD(t) method has been shown to

be independent of random censoring, is increasing with increased association between a

covariate and outcome, and lies within the range of zero to one, allowing indirect compar-

ison with the surrogacy approaches investigated within this research and commonly used

in practice.

In the context of individual-level surrogacy evaluation, the aim is to determine whether

a surrogate outcome can reliably predict an unobserved long-term outcome, after account-

ing for treatment. Covariates of interest are therefore treatment, the time-dependent sur-

rogate outcome, and any additional prognostic or patient characteristic factors thought to

influence the true outcome. As for previous methods examined in this thesis, further prog-

nostic factors are not considered and the focus remains on accounting for treatment only.
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In the setting of interest here, namely assessment of a time-to-event surrogate for a time-

to-event true endpoint, we focus on the survival representation of TG(t), and consider the

surrogate endpoint as a time-dependent covariate. For consistency with both Choodari-

Oskooei et al. (2015) and estimation of the information theory measure described in Section

4, Cox proportional hazards models are used to estimate coefficients for the covariates of

treatment and the time-dependent surrogate outcome, and the Kaplan-Meier function is

used as an estimate of survival without covariates. Application of TGSTD(t) in the new

context of surrogate endpoint evaluation aims to provide insight into whether the method

is able to adequately capture strengths of association between surrogate and true end-

points. Results that are within the range of, but ideally higher than, those based on

the information theory method would lead to further consideration of TGSTD(t) as an

approach to evaluating the predictive ability of surrogate endpoints.

For this initial examination of TGSTD(t) as a measure of individual-level surrogacy, the

models are constructed in the same way as described for the information theory method

(Section 4.2.3), and further re-capped here. In order to include the surrogate endpoint

as a time-dependent covariate, to reflect the change in disease status (from no disease

progression to disease progression), the time period from baseline to the true endpoint

of overall survival, [0, T ), is separated into two intervals that reflect the potential change

in surrogate outcome at time S; [0, S) and [S, T ). During the first interval there is no

progression, and during the second interval there may or may not be disease progression

dependent on the progression status at time S. Time-dependent indicator variables are

used to denote disease status both at time T and during the interval [S, T ). When based on

a meta-analysis, TGSTD(t) would be calculated for each trial individually, and combined

across trials using a weighted average, using the sample size or number of events.

Consistent with previous chapters, both time-to-progression (TTP) and progression-

free survival (PFS) are considered as potential surrogates for OS. When TTP is used as

the surrogate, the status during the interval [S, T ) is based only upon the disease status

provided by the surrogate endpoint at time S. Therefore, if a patient experiences disease
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progression at time S, this is accounted for in parameter estimation through a change

in the value of the time-dependent covariate from zero to one. If a patient does not

experience disease progression during their period of observation, their time-dependent

covariate remains at a value of zero across the entire interval [0, T ). For PFS, in cases

where patients had death without prior progression, the interval [S, T ) was assumed to

have length of one day, so that the data reflects the occurrence of the surrogate event.

For this setting, the Cox proportional hazards model used to predict the survival

probability therefore contains two binary covariates; treatment and the time-dependent

surrogate outcome of disease progression or not. The predicted survival probability based

on these two binary covariates forms a step function, with four distinct levels representing

the range of possible combinations for the linear predictor (see the example in Figure

5.3). Since the surrogate outcome is represented as a time-dependent covariate, the linear

predictor used for the plot and in calculation of TG(t) and TGSTD(t) also depends on

time. Whilst the covariate coefficient remains constant, the change in covariate value

leads to a change in linear predictor value, and so the value used to calculate TG(t)

must reflect the covariate status at the chosen time, t. Based on this example figure,

estimation of TG(t) is taken as the sum of the areas of the four individual sections shown

in grey. The maximum value of TG(t) is calculated using Equation (5.1) and TGSTD(t)

can subsequently be calculated according to Equation (5.2). To examine the performance

of TGSTD(t) in evaluating individual-level surrogacy, a simulation study is used, described

in the next section.

5.4.1 Description of the Simulation Study

A simulation study is required to assess the performance of TGSTD(t) in the previously

unexplored setting of surrogate endpoint evaluation. As for previous simulation studies

presented in this thesis, it is important that the underlying strength of surrogacy can

be adequately controlled. As for the information theory approach, it is very difficult to
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Figure 5.3: TG(t) - example for two binary covariates

achieve this for this new setting, as each sample combines estimates from multiple mod-

elling approaches. Therefore, to maintain consistency across all three simulation studies

and to ensure comparability of results, the simulated datasets used in Chapters 3 and 4 for

assessment of the previously examined surrogacy measures were used to explore the per-

formance of TGSTD(t). As for the information theory approach, whilst the value of τ may

not perfectly reflect the true TGSTD(t) measure of association, such an approach allows

for overall control of the true individual (τ) and trial (R2
trial) association levels, subject to

sample variability, and conveniently allows indirect comparison with results of the previ-
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ously examined surrogacy methods. It is likely that any practical application of surrogacy

evaluation would be based on a number of different methods, including some sensitivity

analyses, and a substantial limitation to interpretation of surrogacy would occur if the

available methods gave conflicting results for the same dataset. As such, all three surro-

gacy measures examined in this thesis are based on identical simulated datasets, with 5,000

repetitions of each scenario of interest. Given the comparability of results for previous ap-

proaches, the range of simulation scenarios has been reduced slightly for investigation of

TGSTD(t), and the scenarios examined are displayed in Table 5.1. To combine the results

across the number of trials, a weighted average of study specific estimates is used, weighted

by trial size. Results of the simulation study are presented in the forthcoming section,

first for TTP and followed by PFS.

Table 5.1: Simulation Scenarios

Factor Scenarios under simulation

Surrogate Endpoint TTP, PFS

Data Generation Clayton, Gumbel

Number of trials 6

Number of patients per trial 80, 120

Trial-level association 0.5

Individual-level association 0.2, 0.5, 0.8

Censoring Rate (on T) 0%, 30%

Range of treatment effects∗, σ 0.1

*Hazard ratios ranging 42%− 203% from the mean.
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5.4.2 Results

Time to Progression

Results of the application of TGSTD(t) to the datasets simulated according to Table 5.1

are presented in the form of boxplots, consistent with previous results presented in this

thesis. Each combination of data generation algorithm (Clayton or Gumbel) and surrogate

endpoint (TTP or PFS) is presented separately, with results for all sample sizes and

censoring proportions included in each figure and differentiated with a legend (for sample

size) or along the x-axis (censoring proportion). The strengths of individual-level surrogacy

(0.2, 0.5 or 0.8) are presented as separate plots from left to right within each figure.

Dashed reference lines for the value of τ used for data generation are included for each

scenario. As previously noted, since TGSTD(t) is not estimating the value of association

as expressed by the copula parameter τ , it is not expected that estimates will always

be close to the input value. However, the values used in data generation are intended

to demonstrate whether the approach can reliably identify poor from good surrogates.

Whilst the absolute value of TGSTD(t) may not fully match the intended τ , it is important

to understand whether a reliable conclusion can be drawn, whether varied strengths of

individual-level association can be differentiated by TGSTD(t), and whether the method

provides an estimate that is broadly comparable to the underlying association within the

data.

Figure 5.4 contains estimates of TGSTD(t) for the surrogate endpoint of TTP, cal-

culated at the time of median OS and based on Clayton copula data generation. Re-

sults presented in this figure show a number of interesting features. Firstly, as concluded

by Choodari-Oskooei et al. (2015), TGSTD(t) appears to be unaffected by censoring, with

minimal changes in the medians and ranges of estimates across the 5,000 simulation runs

when approximately 30% of patients are censored, as compared to studies with no censor-

ing. Secondly, the range of estimates for each simulation setting is reasonably small, with
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very limited overlap between the differing strengths of individual-level association. In pre-

vious chapters, it was found for both the two-stage meta-analytic copula and information

theory methods that the ranges of estimates often overlapped between the three levels of

τ investigated, which would hamper interpretation of the results in practice. TGSTD(t)

does not appear to suffer from this limitation, even for the setting of small sample sizes

examined here. Increasing the sample size for each study from 80 to 120 patients also led

to a reduction in the range of estimates, suggesting that this could be further improved

with more data availability. Finally, despite there being some under-estimation of medium

and high levels of association, the estimates of TGSTD(t) are higher than those based on

the information theory approach, suggesting that the measure could offer potential as an

alternative approach in assessing individual-level surrogacy.
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Figure 5.4: Boxplots of estimates of TGSTD(t) at Median OS: TTP, Clayton Copula

Data Generation, Total Gain Application

These findings were consistent when considering Gumbel copula generated data (Figure

5.5), which assumes a different dependence structure to that of the Clayton copula. As

seen for the information theory method, the values of TGSTD(t) are generally higher

when based on the Gumbel copula generated data as compared to the Clayton copula,
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Figure 5.5: Boxplots of estimates of TGSTD(t) at Median OS: TTP, Gumbel Copula

Data Generation, Total Gain Application

reflecting the different dependence structure between the two endpoints assumed by these

models. This reduces the level of under-estimation for medium and high levels of τ without

leading to over-estimation of the lowest association value. Importantly, the highlighted

advantages of TGSTD(t) observed for the Clayton generated data also appear to be present

for the Gumbel generated data, with limited overlap between estimates for the three

investigated levels of τ , reasonably small ranges of estimates, and no notable impact from

the introduction of censoring. Importantly, the estimates of TGSTD(t) remain higher than

those based on the information theory method, again suggesting that TGSTD(t) is worthy

of further consideration as an alternative measure of individual-level surrogacy.

Progression-Free Survival

Similar data presentations are provided in Figures 5.6 and 5.7 for Clayton and Gumbel

generated data respectively, based on PFS. Each figure contains three plots; one for each

value of τ used in the simulation, with the boxplots demonstrating the simulation results

for both sample sizes and censoring proportions considered.
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For both the Clayton and Gumbel data generation, estimates of TGSTD(t) appear very

promising, with median values being very near to the reference line for τ , with reasonably

narrow ranges. Whilst τ is not to be considered the exact reference value, these results

demonstrate that TGSTD(t) is able to differentiate well between low, medium and high

strengths of individual-level surrogacy, with no overlap of estimates for each of these values.

Increasing the sample size from 80 to 120 patients also leads to slightly reduced ranges

of estimates. This estimation performance is a key advantage of the TGSTD(t) method,

since all results presented for the two-stage meta-analytic copula and information theory

methods, with the exception of TTP Clayton data for the copula method, demonstrated

an overlap in ranges of surrogacy estimates that make it difficult to clearly differentiate

between strengths of association, and in many cases would lead to erroneous conclusions.

As for the TTP setting, there is minimal impact when censoring is present in the data,

with estimates increasing by only a negligible amount. Based on Clayton generated data,

TGSTD(t) slightly under-estimates the highest level of association, however this under-

estimation is lower than for the TTP scenarios. As for previously explored scenarios,

estimates based on Gumbel generated data are slightly higher than those from Clayton

generated data, however in this setting the estimates of TGSTD(t) do not appear to be

over-estimating any of the reference levels of association between endpoints.
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Figure 5.6: Boxplots of estimates of TGSTD(t) at Median OS: PFS, Clayton Copula

Data Generation, Total Gain Application
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Figure 5.7: Boxplots of estimates of TGSTD(t) at Median OS: PFS, Gumbel Copula

Data Generation, Total Gain Application

The investigation of TGSTD(t) in estimating the predictive ability of treatment and

surrogate outcome has demonstrated that the measure has potential as a method for the

evaluation of individual-level surrogacy, and results have demonstrated that TGSTD(t)
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has many of the qualities that such a measure would require. For example, the measure

appears to be independent of censoring, with estimates being very similar regardless of

whether there are censored patients included in the data. Further, the measure increases

with increased strength of association, as defined by τ , showing that increased association

between a set of covariates and outcome can be reliably detected. In addition, the level

of variability in the estimates appears to be reasonably low given the sample sizes tested,

such that there is distinction between the various strengths of association. Given these

benefits, TGSTD(t) is considered worthy of further investigation as a measure of surrogate

endpoint evaluation.

The examination of TGSTD(t) conducted so far compares the predictive ability of a

model containing both treatment and surrogate information to a null model which contains

no covariates. However, in a surrogacy setting, it is of interest to understand the predictive

ability of the surrogate endpoint after already accounting for any treatment effect on the

surrogate and true endpoints. In order to use the concept of Total Gain for this purpose,

further development of the approach is necessary. A key consideration in such development

is whether a new measure could maintain the separation in the ranges of estimates across

the different strengths of association, even for the setting of small sample sizes being

investigated in this research. It is also of interest to determine whether there is any

change on the impact of censoring, which remains of key importance for survival data.

The next section discusses this further, and introduces a new version of TGSTD(t) that

can adequately adjust for the treatment effect on the true endpoint while maintaining the

ease of calculation and conceptual appeal.

5.5 Extending TGSTD(t) for Improved Surrogacy Evaluation

The version of TGSTD(t) proposed by Choodari-Oskooei et al. (2015) compares a model

with covariates to a null model, and so in the surrogacy setting a model containing both

treatment information and surrogate information is compared to a model with no informa-
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tion on either of these parameters. Since the true endpoint is also subject to a treatment

effect, it is considered critical that any surrogacy assessment is able to quantify the addi-

tional predictive ability that comes from inclusion of the surrogate endpoint in a model

which already contains treatment. The current form of TGSTD(t) is unable to address this,

and so may be over-estimating the predictive ability of the surrogate outcome. An exten-

sion of the approach is therefore necessary to maximise the potential for use in practice,

and a proposal for such an extension is provided in this section.

In order to address the need to account for the treatment effect on the true endpoint,

it is necessary to find a way in which the null model can be replaced with a model con-

taining treatment information. This would allow for the predicted probability from the

Cox proportional hazards model containing treatment and surrogate information to be

compared to a model containing treatment, and would therefore provide quantification

of the additional improvement in prediction that arises from knowledge of the surrogate

outcome. The reference probability, denoted p0(t), would therefore need to be adjusted for

treatment assignment, while the predicted probability from the Cox proportional hazards

model would remain unchanged. Since the reference probability is based on the average

probability of remaining event-free for all patients, through use of a Kaplan-Meier func-

tion, one possibility is to replace this with a Kaplan-Meier function stratified by treatment,

which provides an average probability of remaining event-free within each treatment group

separately. TGSTD(t) could then be calculated as the difference between the predicted

probability from the Cox proportional hazards model, and the respective Kaplan-Meier

estimate depending on which treatment group the patient is assigned to. This provides an

estimate of the ability of the surrogate (after accounting for treatment) to predict the true

endpoint (after accounting for treatment). Such a change in methodology would provide

a more accurate reference value for the impact of treatment alone on outcome, leading to

a more informative quantification of whether a potential surrogate endpoint is truly pre-

dictive of the true endpoint. For this newly extended setting, TG(t) is denoted TGZ(t),

and TGSTD(t) is denoted TGSTD,Z(t), where Z denotes the treatment group.
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This enhancement of the Total Gain methodology requires a change to the estimation

approach, with the average, or reference, probability p0(t) being replaced with the value

for each treatment group, p1(t) (for Z = 1) or p2(t) (for Z = 2). Extension to more than

two treatment groups is also possible using the stratified Kaplan-Meier function, however

notation will consider a binary treatment covariate for simplicity. As shown in Figure 5.8,

the summation in Equation (5.3.2) would then be replaced with a summation across the

separate treatment groups:

TGZ(t) =

v1∑
0

(R(v, t)− p2(t)) +

v2∑
v1

(p2(t)−R(v, t))

+

v3∑
v2

(R(v, t)− p1(t)) +
1∑
v3

(p1(t)−R(v, t)),

where v1, v2, and v3 are the percentiles of the linear predictors that correspond with an

intersection of the two probabilities and therefore a need to change the sign when calculat-

ing the difference between the two probabilities. Figure 5.8 is the same as the hypothetical

example provided for TG(t), however the Cox proportional hazards model is now assumed

to contain treatment as well as one continuous covariate, and the dashed reference line

is separated into two values to represent the stratified Kaplan-Meier estimates; one for

each treatment group (p1(t) and p2(t)). In this example, p1(t) and p2(t) are presented as

being distinct across the distribution of linear predictors, such that treatment group is the

strongest predictor and drives the ordering of the x-axis values. Should this not be the

case, with other covariates causing larger differences to the linear predictors, the graphical

display would look different, but the method for calculation of TGZ(t) would remain the

same.

This additional development requires derivation of a new maximum value for TGZ(t),

since perfect prediction of event status must now be considered separately for the two

treatment groups, which have potentially different average probabilities of remaining event-

free. As for the original TG(t) measure, perfect prediction occurs when there is complete

separation of outcomes (e.g. survival or not) across the range of linear predictors, with all
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Figure 5.8: Hypothetical Example of TGZ(t) with treatment plus one continuous

covariate

those remaining event-free in each treatment group having predicted event-free probability

of one, and all remaining patients having predicted event-free probability of zero, and no

censored patients. The average probability of remaining event-free in each treatment group

is then equal to the proportion of patients remaining event-free in that treatment group.

The maximum value of TGZ(t) is illustrated in Figure 5.9 as the grey shaded area. This

area can be separated into four individual segments which represent, from left to right,

the patients in treatment group two who have not yet experienced the event of interest
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(e.g. who remain alive), those in treatment group one who have not yet experienced the

event of interest, those in treatment group two who have experienced the event (e.g. who

have died) and those in treatment group one who have experienced the event. The values

on the y-axis are one for the first two groups (patients without observed events) and zero

for the second two groups (patients with events), with the average probabilities, p1(t) and

p2(t), illustrated by the dashed lines. The width of each of the four segments corresponds

to the proportions of patients in each treatment group who have experienced the event of

interest or not at time t.
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Figure 5.9: Maximum TGSTD,Z(t)
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Suppose that the number of patients in treatment group one (Z = 1; control treatment)

is n1, and the number of patients in group two (Z = 2; experimental treatment) is n2,

such that n1 + n2 = n. Then, the proportion of patients in each treatment group who

remain event-free at time t is equal to the probability of being event-free at time t for that

group, multiplied by the proportion of patients being assigned to that group, such that:

Event-free in group two = p2(t)
(n2

n

)
,

Event-free in group one = p1(t)
(n1

n

)
,

Experienced the event in group two = (1− p2(t))
(n2

n

)
,

Experienced the event in group one = (1− p1(t))
(n1

n

)
.

as illustrated in the graphic. The maximum value of TGZ(t) can then be calculated as

the sum of the individual areas of each of these four grey sections, as:

TGZ(t)max = p2(t)
(n2

n

)
(1− p2(t)) + p1(t)

(n1

n

)
(1− p1(t))

+(1− p2(t))
(n2

n

)
(p2(t)) + (1− p1(t))

(n1

n

)
p1(t)

= 2p2(t)(1− p2(t))
(n2

n

)
+ 2p1(t)(1− p1(t))

(n1

n

)
.

Calculation of a standardised version of TGZ(t) is then possible using

TGSTD,Z(t) =
TGZ(t)

2p2(t)(1− p2(t))
(
n2

n

)
+ 2p1(t)(1− p1(t))

(
n1

n

) .
As for the original measure, confidence intervals can be constructed using bootstrap

resampling. This development of the Total Gain concept allows the measure to be used

in a surrogacy setting, by providing a method in which the improvement in prediction

of the true outcome can be quantified through knowledge of the surrogate outcome. A

value of TGSTD,Z(t) close to zero would indicate that knowledge of the surrogate endpoint

offers no additional accuracy in prediction of the long-term patient outcome, and suggests

that the long-term outcome should remain as the primary endpoint for future clinical

studies. A value of TGSTD,Z(t) close to one, however, would suggest that prediction of
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the true outcome is vastly improved through knowledge of the surrogate outcome, and

would lead to high confidence that a surrogate endpoint could be used in practice. The

simplicity of the original Total Gain concept remains with this new development, and

importantly the measure remains easy to implement using standard statistical software.

In order to establish whether the new modelling approach performs well in practice, an

investigation has been undertaken using a simulation study, and this is introduced in the

next section. The aims of this study are to identify whether TGSTD,Z(t) can provide

reliable estimates of individual-level surrogacy, particularly for the small sample sizes of

interest in this research, to determine whether there are differences based on the choice

of surrogate endpoint or underlying data structure, and to assess whether the measure

remains robust to censoring.

5.5.1 Description of the Simulation Study

To thoroughly examine the proposed development in the estimation of TGSTD,Z(t), fur-

ther simulations were conducted for the same scenarios discussed in Section 5.4.1, shown

again in Table 5.2. This range of scenarios allows for assessment of the performance of

the new measure for different surrogate endpoints, data generation algorithms and depen-

dence structures, strengths of individual-level surrogacy and under different proportions

of censoring. A total of 5,000 repetitions of each scenario were conducted, and datasets

generated are identical to those used for the assessment of all previously described meth-

ods.

This wide range of simulations allows a rigorous assessment of the performance of

the new approach, and results are presented in the next section. Furthermore, a number

of sensitivity analyses were also considered to assess the performance of TGSTD,Z(t) in

assessing surrogacy in a wider context, with consideration of larger sample sizes, larger

treatment effects, alternative timepoints of estimation and alternative data generation

mechanisms; these additional results are described and discussed in Section 5.6.
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Table 5.2: Simulation Scenarios

Factor Scenarios under simulation

Surrogate Endpoint TTP, PFS

Data Generation Clayton, Gumbel

Number of trials 6

Number of patients per trial 80, 120

Trial-level association 0.5

Individual-level association 0.2, 0.5, 0.8

Censoring Rate (on T) 0%, 30%

5.5.2 Results

As for previous sections, the results of the application of TGSTD,Z(t) to simulated datasets

are presented in the form of boxplots, with one figure per combination of data generation

method and endpoint. Within these figures, individual plots show results for each strength

of individual association, for all sample sizes and censoring proportions. Dashed reference

lines for the true value of τ used for data generation are included for each scenario. Results

are presented for TGSTD,Z(t) at the time of median OS, first for TTP and subsequently

for PFS.

Time to Progression

Results for the setting of TTP based on Clayton copula generated data are provided in

Figure 5.10. With the development of TGSTD,Z(t), it could be expected that accounting for

treatment in the Kaplan-Meier survival estimates (p1(t) and p2(t)) would lead to estimates

of Total Gain that are lower than those based on the TGSTD(t). It would be reasonable

to expect that the reduction in Total Gain would be the largest for the lowest strength

individual-level surrogacy, since the surrogate is expected to have poorer predictive ability

in this scenario as compared to when the association between surrogate and true endpoints
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is very strong. Any reduction in values of TGSTD,Z(t) as compared to TGSTD(t) would

therefore be expected to decrease with increasing τ .

The results in Figure 5.10 demonstrate that values of TGSTD,Z(t) are reduced only very

slightly when adjusting for the treatment effect on OS, with the largest decrease occurring

for the lowest value of τ , as expected. However, even in this case, the reduction appears to

be small, with values remaining across a similar range. Values of TGSTD,Z(t) continue to

be estimated with reasonable consistency, demonstrated by the range of estimates being

similar to those from the TGSTD(t) measure. Encouragingly, these ranges continue to have

very little overlap between the various values of τ used for data simulation, suggesting

that whilst there is some under-estimation of the medium and high levels of association,

it is possible to distinguish between the three levels. This is a promising feature, as it

allows for reliable conclusions regarding the usefulness of a potential surrogate endpoint.

It potentially also helps to alleviate concerns of under-estimation, as the separation in

ranges could be used to justify a minimum threshold above which a surrogate could be

considered worthy of further investigation. Increasing sample sizes from 80 patients per

trial to 120 per trial also led to the range of estimates of TGSTD,Z(t) becoming narrower,

suggesting that the method could perform even better when there are more data available.

When considering further the Gumbel copula generated data, the results follow a sim-

ilar pattern. Estimates of TGSTD,Z(t) are slightly lower than those for TGSTD(t) when

the true individual-level surrogacy is low, but there is negligible impact on the medium

to high levels of association. As mentioned above, this is not unexpected, since the as-

sociation between surrogate and true endpoints for τ = 0.5 or 0.8 becomes strong, and

likely overwhelms any effect of treatment on the true endpoint. For these higher lev-

els of association, a slight increase in estimates under censoring leads to values slightly

higher than TGSTD(t), however this does not hamper interpretation, particularly with the

ranges of results remaining fairly distinct across the three levels of association. As for

all previous scenarios, the small increases in values based on Gumbel generated data as

compared to Clayton generated data lead to a reduction in the under-estimation of the
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Figure 5.10: Boxplots of estimates of TGSTD,Z(t) at Median OS: TTP, Clayton Copula

Data Generation, Total Gain Application
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Figure 5.11: Boxplots of estimates of TGSTD,Z(t) at Median OS: TTP, Gumbel Copula

Data Generation, Total Gain Application

higher individual-level surrogacy values, without leading to over-estimation of the low-

est individual-level surrogacy. Increasing sample sizes led the range of results to reduce

slightly, suggesting that further improvement could be possible if more data were available.
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Progression-Free Survival

Results for the Clayton copula generated PFS data are presented in Figure 5.12. As is

expected, the estimates of TGSTD,Z(t) are slightly higher than those based on TTP, and

this leads to median values of TGSTD,Z(t) that are reasonably close to the input value of

τ . Ranges of estimates remain relatively small, and interestingly there is now no overlap

in the results between the chosen values of τ , even for the smallest sample sizes. There

appears to be minimal difference in results between those based on TGSTD(t) and those

of TGSTD,Z(t), suggesting that accounting for the treatment effect on the true endpoint

has little impact on the results or conclusions. This suggests that the predictive ability of

the surrogate endpoint is not notably impacted by the assumed treatment effect; further

discussion of this finding is provided in Section 5.6.3. As for the TTP scenarios, the

estimates of TGSTD,Z(t) appear to be marginally higher when there is censoring present

in the data, but this has negligible impact on conclusions, and ranges of estimates reduce

slightly with increased sample size.
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Figure 5.12: Boxplots of estimates of TGSTD,Z(t) at Median OS: PFS, Clayton Copula

Data Generation, Total Gain Application
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Figure 5.13: Boxplots of estimates of TGSTD,Z(t) at Median OS: PFS, Gumbel Copula

Data Generation, Total Gain Application

Further investigation based on Gumbel copula generated datasets (Figure 5.13) shows

consistency with these findings, with results following the patterns previously observed;

slightly higher estimates for Gumbel as compared to Clayton and slightly higher estimates

for PFS as compared to TTP, but separation of the ranges of results across the three as-

sumed levels of surrogacy. The increase in values of TGSTD,Z(t) observed under censoring

is slightly higher for the Gumbel generated PFS data than other scenarios, but again this

does not hamper interpretation of results. Results based on datasets without censoring

are very close to the reference value of τ , with those based on the censored datasets being

very slightly higher. Again, there is very little difference between estimates of TGSTD,Z(t)

and TGSTD(t), with differences being visible only for the lowest level of association. When

increasing sample sizes, there is a slight reduction in the ranges of estimates, reflecting

better estimation of TGSTD,Z(t) with more data availability. Overall, the results for the as-

sessment of PFS are very encouraging, and demonstrate that TGSTD,Z(t) is able to clearly

distinguish poor, mediocre and good surrogates, regardless of censoring and regardless of

the underlying data structure.
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Summary of Results

Results of the exploration of TGSTD(t) and TGSTD,Z(t) lead to the following conclusions:

� Total Gain provides a measure of predictive ability that is easily interpreted and

simple to calculate.

� TGSTD(t) provides good estimation of individual-level surrogacy based on Kendall’s

τ , despite some under-estimation for TTP, but requires modification to reflect the

predictive ability of a potential surrogate endpoint.

� The newly developed measure, TGSTD,Z(t) continues to perform well, with some

under-estimation of association between TTP and OS, but strong performance when

considering PFS as the surrogate endpoint.

� Whilst there is no true reference value against which the estimates of TGSTD,Z(t) can

be compared, the values were very similar to the input value of τ when considering

PFS.

� Ranges of estimates of TGSTD,Z(t) were not overlapping for any of the investigated

values of association, reliably differentiating the strength of individual-level surro-

gacy.

� TGSTD,Z(t) appears largely unaffected by censoring, with minimal increases in values

that do not hamper interpretation.

� Overall, TGSTD,Z(t) has performed well with regards to individual-level surrogacy

evaluation.
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5.6 Sensitivity Analyses

Following these simulations, additional steps have been taken to further examine the new

approach to investigate whether it is suitable for wider use. A number of sensitivity analy-

ses were conducted to investigate the performance of TGSTD,Z(t) under various alternative

assumptions. Firstly, to assess whether use of the copula-generated datasets could lead

to bias in estimation of TGSTD,Z(t), further datasets were generated according to the

lognormal distribution, as described in Section 4.2.2. For these additional investigations,

all three levels of individual surrogacy were considered, for 6 trials each containing 120

patients, and for both no censoring and 30% censoring. Again, identical datasets were

used across the surrogacy evaluation methods to ensure consistency.

Additional analyses were also conducted to assess the sensitivity of the method to the

timepoint selected for analysis, through estimation at various percentiles of the Kaplan-

Meier distribution for OS. Whilst the main simulation results are based on estimation

of TGSTD,Z(t) at the time of median OS, further analyses at percentiles from 20% to

80% are conducted to determine whether there is a relationship between the association

measure and time/data maturity. These additional sensitivity analyses are conducted for

the largest sample sizes, with 6 trials each containing 120 patients, under 0% and 30%

censoring, for TTP and PFS and for both Clayton and Gumbel generated datasets.

Further, the sensitivity of TGSTD,Z(t) to the strength of treatment effect in the trials

is investigated, through increasing the treatment effects on both the surrogate and true

endpoints. In the main simulation study, the hazard ratios for TTP/PFS and OS are

maintained as ≈ 0.67 and ≈ 0.82 respectively. The additional analyses increase the mag-

nitude of treatment benefit, to determine whether such an increase has any impact on

the estimation of the predictive ability of the proposed surrogate endpoint. In these new

scenarios, hazard ratios of ≈ 0.50 for TTP/PFS and ≈ 0.6 for OS are considered, and the

simulations are conducted for all three levels of individual surrogacy (0.2, 0.5, 0.8), for no

censoring and for 30% censoring, based on 6 trials each containing 120 patients, and for

207



5.6. SENSITIVITY ANALYSES

both the Clayton and Gumbel data generation algorithms.

Finally, the new method is assessed under the ideal situation where there exist sub-

stantial data on which to base an assessment of surrogacy, with sample sizes increased to

10 trials each containing 500 patients. These are considered for both no censoring and

30% censoring, to assess whether this has any impact on estimation. Due to the strong

consistency of results between the various data generation methods, these analyses were

restricted to the Clayton generated datasets. Results of each of these sensitivity analyses

are described next.

5.6.1 Lognormal Data

In order to determine whether the observed results are biased through the use of a copula

model to generate clinical trial datasets, further simulations were conducted using a log-

normal distribution, without the use of a copula, and are presented in Figure 5.14 with

TTP on the top row and PFS on the bottom row. For ease of comparison, all three data

generation methods are included in this figure, which includes results for N = 6 trials of

n = 120 patients, under 0% and 30% censoring. The light blue boxes contain results of

TGSTD,Z(t) for the Clayton generated data, and the dark blue boxes contain results for

the Gumbel generated data.

Based on TTP, shown in the top row, results from the three data generation methods

are highly consistent when the true individual-level surrogacy is low to medium (τ =

0.2, 0.5), with no discernible difference in values of TGSTD,Z(t) for any of the scenarios

examined. As the true individual-level surrogacy increases to the highest level, the values

of TGSTD,Z(t) based on the Clayton generated data are slightly lower than those from the

other two data generation algorithms. However, the overall conclusion from this slight

variation in estimates is expected to be the same, and interpretation of the results is not

considered to be hampered by this variability. Similarly for PFS, shown in the bottom

row, estimates of TGSTD,Z(t) are reasonably similar across the three data generation
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Figure 5.14: Boxplots of estimates of TGSTD,Z(t) at Median OS: All Data Generation

Methods, Total Gain Application, TTP (top row) and PFS (bottom row)

methods for all scenarios. For the lowest individual-level surrogacy, it is almost impossible

to distinguish any differences in the estimates for datasets containing no censoring and

datasets containing 30% censoring. As the strength of relationship between surrogate and

true endpoints increases, values of TGSTD,Z(t) based on Gumbel generated data appear

to increase, with those based on lognormal data also increasing to a similar level when

the individual surrogacy reaches the highest value of 0.8. The ranges of estimates remain

mostly distinct across true underlying levels of τ , with values overlapping only for a very

limited number of scenarios.

The overall consistency in results across these data generation algorithms therefore

shows that use of the copula generated datasets in the simulation study has not favourably
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or unfavourably biased the assessment of TGSTD,Z(t) as a measure of individual-level

surrogacy.

5.6.2 How does TGSTD,Z(t) vary over time?

The TGSTD,Z(t) measure is calculated at a fixed time that is selected based on relevance

to the disease under study. In all simulations conducted so far in this thesis, t is chosen

as the time of median overall survival for each individual study. To assess the impact of

this, further calculation of the same simulated datasets was conducted using alternative

percentiles of the overall survival Kaplan-Meier distribution, ranging from the early tail

where 80% of patients remain alive, to the later tail where only 20% of patients remain

alive. Due to similarity in the majority of results across the two different surrogate end-

points and two different data generation algorithms, only a selection of results is described

in detail in this section. Full results for all scenarios examined can be found in Appendix

Figures C.1 to C.4.

The scenarios selected for further discussion are those based on the highest strength

of individual-level surrogacy (τ = 0.8), since results appeared different depending on the

combination of surrogate endpoint and data generation method. Estimates of TGSTD,Z(t)

for TTP and PFS are presented in Figures 5.15 and 5.16 respectively, with Clayton copula

data presented on the top row and Gumbel copula generated data on the bottom row

of each figure. In these figures, the Kaplan-Meier estimates along the x-axis reflect the

proportion of patients who remain alive, and so decreasing values from left (80% of patients

remain alive) to right (20% of patients remain alive) indicate increasing time of follow-up.

The pattern observed in the TTP data shown in Figure 5.15 is representative of the

majority of scenarios examined, with values of TGSTD,Z(t) increasing over time, similar

to the pattern noted by Choodari-Oskooei et al. (2015). The variability in estimates also

appears to increase very slightly in the upper (right) tail of the Kaplan-Meier distribu-

tion. This pattern is consistent between datasets with no censoring and those with 30%
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Figure 5.15: Boxplots of estimates of TGSTD,Z(t) at Percentiles of OS (τ = 0.8): TTP,

Clayton (top row) and Gumbel (bottom row) Data Generation, Total Gain Application

censoring, with censoring also leading to slightly higher estimates in the later tail of the

survival distribution, where few patients remain alive. Between the Clayton (top row)

and Gumbel (bottom row) generated datasets the pattern over time is broadly consistent,

with the exception that the values based on Gumbel generated data appear to be slightly

higher at the earlier end of the survival distribution, likely due to the stronger association

between early event times assumed by this model. This means that the increase in values
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over time is reduced and the overall pattern is relatively stable.
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Figure 5.16: Boxplots of estimates of TGSTD,Z(t) at Percentiles of OS (τ = 0.8): PFS,

Clayton (top row) and Gumbel (bottom row) Data Generation, Total Gain Application

When considering PFS as the potential surrogate endpoint (Figure 5.16), the Clayton

generated data (top row) demonstrate a pattern that appears to differ from the setting

of TTP. Firstly, the values based on PFS are generally higher and less susceptible to the

increase over time, with estimates of TGSTD,Z(t) being close to the intended strengths of

surrogacy (see Appendix Figure C.3 for lower levels of τ). Values of TGSTD,Z(t) appear
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to fluctuate only in the extreme tails of the Kaplan-Meier distribution, with estimates

across the middle range of the Kaplan-Meier distribution being reasonably constant. As

for previous scenarios, the variability in estimates appears to increase slightly in the tails

of the Kaplan-Meier distribution, as could be expected, and the presence of censoring leads

to slightly higher values in the later survival proportion.

Further investigation of Gumbel copula generated PFS data shows that the change in

dependence structure has a similar effect on PFS as was observed for TTP when the true

association is low to medium (Appendix Figure C.4). For the highest level of association,

increases in the estimates of TGSTD,Z(t) in the early tail of the Kaplan-Meier distribution

lead to values that are slightly over-estimating the τ value, whereas values in the later tail

remain similar to the Clayton generated data. The impact of this change in only the lower

portion of the survival distribution leads to patterns over time that look quite different to

the other settings. However, in the middle of the survival distribution, the estimates are

close to the reference value of τ . In the Gumbel generated data, there are also a number

of settings where estimates of TGSTD,Z(t) exceed a value of one, and this will be further

discussed later in this section.

Overall, the values of TGSTD,Z(t) over time lead to three conclusions; that predictive

ability of PFS is generally higher than for TTP, that Gumbel generated data provides

values higher than Clayton generated data, particularly in the earlier tails, and that cen-

soring has minimal impact on the values, leading to small increases only in the upper

extreme of the Kaplan-Meier distribution. These three elements will be discussed further

next, in the context of examining the patterns of TGSTD,Z(t) over time, the increase in

variability in the tails, and the estimates that exceed a value of one.

Further Investigation: Changes in TGSTD,Z(t) over time

In order to examine more closely the pattern of TGSTD,Z(t) over time, the individual

components of the measure were considered. Estimated values of TGZ(t), TGZ(t)max and
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TGSTD,Z(t) for the setting of strongest surrogacy (τ = 0.8, without censoring) are shown

in Figure 5.17, with TTP Clayton in the top left, TTP Gumbel in the top right, PFS

Clayton bottom left and PFS Gumbel bottom right of the figure. The value of τ = 0.8

was selected as this reflects the extremes of the observed patterns in TGSTD,Z(t) over

time. Each individual boxplot represents the values across the 5,000 repetitions for a

given percentile of the Kaplan-Meier distribution, with the decrease along the x-axis from

left to right reflecting the progression of time and therefore reduction in the Kaplan-Meier

estimate of survival.

The patterns of values of TGZ(t)max and TGZ(t), with the decreases towards the tails

of the Kaplan-Meier distribution, are explained by the underlying concept of Total Gain.

In the early tail, the vast majority of patients remain event-free and so knowledge of the

surrogate outcome offers limited improvement in the prediction of survival status. In the

upper tail, the vast majority of patients have experienced the event, so predicted survival is

close to zero for all remaining patients and is improved only minimally through knowledge

of the surrogate outcome. The greatest gain from knowledge of the surrogate then occurs

in the middle range of the Kaplan-Meier distribution, reflected in the shapes in Figure

5.17 and in the work of Choodari-Oskooei et al. (2015), who concluded that the difference

between the predicted and average survival probabilities was minimal near the time origin

and at the latest timepoints of the survival distribution.

These patterns in TGZ(t)max and TGZ(t) then provide further information about the

observed patterns in TGSTD,Z(t), where slight differences in values of TGZ(t) in the tails

are magnified when scaled using the maximum values. This is further illustrated in Table

5.3, which shows the average (mean) values of TGZ(t) and TGSTD,Z(t) across the 5,000

simulation runs for each scenario presented in Figure 5.17.

It can be seen from this table that the values of TGZ(t) are always higher for Gumbel

data as compared to Clayton data, and are always higher for PFS than for TTP. Both of

these findings are consistent with the previous results presented in this thesis. Of interest

here, however, is how the estimates change over time. Firstly, the difference in TGZ(t)
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Figure 5.17: Boxplots of estimates of TGZ(t), TGZ(t)max and TGSTD,Z(t) across the

Kaplan-Meier distribution for OS: TTP Clayton (top left), TTP Gumbel (top right),

PFS Clayton (bottom left), PFS Gumbel (bottom right) (τ = 0.8, No Censoring)

estimates between Clayton and Gumbel generated data is greater at the earlier Kaplan-

Meier percentiles than at the later percentiles, for both TTP and PFS. This reflects the

dependence structure of the Gumbel copula, which exhibits stronger dependence between

early event times, overall leading to values of TGSTD,Z(t) that are higher for the Gumbel

data than the Clayton data during the earlier Kaplan-Meier percentiles, as observed in
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Figure 5.17 (right hand column compared to left hand column). Secondly, the higher

values of TGZ(t) for PFS as compared to TTP (for both data generation algorithms)

leads to values of TGSTD,Z(t) that are higher for PFS (bottom row of Figure 5.17) as

compared to TTP (top row of Figure 5.17).

Table 5.3: Values of TGZ(t) and TGSTD,Z(t) for τ = 0.8, no censoring

TGZ(t) (TGSTD,Z(t))

Kaplan-Meier Percentile TTP Clayton TTP Gumbel PFS Clayton PFS Gumbel

80% 0.134 (0.424) 0.172 (0.545) 0.227 (0.720) 0.300 (0.952)

70% 0.198 (0.479) 0.244 (0.591) 0.307 (0.745) 0.381 (0.924)

60% 0.240 (0.510) 0.285 (0.606) 0.346 (0.737) 0.410 (0.872)

50% 0.258 (0.529) 0.297 (0.609) 0.348 (0.715) 0.398 (0.816)

40% 0.255 (0.529) 0.286 (0.613) 0.323 (0.692) 0.356 (0.764)

30% 0.233 (0.573) 0.257 (0.631) 0.277 (0.679) 0.295 (0.724)

20% 0.198 (0.637) 0.214 (0.688) 0.217 (0.698) 0.221 (0.712)

These findings are therefore not unexpected, but highlight the need for careful consid-

eration of t, and in particular demonstrate that t must be selected not too close to the

tails of the Kaplan-Meier distribution, where estimates of parameters can be based on very

few events or on very few patients remaining at risk, leading to instability in modelling.

Further, the pattern of dependence of the underlying data structure must be considered,

since estimation of TGSTD,Z(t) may be biased if based on timepoints that reflect only part

of the association structure.

It should be noted that in the extreme tails of the Kaplan-Meier distribution, the data

are also unlikely to be reliable. The 20th percentile of the Kaplan-Meier distribution is

likely to occur very early in a clinical trial, when the data are not yet considered mature.

Based on the small sample sizes investigated here, there will be very few events on which

the parameters of interest are calculated, which may make these parameters unstable, and

in turn affect estimation of TGSTD,Z(t). Towards the end of the Kaplan-Meier distribution,
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there are few patients remaining at risk, as well as many other potential confounding

factors affecting the analysis. It is therefore advisable to focus estimation on the middle

range of the Kaplan-Meier distribution, for example between the 40−60% range, to ensure

that modelling parameters can be reliably estimated and are stable. For the majority of

scenarios investigated here, estimation of surrogacy within this interval leads to estimates

of TGSTD,Z(t) that are generally in line with the intended strength of surrogate endpoint,

with reasonably small ranges of estimates given the low sample sizes.

Variability in TGSTD,Z(t) in the extremes of the Kaplan-Meier distribution

The aforementioned pattern in TGZ(t) is also considered to help explain the increases in

variability that are sometimes observed in the extremes of the Kaplan-Meier distribution.

The estimation of model parameters in these extremes is often based on small subgroups of

patients, either due to low numbers of events or due to low numbers of patients remaining

at risk of an event. With the variability inherent in each of the simulated clinical trial

datasets, this can lead to slightly increased variability in estimates of TGZ(t) as well as

p1(t) and p2(t), which in turn leads to an increase in the ranges of estimates of TGSTD,Z(t).

In the majority of scenarios examined, the increase in variability in the tails is mild, and

is certainly less of a concern than the increases in estimates discussed above. Importantly,

in the mid-range of the Kaplan-Meier distribution, where the estimates are more stable,

the change in variability is negligible and does not impact interpretation of results.

Values of TGSTD,Z(t) extending above one

The predictive ability of a set of covariates can theoretically only range between a value

of zero and one, where zero indicates that the covariates have no value in predicting the

outcome of interest and one indicates perfect prediction. The maximum value of TGZ(t)

is intended to reflect this perfect scenario. From Figure 5.17, it can be seen that on

occasion the value of TGZ(t) is overlapping with the maximum value, leading to values of
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TGSTD,Z(t) that are greater than one when the true underlying τ = 0.8.

This occurs most prominently in the extreme tails of the Kaplan-Meier distribution,

where there are fewer than 20% of patients remaining at risk or where only 20% of patients

have experienced the event. The over-estimation is considered to be due to the instability

of estimates in these extreme tails. When using PFS as the potential surrogate endpoint

with Gumbel generated data, the strength of association is at the highest point during the

early event times, and so the effect of this covariate overwhelms the treatment effect in the

Cox model. This leads to predicted survival probabilities that are close to one for patients

without the surrogate outcome and close to zero after the surrogate outcome is observed,

regardless of the treatment effect. The effect of this large difference is that in the early

tail, the Kaplan-Meier estimate cannot distinguish between these extreme groups, and the

area between the two probabilities becomes very large.

Similarly, in the later tail, the estimates are impacted by the level of censoring in the

data. When the sample size of 120 patients is further reduced by censoring, there are

only a very small number of patients who remain in the risk-set in the later Kaplan-Meier

tails. These small numbers, possibly fewer than 10 patients per treatment group, leads to

very unstable estimates from both the Cox and Kaplan-Meier models, and the substantial

amount of uncertainty in model parameters leads to values of TGSTD,Z(t) that are not

stable, and should not be considered reliable.

Overall, these additional investigations have demonstrated that the choice of t is critical

to ensure that TGSTD,Z(t) is stable and reliable enough to make robust conclusions. The

sensitivity analyses over the time course of the Kaplan-Meier distribution have demon-

strated that while there is variability, and uncertainty when calculating TGSTD,Z(t) using

the extremes of the available data, the estimates based on the middle of the Kaplan-Meier

distribution remain relatively stable.
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5.6.3 Larger Treatment Effects

The predictive accuracy of a surrogate endpoint in the newly developed TGSTD,Z(t) mea-

sure is calculated by determining the difference between the predicted survival probability

from a model containing treatment and the surrogate outcome as covariates, and the av-

erage survival probability from all patients within each respective treatment group. The

magnitude of treatment benefit observed on the surrogate and true endpoints is therefore

a key factor, since the intention is to assess the predictive ability of the surrogate after

having accounted for the observed treatment effect.

Throughout this chapter, simulation studies have focused on one fixed value of the

treatment effect for each endpoint, with hazard ratios of ≈ 0.67 for PFS and ≈ 0.82 for

OS. To examine the impact that changes in treatment effects can have on estimation of

TGSTD,Z(t), additional examination of larger treatment effects have also been considered.

The aim of such exploration is to determine whether the change in treatment effect has

any impact on the calculation of predicted survival probabilities that would confound the

estimate of predictive ability of the proposed surrogate. Additional investigation focuses

on treatment effects that demonstrate a greater benefit, with hazard ratios of ≈ 0.50 for

PFS and ≈ 0.60 for OS. Results are presented in Figure 5.18 for TTP and Figure 5.19

for PFS, where Clayton copula generated data are displayed in the top row and Gumbel

copula generated data in the bottom row.

Given that the data generation procedure defines the strength of surrogacy and strength

of treatment effect separately, it is not expected that estimates of TGSTD,Z(t) would be

sensitive to changes in the treatment effects. Particularly, the newly developed approach

accounts for treatment effects on both endpoints when estimating predictive ability. Reas-

suringly, for all scenarios examined, there appear to be negligible differences in estimates

of TGSTD,Z(t), across both surrogate endpoints and both data generation methods, as well

as in the presence of censoring. Estimates are very close to those based on the original

treatment effects, indicating that TGSTD,Z(t) is able to appropriately adjust for the ob-
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Figure 5.18: Boxplots of estimates of TGSTD,Z(t) at Median OS - larger treatment

effects: TTP, Clayton (top row) and Gumbel (bottom row) Copula Data Generation,

Total Gain Application

served treatment effect and isolate the predictive ability of the surrogate endpoint. This

demonstrates that TGSTD,Z(t) is not sensitive to external changes in the structure of the

datasets that do not affect the underlying strength of surrogacy.

5.6.4 Larger Sample Sizes

Whilst the setting of predominant interest in this thesis is small sample sizes, it is highly

relevant to ensure that the newly proposed methodology also performs satisfactorily when
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Figure 5.19: Boxplots of estimates of TGSTD,Z(t) at Median OS - larger treatment

effects: PFS, Clayton (top row) and Gumbel (bottom row) Copula Data Generation,

Total Gain Application

more data are available to evaluate potential surrogates, which is the ideal case. Further

simulations were therefore conducted to examine how TGSTD,Z(t) performs when more

and larger clinical studies are available for analysis. In particular, ten clinical trials each

containing 500 patients are examined, under no censoring and 30% censoring, for both

TTP and PFS. Given the broad similarity of results across previous scenarios, only Clayton

generated data are considered. Results are presented in Figure 5.20, with TTP presented

in the top row and PFS in the bottom row.

The expectation for these results is that the larger sample sizes will lead to more precise

221



5.6. SENSITIVITY ANALYSES

N=10,n=500

τ =0.2, Rtrial
2  =0.5

0
0

.2
0

.4
0

.6
0

.8
1

τ =0.5, Rtrial
2  =0.5 τ =0.8, Rtrial

2  =0.5

τ =0.2, Rtrial
2  =0.5

0% 30%

0
0

.2
0

.4
0

.6
0

.8
1

τ =0.5, Rtrial
2  =0.5

0% 30%

τ =0.8, Rtrial
2  =0.5

0% 30%Censoring:

T
G

S
T

D
 , 

Z
T

G
S

T
D

 , 
Z

Figure 5.20: Boxplots of estimates of TGSTD,Z(t) at Median OS - N = 10, n = 500: TTP

(top row) and PFS (bottom row), Clayton Copula Data Generation, Total Gain

Application

estimation of model parameters, leading to lower variability in values of TGSTD,Z(t) across

the 5, 000 repetitions as compared to the setting of small sample sizes. This is indeed

the case, with smaller ranges of estimates for all of the scenarios investigated and clear

separation in ranges across the true underlying strengths of surrogacy. Encouragingly,

there is little change in the median estimate for each setting, demonstrating that while

inclusion of larger sample sizes has improved the precision, TGSTD,Z(t) can also be reliably

estimated when based on smaller samples. For the TTP setting, the values of TGSTD,Z(t)

continue to be estimated lower than the reference value of τ and this will be discussed in
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the next section. For PFS, the conclusion is similar; the increase in sample size has led

to more precise estimation of TGSTD,Z(t), with very narrow ranges of estimates that are

clearly separated across values of τ . The under-estimation observed with TTP is not of

concern for the setting of PFS, with estimates lying very close to the intended strength

of surrogacy. Overall, these additional simulations therefore support the reliability of

TGSTD,Z(t) as a measure of individual-level surrogacy.

5.7 Understanding the Results

Despite the strong performance of TGSTD,Z(t) in evaluating individual-level surrogacy for

the scenarios examined, particularly for PFS, there are a number of observations that

must be addressed, including the apparent under-estimation of the assumed underlying

strength of association between TTP and OS, and the observed variability in estimates,

and these are discussed further in this section.

5.7.1 Comparing TTP and PFS

In scenarios based on TTP as the surrogate endpoint, estimates of TGSTD,Z(t) were lower

than the input value of τ for both Clayton and Gumbel data generation, with the excep-

tion of the lowest strength of association. Values based on Gumbel generated datasets

were slightly higher than those for the Clayton generated data, however the estimates

of TGSTD,Z(t) remain under-estimated, as compared to τ , for both data generation ap-

proaches. This was not the case for PFS, where estimates were close to the input value of

individual-level surrogacy across the majority of scenarios.

In order to understand the differences between results for TTP and PFS, it is neces-

sary to examine the individual components of the calculation of TGSTD,Z(t). First, the

maximum value of TGZ(t) is constant regardless of the choice of surrogate endpoint, since

this is calculated independent of all covariates. Similarly, the Kaplan-Meier estimates at

the time of median OS, p1(t) and p2(t) are based only on the covariate of treatment and
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are therefore identical in both settings. The only parameter that can introduce differences

in the value of TGSTD,Z(t) between TTP and PFS is therefore the predicted survival prob-

ability from the Cox proportional hazards model. For values of TGSTD,Z(t) to be lower

for TTP, the predicted survival probability would need to be closer to the reference value

coming from the Kaplan-Meier function, such that the predictive ability of TTP is lower

than that of PFS. As noted above, this would be expected given that PFS includes the

true endpoint of interest.

The values of TGSTD,Z(t) that are below the reference value, τ , are therefore considered

to be due to the use of the Cox proportional hazards model. Since this model does

not estimate τ , but rather estimates a covariate coefficient that does not have a fixed

range, it is not expected that values of the two would match exactly. Whilst the under-

estimation is present, the results have demonstrated that TGSTD,Z(t) provides estimates

of individual-level surrogacy that can adequately differentiate poor, mediocre and strong

surrogates, even if the exact values of the measure do not match a theoretical threshold.

The underestimation is therefore considered a slight limitation of the approach when based

on TTP, however the simplicity of computation and interpretation provide good rationale

for use in practice.

5.7.2 Variability

Results of TGSTD,Z(t) presented in Section 5.5.2 demonstrate that while the ranges of

estimates have only minimal overlap between true levels of association, the variability in-

creases slightly with increased individual-level association, particularly for TTP. This is

consistent with the information theory approach, although to a much lesser extent. Since

both the information theory approach and TGSTD,Z(t) use the same underlying models, it

is expected that there is a consistent reason for the increased variability. In Section 4.4.3,

it is noted that as the underlying strength of surrogacy increases, the variability in the

estimated coefficient of the surrogate time-dependent covariate in the Cox proportional
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hazards model also increases (see also the left hand side of Figure 4.11). The predicted

survival probability from this model that is used in estimation of TGSTD,Z(t) is there-

fore also subject to this increase in variability, leading to wider ranges of values when

based on increased values of τ . This is further supported through the results based on

increased sample size, where the greater data availability leads to more precise estimates

of Cox model parameters, and subsequently more consistent estimates of TGSTD,Z(t). Im-

portantly, the variability observed in TGSTD,Z(t) does not hamper conclusions, and it is

possible to reliably identify truly strong surrogate endpoints.

5.8 Implications of Results

Previous sections of this chapter have presented a wide range of simulation results, in-

cluding multiple sensitivity analyses, to ensure that the proposed methodology is robust

and reliable. In order to put these findings into further context, additional discussion is

provided herein.

5.8.1 Practical Implications

The novel measure presented in this chapter offers many benefits for the evaluation of

individual-level surrogacy. Firstly, it can be calculated very simply using standard statis-

tical software that is employed in the analysis of clinical trials. For time-to-event data, the

use of Cox proportional hazards and Kaplan-Meier models is commonplace, and model

parameters required for estimation of TGSTD,Z(t) are those that are already used com-

monly to make inferences about survival data. This concept is appealing to statisticians,

but also when discussing results with clinicians, who are often familiar with the terminol-

ogy and concepts of these standard approaches. Furthermore, the lack of distributional

assumptions of these models (beyond that of proportional hazards) make them applicable

to a wide range of clinical trial databases, widening the scope of the new approach with-

out requiring modification to the estimation process. Indeed, as mentioned previously,
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the method is also applicable to a wide range of alternative models that can be used to

estimate the predicted survival probability after accounting for covariates, including para-

metric models. This ease of calculation is further reflected in the ease of interpretation of

the approach, as the ability of the surrogate endpoint to predict the true endpoint after

accounting for treatment (and other covariates). This concept is highly relevant, and easy

to explain to non-statisticians, particularly with the use of the graphical representation.

As compared to the two-stage meta-analytic copula approach, the lack of joint modelling

of the surrogate and true endpoints also improves the applicability in practice, as there is

no need for such complex modelling with associated challenges.

More specifically, related to the results of simulation studies, the TGSTD,Z(t) approach

has been shown to be highly effective in reflecting varied strengths of surrogacy in a setting

where PFS is considered as the potential surrogate endpoint, a setting where both of the

previously examined methods in this thesis have demonstrated poor performance. Whilst

performance in the setting of TTP demonstrated under-estimation, PFS is arguably the

more relevant endpoint. By the very nature of surrogacy, the aim is to identify endpoints

that can mature sooner, such that long clinical trials are not required to establish the

clinical benefit of a new therapeutic agent. PFS includes both disease progression and

death as events of interest, and so these events accumulate faster than for TTP, which

considers only disease progression of interest. For diseases where patients may die before

they experience diagnosed disease progression, this can make a notable difference to the

requirements for follow-up and sample sizes within clinical trials. More importantly, TTP

cannot capture the impact of treatment on the event of death, which is a highly relevant

outcome given that it is considered the true endpoint of interest. In addition, PFS is a

well understood and recognised endpoint by statisticians, clinicians and health authorities,

and has been used as the basis for a number of regulatory approvals for new treatments.

Interestingly, a proposal for surrogacy evaluation based on separation of PFS into the

individual events of disease progression and death attracted a lengthy discussion around

the strong relevance of PFS as a composite endpoint, and the need to keep the two events
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of interest in this composite form (Ghosh et al., 2012).

For diseases where TTP is considered the more relevant endpoint, use of both the

two-stage meta-analytic copula and TGSTD,Z(t) approaches is recommended, with the two-

stage meta-analytic copula method having strongest performance under correctly specified

models. Overall, the strong performance of TGSTD,Z(t) in estimating individual-level

surrogacy of PFS (for OS), alongside the aforementioned benefits of the approach, support

that the new methodology is reliable and can be recommended for this use in practice.

5.8.2 Limitations of the Simulation Study

The newly proposed method, TGSTD,Z(t) has been studied using simulated clinical trial

datasets for a wide range of scenarios, including contrasting underlying data structures,

varied strength of association between surrogate and true endpoints, different surrogate

endpoints and under censoring. Additional sensitivity analyses examined an alternative

data generation algorithm, changes in treatment effects observed on both endpoints, vari-

ation in the timing of the evaluation of TGSTD,Z(t) and larger sample sizes. Despite this

thorough investigation, the simulation studies are subject to limitations.

As was the case for the information theory method, the primary limitation is that in

the simulation study the data were not generated to a specific strength of individual-level

surrogacy as defined by the method being investigated. Since TGSTD,Z(t) is based on

estimation of parameters from multiple different models, all of which adjust for covariates,

it is difficult to accurately control the level of association between surrogate and true

endpoints. To ensure that each sample is being compared to a constant reference value,

and to ensure informal comparability between surrogacy evaluation methods is possible, a

copula model was used to generate simulated datasets. The impact of this is that the true

underlying value of the (transformed) copula parameter τ may not accurately reflect the

true value that is being estimated by TGSTD,Z(t). However, consideration of two different

copula models, as well as sensitivity analysis not based on copula modelling, demonstrated
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consistent results and show that TGSTD,Z(t) is able to reliably detect low, medium and

high strengths of surrogacy. Whilst these strengths may not be exactly equal to values

of 0.2, 0.5 or 0.8 respectively, the results are within a reasonable region of these input

values, and conclusions drawn from estimated values of TGSTD,Z(t) are not considered to

be hampered. Further investigation of alternative data generation procedures is a topic

for future research.

A further limitation is that the TGSTD,Z(t) measure is based on a model that makes

an assumption of proportional hazards, such that the covariates have a multiplicative

effect on the hazard function. No consideration was taken for the impact on estimation

when this assumption is violated. However, examination of the original measure TGSTD(t)

under non-proportional hazards for various values of t was conducted by Choodari-Oskooei

et al. (2015). As an example, Choodari-Oskooei et al. (2015) consider a covariate of

treatment only, where survival curves cross over partway through the survival distribution

such that the control arm has superior survival for the first portion of the study and the

experimental arm has superior survival after the time of the curves crossing. Results of

TGSTD(t) over time demonstrated that the method reflects this by tending towards zero

when approaching the time at which the survival curves cross, and increasing thereafter.

Therefore, as previously discussed, the time at which TGSTD,Z(t) is calculated is of critical

importance and needs to be carefully selected.

5.9 Further Work

The concept of Total Gain in the assessment of baseline covariates was introduced by Bura

and Gastwirth (2001) in the setting of binary outcomes, and extended to build prognostic

models in a survival setting by Choodari-Oskooei et al. (2015). The development of

TGSTD,Z(t) as a measure of surrogacy within this thesis has further extended the method

within the survival setting, however the underlying methodology is applicable to many

different endpoint types. The fundamental concept of Total Gain is based on estimation
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of two predicted probabilities, one based on an average for the sample under study, and one

based on the individual combination of covariate values and respective coefficients from a

selected model. Therefore, any setting that allows such models to be built will provide the

quantities needed to calculate the measure. For extension to other settings, the derivation

of the maximum value is needed, however the estimation of predictive ability of a set of

one or more covariates remains unchanged. Therefore, further extension to continuous,

categorical or longitudinal endpoint types is worthy of further examination.

With regards to the survival setting, the current investigation has been conducted using

Cox proportional hazards models and Kaplan-Meier survival estimates in the calculation

of Total Gain, as was that of Choodari-Oskooei et al. (2015). Further work could there-

fore be considered to understand what level of proportional hazards violation would lead

to a deterioration in performance of TGSTD,Z(t). Additionally, alternatives to the Cox

proportional hazards model could be considered in estimation of the predicted survival

probability.

Specific to the context of surrogate endpoint evaluation, a natural extension would

be to consider the Total Gain concept in the assessment of trial-level surrogacy. Rather

than quantifying the ability of the surrogate endpoint to predict the outcome of the true

endpoint, it would be of interest to quantify the ability of treatment effect on the surrogate

endpoint to predict treatment effect on the true endpoint. In such a setting, the treatment

effect on the true endpoint would be modelled with consideration of the treatment effect

on the surrogate endpoint as a covariate, as compared to the average treatment effect on

the true endpoint across all studies. In previous chapters, a linear relationship between

treatment effects on the two endpoints is assumed, and so this could be further considered.

Finally, the use of Total Gain in the evaluation of surrogate endpoints has previously

been considered by Huang and Gilbert (2011), however this was in the framework of prin-

cipal surrogacy, as introduced in Section 2.6.3. Given that such methodology is considered

an emerging area of research (Ensor et al., 2016), further work could be conducted to inves-

tigate the Total Gain concept within this alternative framework of surrogacy methodology.
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Chapter 6

Illustrative Example: A Phase III

Clinical Trial in Gastric Cancer

6.1 Introduction

In order to illustrate the use of all three of the previously described surrogacy methods in

practice, and see how they compare when applied to the same real-life dataset, a case study

is provided herein. This example was selected as being a close match to the assumptions of

the simulated datasets of previous sections, with median PFS of approximately six months

and median OS of approximately 12 months.

The dataset originates from the ToGA (Trastuzumab for Gastric Cancer) clinical

trial (Bang et al., 2010), which was an international phase III randomised controlled trial

undertaken in 122 centres in 24 countries. Patients with gastric or gastro-oesophageal

junction cancer were randomised to receive chemotherapy only or chemotherapy in combi-

nation with the HER2 targeted therapy, trastuzumab, and the trial had a primary endpoint

of overall survival, with PFS measured as a secondary endpoint.

A total of 594 patients were randomly assigned to one of the two study treatments, of

whom 584 were included in the primary analysis. An interim analysis of OS was performed

after 75% of the required survival events had been observed, and at this time the median
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OS was 13.8 versus 11.1 months in the experimental (trastuzumab-containing) and control

(no trastuzumab) treatment arms respectively. The hazard ratio of 0.74 (95% confidence

interval [0.60 0.91]) was sufficient to cross the pre-specified interim stopping boundary,

triggering full reporting of the trial. The PFS result was consistent with OS, demonstrating

evidence of a statistically significant benefit from treatment with experimental therapy

(median PFS 5.5 months versus 6.7 months, hazard ratio 0.71 [95% confidence interval

0.59 0.85]). Censoring proportions for PFS and OS are 21% and 41%, respectively.

6.2 Modelling Assumptions

In order to assess the performance of PFS as a surrogate endpoint for OS based on the

ToGA database, and in particular to align with the previous considerations of this thesis,

this large phase III study was split into subgroups, based on the geographical location of

the patients. Whilst it has been noted earlier in the thesis that such an approach may not

always be the most appropriate way to conduct surrogacy analysis (Renfro et al., 2014),

the large sample size from this trial allows for separation into groups of a similar size to

those used in the simulation studies of previous chapters, thereby reflecting the setting of

interest for this research.

The country in which a patient was treated was selected as the grouping factor, and

where individual countries enrolled only a small number of patients, they were combined

with other countries from a similar geographical region of the world wherever possible, to

ensure that each individual group had at least one patient and one event per treatment

arm. Two countries were removed from the analysis due to small numbers and the absence

of a geographically similar country to combine with (South Africa with n=4 and Turkey

with n=6 patients), leaving 574 patients available for analysis across eight subgroups

(compared to ranges of 320-720 patients across 4-6 trials used in the simulation studies).

The final groups are summarised in Table 6.1 below.
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Table 6.1: Subgroups Used in the Analysis

Group (Countries) Number of patients

Portugal, UK, Italy, France, Belgium,
125

Spain, Germany, Denmark, Finland

Brazil, Peru, Panama, Mexico, Costa Rica, Guatemala 52

China and Taiwan 86

Japan 101

Korea 122

India 10

Australia 13

Russia 65

The endpoints of PFS and OS within this study are defined in the same way as for

the simulation studies presented in earlier chapters of this thesis, and are unchanged from

previous reporting of this study (Bang et al., 2010):

� Progression-Free Survival (PFS), defined as the time from randomisation until

the patient experiences disease progression or death, whichever occurs first. Patients

who do not experience disease progression or death during the period of observation

are censored at the time that their disease was last assessed by the treating physician.

� Overall Survival (OS), defined as the time from randomisation until death. Pa-

tients who remain alive at the end of follow-up are censored at the time they were

last known to be alive.

Since the two-stage meta-analytic copula and information theory approaches performed

poorly in estimation of trial-level surrogacy when explored via simulation, and considering

that the Total Gain measure is not currently developed to assess trial-level surrogacy, the

illustrative example is limited to individual-level surrogacy only.
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6.3 Results

Estimates of individual-level surrogacy for each of the two-stage meta-analytic copula,

information theory and Total Gain methods are provided in Table 6.2. For the Total Gain

measure, three timepoints have been selected at 10, 12.5 and 15.4 months, corresponding

to the times at which 60%, 50% and 40% of patients remained alive, respectively, according

to the Kaplan Meier estimates for OS.

Table 6.2: Individual-Level Surrogacy Estimates for ToGA

Method
Individual-Level Surrogacy

(95% Confidence Interval)

Copula 0.66 (0.62− 0.70)

Information Theory 0.56 (0.38− 0.68)

Total Gain (TGSTD,Z(10)) 0.78 (0.76− 0.94)

Total Gain (TGSTD,Z(12.5)) 0.81 (0.75− 0.89)

Total Gain (TGSTD,Z(15.4)) 0.94 (0.78− 0.99)

As can be seen from the results, individual-level surrogacy estimates can vary quite

widely, with values as low as 0.56 based on the information theory approach, and as high

as 0.94 from the largest of the Total Gain estimates. The estimate based on the two-stage

meta-analytic copula method lies between these estimates.

It is important to interpret these results in the context of the simulation studies pre-

sented in earlier chapters of this thesis. First, it has been highlighted that the dependence

strucuture of the observed data can influence the two-stage meta-analytic copula method,

and so a scatterplot of the observed values of PFS (S) and OS (T ) is provided in Figure

6.1. This illustrates that the underlying data exhibit stronger dependence between early

event times rather than later event times, supporting that the data are more likely to

follow a Gumbel copula model than a Clayton copula model, as discussed in Sections 3.2.4

and 3.2.5. Therefore, results of the surrogacy analysis should be compared to data gener-
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ated according to the Gumbel copula or lognormal algorithms, rather than data generated

according to the Clayton copula.

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ●

●

●●
●

●

●

●
●

●
●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

0 5 10 15 20 25 30

0
5

1
0

1
5

2
0

2
5

3
0

3
5

PFS (months)

O
S

 (
m

o
n

th
s)

Figure 6.1: Scatterplot of PFS (S) and OS (T ) from ToGA

For ease of comparison, the results of the simulation studies for the settings closest to

this illustrative example are provided in Figure 6.2 for data generated using the Gumbel

copula and Figure 6.3 for data generated using the lognormal algorithm. The closest

setting to the real-life example is considered to be the setting of PFS, with 6 trials each

containing 120 patients, under 30% censoring. It should be noted that these results are

restricted to a true trial-level surrogacy value of 0.5, since results did not appear different

across different underlying R2
trial values within the assessments of Chapters 3 and 4.
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Figure 6.2: Boxplots of all surrogacy methods based on Gumbel copula-generated data

(N = 6, n = 120, 30% censoring)
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Figure 6.3: Boxplots of all surrogacy methods based on lognormal-generated data

(N = 6, n = 120, 30% censoring)

Based on these previous simulation results, it could be expected that if the true un-

derlying individual-level surrogacy was low (≈ 0.2), then a surrogacy assessment would

provide the highest estimate from the two-stage meta-analytic copula, followed by the
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Total Gain approach, and with the lowest estimate coming from the information theory

measure. When the true underlying surrogacy is medium (≈ 0.5) or high (≈ 0.8), the

highest estimate would be expected from the Total Gain method, followed by the copula

model, and again with the information theory approach providing the lowest estimates.

Comparing the results from application of the three methodologies to the illustrative

example with those presented in Figures 6.2 and 6.3, it is expected that the true under-

lying individual-level surrogacy of this clinical trial is quite high. The results show the

highest estimate for the Total Gain approach (0.78− 0.94), followed by the copula model

(0.66) and finally the information theory approach (0.56), and this pattern is broadly in

agreement with those observed in the simulations based on the highest level of τ . There

is a slightly higher than expected difference between the lowest and highest estimates,

but this does not differ substantially from the simulation results, and does not impact the

overall interpretation of the result. Use of the two-stage meta-analytic copula approach

and the Total Gain approach provide a similar interpretation of strong association between

S and T , and support further consideration of PFS as a surrogate for OS in this setting.

These findings further support the research of this thesis by demonstrating that the

pattern in observed results between the three surrogate endpoint methodologies is broadly

in line with those based on the simulations, and further support that use of the copula

models for data generation has not biased the conclusions from those simulations.
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Chapter 7

Conclusions and Discussion

7.1 Summary of Research Findings

7.1.1 Review of Original Aims

The use of surrogate endpoints in clinical trials involves a complex decision making process,

of which statistical evaluation is a critical component. Prior to being considered appro-

priate for use by clinical researchers and regulatory authorities, any potential surrogate

endpoint must undergo a thorough assessment of the biological plausibility, and the ability

to reliably capture information about the true endpoint. A number of statistical methods

have been proposed for this purpose, however many questions remain unanswered.

The primary aims of this research were to address these unanswered questions for

settings that are of most interest for individual pharmaceutical companies conducting

oncology clinical development. In this setting, data may be available from only a small

number of previously completed Phase I or Phase II studies within the same, or a similar,

clinical development program. These studies may differ in key characteristics that make

them unsuitable for meta-analysis, such as differences in the mechanism of action of the

control or experimental treatments, a lack of control arm, different patient populations,

or varied lengths of treatment or follow-up. Many of the methods proposed for surrogacy
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evaluation have been examined under the assumption that multiple, large, clinical trial

databases are available. While this is the ideal scenario, it is not considered easy to achieve

in practice.

A further aim of this research was to consider surrogate endpoints that are of a com-

posite nature, such that the definition of the surrogate endpoint also includes information

directly relating to the true endpoint. In particular, focus has been on oncology settings,

where the endpoint of progression-free survival is a well-recognised and understood mea-

sure of clinical benefit that has also been used for regulatory approval of new drugs. Whilst

this endpoint is mostly oncology specific, the concept of composite endpoints translates

to other disease areas, such as cardiovascular trials that aim to assess the treatment effect

on composite measures of heart failure and death. The focus herein has therefore been

on the evaluation of time-to-event surrogate endpoints for time-to-event true endpoints,

where overall survival has been considered the gold-standard true endpoint.

Finally, there is currently no consensus as to which of the methodologies are considered

most appropriate for any given setting. Whilst a range of measures have been proposed,

many of these are tailored to specific endpoint types, are based on different statistical

frameworks, or are measured on different scales. This makes it difficult to determine

which methodology may be most appropriate, and whether different methodologies may

lead to different conclusions. Examination of the available methodology for the specific

setting of interest in this research was therefore necessary to ensure that the most reliable

conclusions could be drawn, and to make clear recommendations for future use.

This research addresses these aims by identifying and examining two statistical ap-

proaches for the evaluation of surrogate endpoints, to determine their performance in the

setting of small sample sizes, to assess the impact of non-symmetric endpoints such as

progression-free survival as a surrogate for overall survival, and to identify which of the

two may be considered more appropriate for use. Further, a new method for evaluating

individual-level surrogacy has been developed and is proposed for future use with time-

to-event surrogate and true endpoints.
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7.1.2 Trial-level association

Results of the simulation studies conducted in this research have revealed that, as would

be expected, large sample sizes are needed to enable reliable estimation of trial-level as-

sociation. Use of only a small number of Phase I or Phase II trials has been shown to

be insufficient for reliable estimates of surrogacy, preventing use of the methods in this

setting. Some applications of the methodology have avoided this low number of trials

through the use of subsets of trials as the unit for analysis, as discussed by Renfro et al.

(2014). However, while this increases the number of data points, it subsequently reduces

the number of patients per data point, and so uncertainty in other model parameters is

increased. It is recommended that efforts are made to improve the collaboration between

multiple clinical research companies, to ensure that sufficient data can be made available

to thoroughly evaluate trial-level surrogacy.

7.1.3 Individual-level association

Turning to individual-level surrogacy, the results of simulation studies of the two inves-

tigated surrogacy approaches appeared to be more encouraging. In particular, strong

performance of the two-stage meta-analytic copula method was observed when time-to-

progression was considered the surrogate endpoint and the selected copula was correctly

specified. However, when considering the more commonly used endpoint of progression-

free survival, performance of the two-stage meta-analytic copula method was poor. The

implications of this finding are critical to the evaluation of surrogate endpoints, since use

of the two-stage meta-analytic copula method in assessing the relationship between non-

symmetric endpoints can lead to erroneous conclusions. In practice, this means that there

is a risk for poor surrogates to be confirmed suitable for use in future clinical trials. At the

worst, this means that regulatory approval may be sought on an endpoint that does not

confirm clinical benefit for patients. The work describing the investigation of this method

has also been published in Pharmaceutical Statistics (Dimier and Todd, 2017).
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Examination of the information theory method identified a number of concerns with

previous investigation of this approach which required resolution, including estimation of

model parameters and correction of apparent errors in programming code. Results of the

subsequent simulation study required closer examination to understand the impact of these

changes on the performance of the approach. This research has demonstrated that estima-

tion of individual-level surrogacy is consistently lower than expected, with extremely high

variability. Whilst truly poor surrogates could be reliably identified, surrogate endpoints

with medium to strong strengths of association were difficult to identify. This suggests

that while the information theory approach is easy to calculate and simple to understand,

it may be rare that use of the measure would allow a firm conclusion that a surrogate

endpoint is suitable for use. In practice, therefore, the approach could lead to the loss of

truly strong surrogate endpoints, or indeed erroneous conclusions that mediocre surrogates

are good enough to be used in confirmatory studies.

As a result of these findings, a new method for the evaluation of individual-level sur-

rogacy is proposed. Taking an approach originally intended for the purpose of building

prognostic models, an extension has been developed to adequately account for the specifics

of surrogacy evaluation and provide a measure that can capture the value of a proposed

surrogate endpoint. This development was conducted in such a way as to maintain the

overall benefits of the concept, most notably the ease of computation and interpreta-

tion. An extensive investigation of this newly developed approach to the evaluation of

individual-level surrogacy demonstrates that the new methodology is able to adequately

and reliably evaluate individual-level surrogacy across a range of settings, and particularly

those of primary interest in this research.

A comparison of the three surrogacy approaches highlights a number of valuable find-

ings. When considering time-to-progression as the potential surrogate endpoint, the two-

stage meta-analytic copula method performs well, with low bias compared to the true

underlying strength of surrogacy, and reasonably low variability. In contrast, the informa-

tion theory approach performed poorly, with estimated individual-level surrogacy much
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lower than the true value and with large variability, making it very difficult to draw re-

liable conclusions. The results of the new measure TGSTD,Z(t) lie somewhere between

these two, with estimates that are higher than those of the information theory method,

and with lower variability, but lower than the results of the two-stage meta-analytic copula

method, and with higher variability. Further investigation of misspecified models demon-

strated that performance of the two-stage meta-analytic copula method deteriorates when

moving from the ideal scenario, leading to estimates of individual-level surrogacy being

comparable between this and the newly proposed method, TGSTD,Z(t).

In contrast, when considering PFS as the potential surrogate endpoint, the perfor-

mance of the two-stage meta-analytic copula method deteriorates substantially, making it

difficult to recommend this measure for use in general. The information theory approach

is equally limited, with under-estimated strength of surrogacy and continued high vari-

ability. This setting therefore has the greater need for improved methodology, particularly

since progression-free survival is used more commonly in oncology clinical trials and is well

understood and recognised as a measure of clinical benefit. The performance of the new

measure TGSTD,Z(t) has been thoroughly investigation and appears to be strong for this

setting, suggesting that the strength of individual-level surrogacy can be reliably detected.

7.2 Discussion and Recommendations

When considering future evaluation of surrogate endpoints, this research provides valuable

insights into issues that are previously unexplored, highlighting a number of findings and

allowing key recommendations to be made. Most notably, the two-stage meta-analytic

copula method, the most commonly used approach for the evaluation of time-to-event

surrogate and true endpoints, has been shown to be inappropriate for universal use when

considering progression-free survival as a surrogate for overall survival. Whilst the measure

performs reasonably well under certain circumstances, the impact of censoring and of

incorrectly specified dependence structures leads to results that can cause false conclusions
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of reliable surrogacy. This finding is particularly relevant, since there have been a number

of applications of the approach to this setting, for a variety of cancers (Chibaudel et al.,

2011; Foster et al., 2011, 2015). Whilst Burzykowski et al. (2001) acknowledge the need

for careful consideration of the choice of copula due to the potential for bias, the approach

continues to be used in real-life applications with minimal discussion of the consequences.

To address the problem, Alonso et al. (2017) discuss the potential to use an alternative

approach that separates progression-free survival into the individual components of the

endpoint (disease progression and death), but this approach has been subject to criticism,

as the resulting surrogacy estimates then only reflect the individual disease states and not

the overall endpoint (Ghosh et al., 2012).

This research also highlights deficiencies in the information theory approach when

based on time-to-event outcomes. The measure of association used within this approach

to estimate the information gain has been found to provide values that are much lower than

what would be expected based on the underlying strength of surrogacy and the estimated

covariate effects. The implications of this are that the approach would likely not reach

values that would be high enough to conclude that a surrogate endpoint can adequately

predict the true outcome for a patient. Further, the high variability in estimates when

based on small sample sizes indicates that it is very difficult to achieve reliable conclusions.

Despite the benefits of the information theory concept, it is difficult to conclude that

the currently proposed approach can be used in practice when assessing time-to-event

endpoints. It should be noted that these limitations are not relevant for the information

theory approach when applied to endpoints of a different type, which is still considered to

offer benefits in such settings (Alonso et al., 2017).

The measure of Total Gain developed in this research, TGSTD,Z(t), offers an alternative

approach to the evaluation of individual-level surrogacy that shares many of the benefits of

the information theory approach, but is less susceptible to the drawbacks of that approach.

Being computationally simple to calculate, it also offers substantial benefit over the two-

stage meta-analytic copula method, which is hampered by complex numerical processes
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and is subject to convergence issues. Results have demonstrated that TGSTD,Z(t) provides

reliable estimates of the underlying strength of association between surrogate and true

endpoints through quantification of the ability of the surrogate to predict the true outcome,

after adjusting for treatment effects on both endpoints. The measure has been shown to

be largely unaffected by censoring, with only minor changes based on the dependence

structure of the datasets being analysed.

Based on the totality of findings from this research, the following recommendations are

considered to be appropriate. Firstly, when considering a surrogate endpoint that does

not capture information directly relating to the true clinical endpoint, such as time-to-

progression, it is recommended that both the two-stage meta-analytic copula method and

the new measure, TGSTD,Z(t) are used to evaluate individual-level surrogacy. The ratio-

nale for this recommendation is based on the strong performance of the former method

under correctly specified models, and the finding that the TGSTD,Z(t) measure may pro-

vide slight under-estimation of the true underlying surrogacy when assessing time-to-

progression as a surrogate endpoint. Whilst the two-stage meta-analytic copula method

was found to be impacted slightly by the change in dependence structure, this only af-

fected the ability of the method to identify truly strong surrogate endpoints when there

was a high proportion of patients censored. In addition, alternative copula models could

be used in the estimation process if these were considered to better reflect the observed

data dependence structure. The robustness of the TGSTD,Z(t) measure to censoring would

hopefully support the findings from the two-stage meta-analytic copula method, leading

to reasonably similar results and conclusions. It is not recommended that the information

theory approach be used, unless the amount of data available for analysis is substantially

larger than that examined herein.

When the more appropriate surrogate endpoint is one that also contains information

directly related to the true endpoint, such as progression-free survival, it is recommended

that the TGSTD,Z(t) measure be used for the primary evaluation of surrogacy. The re-

sults of the simulation studies presented herein have demonstrated that TGSTD,Z(t) is
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robust to censoring, is estimated with reasonable precision, and importantly reflects and

distinguishes the underlying strength of association between endpoints. The timing of the

analysis, as mentioned above, is considered important, and it is recommended that this be

within the middle range of the Kaplan-Meier distribution for the true endpoint, such that

there are sufficient patients with events of interest, and sufficient patients remaining at

risk of an event, for the difference in predicted survival probabilities to remain meaningful.

Use of the two-stage meta-analytic copula method and the information theory method is

not recommended for this setting.

7.3 Further Work

While this research leads to a number of original findings, and allows for recommendations

for the future statistical evaluation of surrogate endpoints, there are a number of poten-

tial areas for further research. Most notably, the TGSTD,Z(t) method developed as part

of this research is focused on individual-level surrogacy, but may also offer advantages in

the assessment of trial-level surrogacy. The interpretation of the measure would remain

intuitive, as the ability of the treatment effect on the surrogate endpoint to predict treat-

ment effect on the true endpoint. Whilst alternative models would need to be selected to

calculate the required parameters, the concept of Total Gain would be the same. Total

Gain is already developed for binary and survival settings, and the extension to alternative

models would be possible. Given the promising performance of Total Gain even under the

small sample sizes considered here, such a development would allow further investigation

into the assessment of surrogacy from these small sample sizes, to determine whether it is

possible for trial-level association to be reliably estimated.

Throughout this thesis, consideration has been for the common setting in which time-

to-event endpoints are analysed using proportional hazards models or Kaplan-Meier es-

timation. In practice, extensions or alternatives to these models may be of interest, for

example those that can handle interval censoring. In many clinical trials, disease status
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is determined at fixed timepoints, rather than on a continual basis, particularly when

patients are required to go to hospital for their assessment. In such settings, a change

in the disease can only be detected at the time of an assessment, with the actual date

of the disease progression lying in the interval between disease assessments but not being

specifically known. Assuming that disease progression occurs on the date of the assess-

ment can lead to bias in estimating model parameters (Heller, 2011), and so it would be

of interest to examine how these might impact the surrogacy evaluation. All three of the

surrogacy methods examined are able to incorporate interval censoring through changes in

the choice of models used for analysis; via the marginal distribution functions (two-stage

meta-analytic copula model), the form of the relative risk (information theory method)

or the models used to predict survival status at a given time (Total Gain). Examples of

alternative models that can be used for interval censoring can be found in Heller (2011).

The scenarios examined in this thesis have paid close attention to the impact of sur-

rogate endpoints that do or do not incorporate information from the true endpoint, via

use of PFS and TTP respectively. Definitions of these endpoints follow recommendations

of health authorities (FDA, 2007), where PFS includes the event of death, whereas TTP

treats death as a censored event. It is important to note that handling of death events in

this way introduces informative censoring, meaning that the censoring tells us something

about the endpoint of interest. If a patient has died without prior disease progression,

it is not possible to know the actual time that disease progression occurs, and moreover

it may not be possible to know whether the death was caused by undetected disease

progression. When censoring is assumed at the time of death, this ‘drop-out’ from the

dataset may not therefore be independent of the actual (unobserved) event time, which

invalidates the assumptions of many survival analysis techniques, including proportional

hazards regression and Kaplan-Meier estimation. A number of alternative approaches are

available to explore this so-called ‘competing risks’ setting (Austin et al., 2016), including

use of the Cox proportional hazards model to estimate ‘cause-specific’ hazard functions,

which represent the hazard of a particular event of interest, such as disease progression.
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Further, cumulative incidence functions have been proposed as potential replacements of

the Kaplan-Meier function, which has been shown to over-estimate the probability of ob-

serving the event of interest (Putter et al., 2007). Whilst all three surrogacy methods

are able to incorporate these alternative models, their use has not been explored in the

literature, and it would be of interest to further examine these options to accommodate

endpoint symmetry, something that has been shown to adversely affect performance of

the two-stage meta-analytic copula model. Further examination of alternative approaches

would help to establish whether differences in results between TTP and PFS, or similar

endpoints, can be improved.

As previously mentioned, the investigations within this research have focused on fixed

values of individual and trial-level surrogacy that are assumed constant across all clinical

trials included in each individually simulated meta-analysis. Further investigation using

varied strengths of surrogacy may better reflect the real-life setting, and it would be of

interest to understand how such changes may impact the estimation of TGSTD,Z(t), as

well as the two-stage meta-analytic copula and information theory measures.

Each of the measures described and investigated in this research provide values of

surrogacy that can range between zero and one, with no threshold for determining at

what point a surrogate can be considered to be established as reliable and appropriate for

future use. This has been a topic of much previous discussion, with very few examples

of thresholds being pre-specified before analysis of meta-analytic datasets. One example

where criteria for success were pre-specified is a recent examination of response rate as a

surrogate for progression-free survival (Shi et al., 2017), with consideration of thresholds for

both point estimates and lower confidence limits for surrogacy estimates. It is considered

likely that thresholds will be established over time, based on increased experience as well

as input from regulatory authorities. Each individual disease setting may be subject to

separate thresholds, depending on the severity of disease and intent of treatment. For fatal

diseases where the intent is to extend life, or where there are very few treatment options

available, it could be possible that more flexible thresholds are considered appropriate. In
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contrast, where the intent is to improve symptoms, or where there are already a number of

effective treatment options available, establishing surrogate endpoints for future use may

require higher confidence and reliability in results.

Finally, it would be worthwhile for future research to explore alternative data gen-

eration methods that can accurately reflect the true underlying strength of association

between endpoints without the use of a copula model. Whilst the use of lognormally dis-

tributed data was used herein to explore whether this had any impact on the performance

of the three measures investigated, it would be beneficial for further work to be undertaken

to determine whether more suitable approaches were possible.

The availability of appropriate statistical methodology for evaluating surrogate end-

points is a key contributing factor to their eventual use. Such methods must be designed

to provide reliable and accurate conclusions, but also to be easily understandable to non-

statisticians. However, the statistical methodology selected for use is also only a small

part of the overall picture. Engagement between statisticians, clinicians and regulatory

authorities is critical to ensure that both the statistical and non-statistical concepts of

each individual surrogacy evaluation are well understood and thoroughly considered, and

to further progress the use of surrogate endpoints in practice. This includes collabora-

tion between different companies within the pharmaceutical industry, with academic and

healthcare organisations, and with regulatory authorities, to establish standard practices

for surrogate endpoint evaluation in a consistent and recognised framework.

In conclusion, the research presented in this thesis has provided a number of original

contributions to the literature on the statistical evaluation of surrogate endpoints. The

development of a new methodology to evaluate individual-level surrogacy provides an al-

ternative option to researchers, an option that has been shown to perform well even in

the setting of small sample sizes. This addition to the range of available surrogate end-

point evaluation methodologies provides a reliable approach that can be used to evaluate

individual-level surrogacy in oncology settings and beyond, providing further benefit to

clinical and statistical researchers attempting to tackle this important topic.
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Figure A.1: Boxplots of estimates of τ : TTP, Clayton Copula Data Generation, Clayton

Copula Application (wider range of treatment effects on T )
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Figure A.2: Boxplots of estimates of τ : TTP, Gumbel Copula Data Generation, Clayton

Copula Application (wider range of treatment effects on T )
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Figure A.3: Boxplots of estimates of τ : PFS, Clayton Copula Data Generation, Clayton

Copula Application (wider range of treatment effects on T )
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Figure A.4: Boxplots of estimates of τ : PFS, Gumbel Copula Data Generation, Clayton

Copula Application (wider range of treatment effects on T )
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Figure A.5: Boxplots of estimates of R2
trial: TTP, Clayton Copula Data Generation,

Clayton Copula Application (wider range of treatment effects on T )
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Figure A.6: Boxplots of estimates of R2
trial: TTP, Gumbel Copula Data Generation,

Clayton Copula Application (wider range of treatment effects on T )
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Figure A.7: Boxplots of estimates of R2
trial: PFS, Clayton Copula Data Generation,

Clayton Copula Application (wider range of treatment effects on T )
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Figure A.8: Boxplots of estimates of R2
trial: PFS, Gumbel Copula Data Generation,

Clayton Copula Application (wider range of treatment effects on T )
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Figure A.9: Boxplots of estimates of τ : TTP, Lognormal Data Generation, Clayton

Copula Application
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Figure A.10: Boxplots of estimates of τ : PFS, Lognormal Data Generation, Clayton

Copula Application
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Figure B.1: Confidence Intervals for R2
h,i (R2

trial = 0.5, N = 4, n = 80): TTP, Clayton

Copula Data Generation, Information Theory Application (values of R2
h,i ordered from

smallest to largest for easier interpretation) - 0% censoring (top row), 30% censoring

(middle row), 60% censoring (bottom row); τ = 0.2 (left column), τ = 0.5 (middle

column), τ = 0.8 (right column)
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Figure B.2: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.3: Boxplots of estimates of R2
h,i: TTP, Gumbel Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.4: Boxplots of estimates of R2
h,i: PFS, Clayton Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.5: Boxplots of estimates of R2
h,i: PFS, Gumbel Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.6: Boxplots of estimates of R2
trial: TTP, Clayton Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.7: Boxplots of estimates of R2
trial: TTP, Gumbel Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.8: Boxplots of estimates of R2
trial: PFS, Clayton Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.9: Boxplots of estimates of R2
trial: PFS, Gumbel Copula Data Generation,

Information Theory Application (wider range of treatment effects on T )
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Figure B.10: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application (stronger treatment effects [HR 0.50 for PFS, HR 0.67

for OS])
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Figure B.11: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application (T-S)
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Figure B.12: Boxplots of estimates of R2
h,i: TTP, Gumbel Copula Data Generation,

Information Theory Application (T-S)
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Figure B.13: Boxplots of estimates of R2
h,i: PFS, Clayton Copula Data Generation,

Information Theory Application (T-S)
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Figure B.14: Boxplots of estimates of R2
h,i: PFS, Gumbel Copula Data Generation,

Information Theory Application (T-S)
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Figure B.15: Boxplots of estimates of R2
h,i: TTP, Clayton Copula Data Generation,

Information Theory Application (T-S) (wider treatment effects)
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Figure B.16: Boxplots of estimates of R2
h,i: TTP, Gumbel Copula Data Generation,

Information Theory Application (T-S) (wider treatment effects)
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Figure B.17: Boxplots of estimates of R2
h,i: PFS, Clayton Copula Data Generation,

Information Theory Application (T-S) (wider treatment effects)
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Figure B.18: Boxplots of estimates of R2
h,i: PFS, Gumbel Copula Data Generation,

Information Theory Application (T-S) (wider treatment effects)
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Appendix C

Total Gain Method

Additional Results
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Figure C.1: Boxplots of estimates of TGSTD,Z(t) at Percentiles of OS: TTP, Clayton

Data Generation, Total Gain Application
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Figure C.2: Boxplots of estimates of TGSTD,Z(t) at Percentiles of OS: TTP, Gumbel
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Figure C.3: Boxplots of estimates of TGSTD,Z(t) at Percentiles of OS: PFS, Clayton
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Figure C.5: Boxplots of all surrogacy methods: TTP, Clayton Copula Data Generation
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Figure C.6: Boxplots of all surrogacy methods: TTP, Gumbel Copula Data Generation
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Figure C.7: Boxplots of all surrogacy methods: PFS, Clayton Copula Data Generation
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Figure C.8: Boxplots of all surrogacy methods: PFS, Gumbel Copula Data Generation
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Clinical trials of experimental treatments must be designed with primary endpoints

that directly measure clinical benefit for patients. In many disease areas, the

recognised gold standard primary endpoint can take many years to mature, leading

to challenges in the conduct and quality of clinical studies. There is increasing inter-

est in using shorter‐term surrogate endpoints as substitutes for costly long‐term clin-

ical trial endpoints; such surrogates need to be selected according to biological

plausibility, as well as the ability to reliably predict the unobserved treatment effect

on the long‐term endpoint. A number of statistical methods to evaluate this predic-

tion have been proposed; this paper uses a simulation study to explore one such

method in the context of time‐to‐event surrogates for a time‐to‐event true endpoint.
This two‐stage meta‐analytic copula method has been extensively studied for time‐
to‐event surrogate endpoints with one event of interest, but thus far has not been

explored for the assessment of surrogates which have multiple events of interest,

such as those incorporating information directly from the true clinical endpoint.

We assess the sensitivity of the method to various factors including strength of asso-

ciation between endpoints, the quantity of data available, and the effect of censoring.

In particular, we consider scenarios where there exist very little data on which to

assess surrogacy. Results show that the two‐stage meta‐analytic copula method per-

forms well under certain circumstances and could be considered useful in practice,

but demonstrates limitations that may prevent universal use.

KEYWORDS

meta‐analysis, oncology, progression‐free survival, surrogate endpoint, time to progression

1 | INTRODUCTION

Over recent years, the pharmaceutical industry has become increasingly aware of the need to improve efficiency in the drug
development process, through innovative clinical trial design, increased data sharing, and focus on personalised health care.
One important factor in this process is the choice of clinical trial primary endpoint, upon which direct evidence of clinical
benefit is required. Within oncology diseases, for example, this choice of endpoint has commonly been overall survival
(OS), being objective, reliable, and easy to measure. However, demonstrating a clinical benefit in survival is becoming increas-
ingly complex because of increasing survival times of patients, higher trial costs, increased availability of alternative therapies,
and public demand for quicker treatment availability. As such, many researchers are proposing to substitute long‐term clinical
endpoints with shorter‐term surrogate endpoints that can be assessed in less time and with less cost. For example, a measure of
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tumour shrinkage, or a composite endpoint of disease progression and death, have often been used as substitutes for OS in the
assessment of oncology treatments. Use of these endpoints allows treatments to be developed faster and subsequently made
more affordable for payers. This approach has seen increasing popularity, with many recent drug approvals based on the so‐
called surrogate endpoints.[1]

To replace a long‐term clinical trial endpoint with one or more surrogates, it is necessary to evaluate whether the unob-
served clinical benefit of treatment on the established longer‐term endpoint can be reliably predicted by the observed treatment
benefit on the surrogate endpoint(s). As a result of the potential variation in treatment benefit amongst different diseases, patient
populations, and disease‐modifying mechanisms of new treatments, this evaluation must be conducted for each potential appli-
cation of a surrogate endpoint. In many cases, access to data may be limited to a very small subset of comparable data, such as
that collected during a single clinical development programme.

Over the last 25 years, there have been many contributions to the statistical literature regarding methodology for evaluating
surrogate endpoints. These include single‐trial hypothesis testing methods,[2] approximation methods,[3–7] and meta‐analytic
methods combining data from multiple trials or subgroups within trials[8–17]; a useful summary can be found in the review arti-
cle written by Weir and Walley,[18] along with an updated version written by Ensor et al.[19] In recent applications (as seen in
Buyse et al[20] and Laporte et al[21]), the two‐stage meta‐analytic copula method of Burzykowski et al,[12] an extension to the
original two‐stage meta‐analytic method proposed by Buyse et al for continuous endpoints,[10] has frequently been used. Based
on a meta‐analysis of many clinical trial datasets, this approach proposes surrogacy measures on the basis of modelling the joint
survival distribution of the surrogate and long‐term clinical endpoints.

In the case of time‐to‐event surrogate and true clinical endpoints, investigation into the performance of this method has thus
far been restricted to surrogate endpoints that have one outcome of interest, such as exploration of time to progression (TTP) as
a surrogate for OS in oncology studies. In reality, to maximise the number of events, decrease clinical trial durations, and
improve the clinical relevance of endpoints, alternative endpoints that consider multiple events of interest are commonly used
to assess the clinical benefit of new therapies. Such endpoints, including progression‐free survival (PFS), may also incorporate
information from both a shorter‐term and the true clinical endpoint. Progression‐free survival is a commonly used endpoint in
oncology studies and has been used as the basis for regulatory approval in a number of disease areas.

An alternative surrogacy evaluation approach has been proposed for endpoints that capture multiple events of interest, such
as PFS, through the use of a semicompeting risks framework.[22] However, this method is based on separation of the surrogate
endpoint into the individual events of interest, and resulting surrogacy evaluations may then not reflect how the commonly
defined surrogate endpoint would behave when used in a new clinical study. Whilst the separation of events may offer benefit
in some settings, this is not considered a suitable approach when assessing surrogate endpoints that have strong clinical and
regulatory understanding and acceptance as measures of clinical benefit, such as PFS in oncology settings.

In this paper, a simulation study is used to assess the performance of the two‐stage meta‐analytic copula method in the eval-
uation of two commonly used time‐to‐event endpoints (TTP and PFS) as surrogates for OS in the specific example of oncology
clinical trials, for the case where there are limited data available on which to base surrogacy decisions. The aim is to reflect the
use of the method from a pharmaceutical industry perspective, where there exist data from a limited number of small‐sized clin-
ical trials only, and it is desirable to determine whether a short‐term surrogate endpoint can be used in subsequent confirmatory
trials. Although the endpoints here are examples of those in oncology clinical trials, the investigation is applicable to any setting
where a potential surrogate endpoint also captures data relevant to the true clinical endpoint. The performance of the method
has been assessed previously through simulation studies,[23] including for small sample sizes[24]; however, these studies have
focused on the scenario where the surrogate endpoint is defined as the time to one particular event of interest, independent
of the true clinical endpoint. The impact of using a surrogate endpoint that is defined as the time to either a short‐term event
or the true clinical event of interest will therefore be assessed here.

Section 2 contains brief details of the surrogacy method under exploration in this study, and Section 3 describes the set‐up
of the simulations, including two different underlying data structures, the two different surrogate endpoints, and various com-
binations of other factors of interest. Results can be found in Section 4, and Section 5 discusses the findings and makes recom-
mendations for future use of the method.

2 | TWO ‐STAGE META ‐ANALYTIC COPULA MODEL

To thoroughly assess a potential surrogate endpoint, Burzykowski et al[25] recommend to explore 2 levels of prediction: the abil-
ity to predict the unobserved treatment effect on the established long‐term endpoint given the observed treatment effect on the
surrogate (trial‐level surrogacy) and the ability of the surrogate to predict the actual outcome for a given patient, after adjusting
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for the treatment assignment (individual‐level surrogacy). It is desirable for a surrogate endpoint to perform well at both of these
levels, to provide confidence in its use as a substitute endpoint in further clinical development.

The two‐stage meta‐analytic copula method proposed by Burzykowski et al[12] assesses both levels of surrogacy through
parameters of the joint survival distribution of the surrogate and long‐term (true) endpoints. Using a copula model, specification
of the joint survival distribution is achieved using the marginal survival functions of each variable, together with a function that
relates the underlying dependence between them. Surrogacy is evaluated through a two‐stage procedure, where stage one fits
the copula to the data to obtain maximum likelihood estimates of treatment effects within each trial, as well as the level of
dependence between the endpoints, from which an individual‐level measure of surrogacy is derived. Stage two uses random
effects modelling to calculate the coefficient of determination between the estimates of the treatment effects, and this is used
as the trial‐level measure of surrogacy.

Suppose there exist data from i=1 , … ,N trials each containing j=1 , … , n patients with surrogate and true endpoint out-
comes Sij and Tij, respectively, for patient j in trial i. Then, the general form of the joint survival function of the two endpoints is
defined as

S s; tð Þ ¼ P Sij≥s; Tij ≥ t
� � ¼ Cθ SSij sð Þ; STij tð Þ

� �
;

with s , t≥ 0 , θ>1, where SSij and STij are the marginal survival functions of the surrogate and true endpoints respectively and Cθ

is a bivariate distribution function on [0, 1]2 with uniform margins. This distribution function is based on a copula function,
describing the strength of association between the two endpoints through the parameter θ. For some copula functions, θ can
be directly interpreted as an association measure, whereas for other copula models, it can be transformed to another measure,
such as Kendall's τ,[26] to ease interpretability and allow comparison between models. As such, Kendall's τ is the chosen esti-
mator of individual‐level surrogacy for the proposed two‐stage meta‐analytic copula surrogacy method. There are various
options for choice of copula function,[23] one of which is the Clayton copula, a one‐parameter function chosen for simplicity.
Based on this copula, the joint survival function is defined as

Cθ SSij sð Þ; ST ij tð Þ
� � ¼ SSij sð Þ1−θ þ STij tð Þ1−θ−1

� � 1
1−θ
; θ > 1: (1)

Marginal survival functions for S and T, SSij sð Þ, and STij tð Þ are assumed to follow proportional hazards models with baseline
hazards parametrically specified using a Weibull distribution, although these baseline hazards could also be left unspecified.[23]

With this copula function, Kendalls' τ can be conveniently estimated using τ ¼ θ−1
θþ1 :

Once stage one of the procedure is applied and estimated trial‐specific treatment effects on surrogate and true endpoints,
(αi, βi), respectively, are available, the second stage of the evaluation process can be performed by assuming a reduced random
effects model for these treatment effects:

αi

βi

� 	
¼ α

β

� 	
þ ai

bi

� 	
;

where (α,β) are fixed treatment effects and the random effects (ai, bi) are assumed to follow a zero‐mean normal distribution
with variance‐covariance matrix

D ¼ daa dab
dab dbb

� 	
:

The trial‐level measure of surrogacy is then estimated as

R2
trial ¼

d2ab
daadbb

: (2)

A value of R2
trial close to 1 would suggest that almost all of the variability in the treatment effect on the true endpoint is

explained by the treatment effect on the surrogate, whereas a value close to 0 would suggest that knowledge of the treatment
effect on the surrogate explains little of the variation in the treatment effect on the true endpoint.

Burzykowski et al[12] discuss bias introduced into the trial‐level R2 in Equation 2, caused by the estimation error of the treat-
ment effects coming from stage one of the model. To reduce this bias, the method proposed by van Houwelingen et al[27] is

DIMIER AND TODD 3



suggested to provide an adjusted version of the trial‐level surrogacy measure. However, it is noted that these adjusted estimators
are often not available because of nonconvergence and inadmissible estimates (outside of [0,1]), which therefore precludes their
use in practice.[23] Although alternative approaches have been proposed,[28] these adjusted measures are not further explored in
our study as they are limited to estimation of R2

trial only and it is our intention to assess both individual‐level and trial‐level sur-
rogacy in a consistent framework. The application of the two‐stage meta‐analytic copula method in this study is performed mak-
ing use of publicly available code.[29]

A positive feature of the two‐stage meta‐analytic copula method is that it can be based on any choice of copula function, and
indeed, Burzykowski et al[12] describe the importance of selecting an appropriate copula based on the goodness of fit, suggest-
ing a number of ways that this can be done. To explore how the choice of copula can impact interpretation of results, we con-
sider two scenarios in our study. First, we consider performance of the surrogacy method under ideal conditions, where there is
no model misspecification and the data are generated to have the same dependence structure assumed by the model. Further to
this, we assess the reliability of results when there is model misspecification, by generating data using a different copula func-
tion with different underlying data structure to the model being applied.

Renfro et al[30] also explore the impact of different dependence structures, assessing performance of the two‐stage meta‐ana-
lytic copula method when the underlying data are generated using a Clayton copula constructed using cumulative distribution
functions instead of survival functions. These two functional constructs allow the same copula function to reflect different
dependence structures, thereby assessing the performance of the method in the presence of misspecified dependence. Our work
differs from this concurrent work in that we maintain use of the survival implementation of the copula function and assess how
results are affected when the surrogate endpoint includes information directly reflecting the true clinical endpoint. We also
assume considerably smaller sample sizes and explore the impact of medium‐high censoring across all scenarios.

2.1 | Motivating example

To see how the two‐stage meta‐analytic copula surrogacy method can be applied in practice, we have used it to assess surrogacy
within the context of a phase III study of Herceptin plus chemotherapy versus chemotherapy alone in the treatment of HER2
positive advanced gastric cancer.[31] The primary analysis of this study included 584 patients who were randomly assigned
to receive one of two study treatments. The primary endpoint of the study was OS, with PFS included as a secondary endpoint.
An interim analysis of OS was performed after 75% of the required events had been observed, and at this time, the treatment
difference (hazard ratio 0.74; 95% confidence interval, 0.60‐0.91; median OS of 13.8 versus 11.1 months in the experimental
and control arms) was sufficient to cross the prespecified stopping boundary. The PFS result was consistent with that of OS,
demonstrating evidence of a statistically significant benefit from treatment with experimental therapy compared to control
therapy (median PFS 6.7 versus 5.5 months and hazard ratio 0.71 [95% confidence interval, 0.59‐0.85]).

In practice, data from multiple studies would be available to assess surrogacy, and each study would represent an individual
unit for analysis. However, in this example of a single‐clinical trial, the data are grouped according to country, with each country
considered to represent a substudy within the trial. Further discussion of this approach can be found in Renfro et al.[24]

Countries containing 7 or fewer patients were grouped by geographical region to allow for parameter estimation; 2 countries
were removed from analysis because of small numbers and the absence of a geographically similar country to combine with
(n = 4 and n = 6 patients, respectively). Based on the remaining dataset of 574 patients, results from the application of the
surrogacy method show that the R2

trial point estimate (0.57) likely does not support the use of PFS as a surrogate, whereas
the individual‐level surrogacy (τ=0.67) could be considered worthy of further investigation.

3 | SIMULATION STUDY

As mentioned above, the two‐stage meta‐analytic copula method has previously been assessed via a simulation study.[23] How-
ever, this study was limited in that the impact of the underlying data‐generation procedure was not considered, only one type of
surrogate endpoint with one event of interest was used, and it was based on sample sizes that are not always realistic in practice.
Additional studies designed to address some of these concerns have been conducted[24,30]; however, none have explored the
impact on the joint modelling of using a surrogate endpoint that includes the true endpoint as an event of interest.

The study presented in this paper addresses these concerns by exploring a comprehensive range of factors, as outlined in
Table 1.

There are a number of aims of our study; the first is to determine how well the method performs when using a surrogate end
point that combines multiple events of interest, including the event of interest for the true endpoint. In the original simulation
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study performed by Burzykowski et al,[12] the simulated data are constructed according to a TTP scenario, where the surrogate
is censored by occurrence of the true endpoint, rather than being considered an event. Our study generates data according to
both TTP and PFS algorithms, to determine whether there is any impact of using a surrogate that also includes information relat-
ing to the true endpoint. In this setting, PFS is defined as the time to the earliest of disease progression or death. This is con-
sidered highly relevant since many of the applications of this surrogacy evaluation approach have been based on the use of
composite endpoints such as PFS, yet the method has not been explored for this setting via simulation.

The second aim of our study is to assess the performance of the method when there are a very small number of trials with very
few patients. Although small‐sample simulation studies were performed by Burzykowski et al,[12] the authors considered 10 or 20
trials containing 50, 100, or 200 patients, which may be considered too many trials compared to those available within a single‐
clinical development plan. Further studies of the two‐stage meta‐analytic copula method have explored small sample sizes[24];
however, these studies did not examine in detail the impact of censoring or changes in the underlying trial and individual‐level
surrogacy. Our study therefore considers 4 to 6 clinical trials containing 80 to 120 patients each, estimating both τ and R2

trial.
One of the most important factors in setting up this simulation study is ensuring that the individual‐level and trial‐level asso-

ciation can be accurately controlled. To achieve this, Burzykowski et al[12] control individual‐level association through use of a
copula model for data generation, with a chosen copula dependence parameter reflecting the strength of surrogacy. Using the
copula parameter allows for clear and simple controlling of the individual‐level dependence between endpoints; however, since
our application of the two‐stage meta‐analytic copula method is based on the Clayton copula model, our study uses the Clayton
as well as the Gumbel copula functions for data generation to assess the impact of model misspecification. These two copula
functions assume different underlying dependence structures of the endpoints and are discussed further in Sections 3.1 and
3.2. In all cases, we construct the joint survival function using exponential survival functions as the marginal distributions of
the two endpoints. Inclusion of both of these data generation methods allows us to investigate how the two‐stage meta‐analytic
copula method performs both under ideal conditions and under model misspecification.

Finally, the original simulation study investigating the two‐stage meta‐analytic copula method considered just 500 repeti-
tions of the generated datasets, likely because of computational restrictions. Given the extensive list of parameters of interest
in our study, which is summarised in Table 1, and the expected computation time, it was felt that the largest number of runs
that could be achieved in a reasonable time frame was 5000 per scenario. Simulations were run on a Windows 7 64‐bit machine
with 4 GB RAM, using macros based on SAS software, version 9 for Windows.[32]

As can be seen in Table 1, in addition to factors described above relating to the number and size of trials and type of end
point, values of low (0.2), medium (0.5), and high (0.8) individual and trial‐level surrogacy are considered, under varying pro-
portions of censoring. Very few studies have considered low levels of association between endpoints, and those that have were
either limited in the number of scenarios under detailed investigation[24] or were based on much larger sample sizes.[30] Addi-
tionally, although the range of treatment effects within trials is not of primary interest in this study, previous studies have shown
variations in performance of the copula model under various ranges of effects, and so this was added as a final simulation
parameter. Simulation parameters were chosen to reflect data characteristics similar to the motivating example.

3.1 | Clayton copula data generation

The Clayton copula function with marginal survival functions takes the specific form of Equation 1, and to be consistent with
Burzykowski,[23] the marginal survival functions are chosen to follow an exponential survival distribution. As described by

TABLE 1 Simulation scenarios

Factor Scenarios

Number of trials 4, 6

Patients per trial 80, 120, mixed (50% each of 80, 120)

Surrogate endpoint TTP, PFS

Data generation Clayton, Gumbel

Trial‐level association 0.2, 0.5, 0.8

Individual‐level association 0.2, 0.5, 0.8

Censoring rate (on T), % 0, 30, 60

Abbreviations: PFS, progression‐free survival; TTP, time to progression.
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Burzykowski,[23] trial‐specific random effects are used to control the trial‐level association. To obtain draws of Sij and Tij from
the joint survival function according to the Clayton copula, the conditional distribution method was applied.[23,33] The algo-
rithm draws two independent random variables from a Uniform(0, 1) distribution, which are then transformed to be distributed
according to the joint survival function defined by the copula function, with strength of dependence controlled using the copula
dependence parameter. Once transformed, the two uniform random variables have the required shape and strength of association
and can be further transformed to survival outcomes according to the selected exponential marginal survivor functions. Based
on these marginal functions, the joint survival function provides strong upper‐tail dependence and weaker lower‐tail depen-
dence (see Burzykowski[23] for details).

The baseline hazards are chosen to reflect a scenario where the median value of the surrogate (5‐6 months) is approximately
half of that of the true endpoint (11‐12 months), therefore providing benefit in terms of the length of the study and being con-
sistent with the motivating example. The treatment effects are chosen such that the effect on S (hazard ratio ~0.67) is slightly
stronger than that on T (hazard ratio ~0.82), to reflect the potential influence of postprogression therapies and long‐term
follow‐up. Censoring is applied by drawing an exponential random variable and comparing to the simulated event values,
scaling the random value to control the proportion of censoring in the data (0%, 30%, and 60%). Since our true endpoint is
OS, the value of TTP as the surrogate is also censored by the true endpoint, if it occurs first. For PFS, when death occurs prior
to progression, the patient is considered to have an event at the time of death, and additional censoring is not applied.

Recall that although the copula parameter is used to control the level of dependence between the endpoints, it is not always
interpretable as a measure of association. Therefore, Kendall's τ is used to select the required individual association between end
points. For the Clayton copula, θ can be calculated directly from Kendall's τ using θ ¼ 1þτ

1−τ, and so values of θ were set to 1.5, 3,
and 9 to achieve true individual‐level association of 0.2, 0.5, and 0.8, respectively. To achieve the required true trial‐level
association values of 0.2, 0.5, and 0.8, the covariance values of the trial‐specific random effects were fixed as in
Burzykowski.[23]

3.2 | Gumbel copula data generation

Previous simulation studies of the two‐stage meta‐analytic copula method use the same copula function to both simulate data
and assess surrogacy. To investigate whether this can lead to a favourable bias in performance of the copula method, this paper
also presents results from simulations where data are generated according to the Gumbel copula. In particular, this approach
helps to investigate whether the choice of copula family being applied to the data impacts this method of assessing surrogacy.
Based on the joint survival function, the dependency structure of the Gumbel copula is different to the Clayton copula in that it
exhibits strong lower‐tail dependence (ie, earlier event times), whereas the Clayton exhibits strong upper‐tail dependence
(ie, later event times). For the two endpoints, S and T, the form of the Gumbel model is

Cθ SSij sð Þ; STij tð Þ
� � ¼ exp − − log SSij sð Þ� �1

θ þ − log STij tð Þ
� �1

θ

n oθ

 �

(3)

for 0< θ<1, where SSij sð Þ and STij tð Þ again represent exponential marginal survivor functions for S and T, respectively. The
conditional distribution method used to generate data from the Clayton copula cannot be so easily used to generate from the
Gumbel copula since the first derivative of the Gumbel copula is not invertible; however, the R copula package contains a func-
tion to generate correlated random variables according to the Gumbel copula. Since our simulation study makes use of available
macros based on SAS software to conduct copula modelling, our data were instead generated using the mixtures of powers algo-
rithm described by Trivedi and Zimmer.[34] Testing of both data generation methods provided datasets with comparable char-
acteristics. The first step of the algorithm is to generate a random variable, γ, from a positive stable distribution, as well as two
uniform variables from U(0, 1), Uij and Vij. These uniform variables are transformed using γ to be distributed according to the
Gumbel copula, with the required individual‐level association.

To generate γ, a uniform random variable η was drawn from U(0, π), and together with the required association level θ, this
draw was used to generate a value z according to

z ¼ sin η 1−θð Þð Þ sin ηθð Þð Þ θ
1−θ

sin ηð Þ 1
1−θ

;

which was then used to derive γ using a random variable, ω, drawn from a standard exponential distribution, as γ ¼ z
ω

� �1−θ
θ .

6 DIMIER AND TODD



Using this value of γ, Uij and Vij are transformed to be uniform variables, which are distributed according to the Gumbel
copula, using

eS0ij ¼ exp −
− log Uij

� �
γ

� 	θ
 !

;

eT0
ij ¼ exp −

− log Vij
� �
γ

� 	θ
 !

:

These two uniform random variables then have the required shape and strength of dependence of the Gumbel copula, and

the joint survival function can be constructed by further transforming eS0ij and eT0
ij to time‐to‐event draws, Sij and Tij, using mar-

ginal exponential survivor functions. Censoring was applied as described above. As with the Clayton copula, the required trial‐
level association is controlled within the covariance matrix D used in the marginal survivor functions, setting ρ equal to the
square root of the required association level. Here, the copula parameter θ can be calculated directly from Kendall's τ using
θ=1− τ, so values of θ were set to 0.8 , 0.5, and 0.2 to achieve true individual‐level association of 0.2 , 0.5, and 0.8, respectively.

3.3 | Choice of simulation parameters

To ensure the most realistic representation of true clinical trial data, certain scenarios were implemented within the data gener-
ation algorithm. Firstly, to reflect the impact of long‐term follow‐up of patients, in particular with respect to the requirement for
extended monitoring of disease progression, it was assumed that approximately 5% of patients would be censored for the sur-
rogate (TTP or PFS) earlier than their time of death. For the composite endpoint of progression and death (PFS), this means that
the death event was not used for these 5% patients, which is considered a realistic representation of cases where there is no reli-
able estimate for the true time of disease progression, for example, when there are multiple consecutive missing disease assess-
ments, or if alternative therapy has been started prior to evidence of disease progression.

For cases where OS was censored and the generated value of the surrogate was lower than OS, the surrogate was considered
as an event 80% of the time. This allows approximately 20% of patients to be censored for the surrogate earlier than the time of
censoring of OS, representing scenarios where patients withdraw consent from further medical procedures to determine disease
status or have disease assessments scheduled less frequently than other clinical trial visits. These factors are considered to reflect
true clinical trial settings.

4 | RESULTS

4.1 | Convergence

When using TTP as the surrogate endpoint, there were very few issues with convergence of the two‐stage meta‐analytic copula
method, with a maximum nonconvergence rate of 1.12%, most of which occurred for low levels of true individual‐level asso-
ciation. However, when PFS was used as the surrogate, nonconvergence was significantly worse, reaching as high as 61.3% for
low individual association. In both cases, the nonconvergence for medium‐high levels of individual association was close to
zero, and the issues were mainly found with the low level of true individual association, and this was consistent between the
Clayton and Gumbel generated data. The results in this section are therefore based only on those runs that successfully con-
verged, and those that did not converge were not replaced. Since there are approximately 2000 successful runs for even the
worst cases of nonconvergence, it was felt that this was substantial enough to assess the performance of the method, recalling
that previous simulation study to assess the copula used only 500 runs. On occasion, there was also a lack of convergence
caused by the choice of initial values. Following Burzykowski,[23] when this occurred, the result from the previous repetition
was used, and a sensitivity analysis of available results showed that this was a reasonable approach, with no noticeable differ-
ences in the overall conclusion.
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4.2 | Individual‐level performance

Figure 1 illustrates the estimated τ values across the simulation scenarios of interest. Each boxplot shows the range of esti-
mated values across all runs, with the level of censoring along the x‐axis and the true underlying individual‐level association
on the y‐axis. Within the figure, the individual plots display results from the two‐stage meta‐analytic copula method with
Clayton data generation on the top row and Gumbel data generation on the bottom row, with TTP in the left column and
PFS in the right column. Since there was little difference in varying the number of trials or sample size within trials, only
the smallest sample sizes are presented to illustrate the worst‐case scenario (4 trials of 80 patients). Results of larger sample
sizes can be found in the Supporting Information. Additionally, since there was little variation in results with varying true
underlying trial‐level association, the results presented here represent only scenarios with R2

trial ¼ 0:5. Results for varying
values of R2

trial can also be found in the Supporting Information. Horizontal dashed lines at y=0.2 , 0.5 , 0.8 represent the true
individual‐level surrogacy being estimated by each set of 3 boxplots from left to right.

As can be seen, the method performs reasonably well for the TTP scenarios using Clayton‐generated data (Figure 1, top
left). Consistent with the original simulation study of this method by Burzykowski,[23] results were mostly estimated with
low average relative bias (maximum 2.8%) despite the small sample sizes explored here, with median estimates lying directly
on the respective reference lines. However, variability is relatively high for low‐medium levels of association, particularly when
there is a high level of censoring. Under the Gumbel data generation (Figure 1, bottom left), it is clear that the performance for
TTP deteriorates, with slightly increased variability and a noticeable underestimation under the presence of little to no censor-
ing. Overall, the maximum average relative bias is −38.1%, demonstrating that the method most often underestimates the true
level of association and could therefore be interpreted as a slightly conservative estimate. However, this interpretation could be
hampered by the increased variability. Reassuringly, true high levels of association are estimated with the lowest variability, pro-
viding confidence that a large estimated value does in fact correspond to high true association between endpoints.

Whilst results for TTP appear reasonably robust and similar to previous studies, the change to use of PFS as the potential
surrogate causes significant issues, even for the Clayton data generation that should reflect the most ideal scenario. In addition
to the aforementioned convergence, there is substantial impact on the performance of the method in estimation of low to
medium levels of individual‐level surrogacy. Whilst good estimation of truly high association remains, in the little explored sce-
nario of low levels of true association, the estimated τ could be as high as 0.7 for both data generation methods, which could
lead to a false conclusion that PFS is predictive of OS. The large variability for the true low levels of association also leads to
overlap between low and medium association levels, particularly under increased censoring, which hampers interpretation of
estimates that lie within a medium‐high range (0.4‐0.7). For estimates even towards the upper limit of this range, it is not

FIGURE 1 Estimated values of τ
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realistically possible to conclude that the true underlying association is higher than 0.2. This issue is exacerbated by increased
censoring, and there was no improvement from testing with larger sample sizes. Interestingly, the issues introduced through
inclusion of PFS as the surrogate have impacted both data generation methods in a similar way, although slightly more impact
is seen for the Gumbel data than for the Clayton copula, as could be expected.

4.3 | Trial‐level performance

Figure 2 contains similar boxplots to those for individual‐level surrogacy, with the y‐axis now representing true underlying trial‐
level surrogacy. As before, only results for the smallest sample sizes are presented (4 trials with 80 patients), and the individual‐
level surrogacy is held at τ=0.5. Since results were extremely similar between the two data generation methods, only results
from the Clayton‐generated data are presented here.

When considering the ability to predict the treatment effect on the true endpoint given the observed treatment effect on the
surrogate, it is evident that given the small sample sizes considered here, the method cannot be deemed appropriate for use in
this setting. For both endpoints and both data generation methods, the surrogacy evaluation method performs poorly. Although
the average estimated value is sometimes close to the true association level, and there is a slight trend upwards as the true under-
lying association increases, it is also quite often the case that the true association is over or underestimated. Additionally, there is
a large amount of variability in the results, withR2

trial estimates lying across the entire unit interval. Finally, there appeared to be a
slight dependence between the individual‐level and trial‐level association, with increasing R2

trial estimates with increased true
individual association. To verify results of previous simulation studies conducted by Burzykowski et al,[12] additional simula-
tions were run for larger samples containing 20 trials of 500 patients. The results of these simulations suggested that estimation
of R2

trial could indeed be much improved through inclusion of a larger number of studies with larger sample sizes, if those data
are available. In summary, the method did not allow for clear data interpretation of R2

trial and cannot be recommended for trial‐
level analysis of meta‐analyses of the size investigated here. The use of study centres within studies as units for surrogacy eval-
uation has been investigated[24] and will be discussed further in Section 5 in the context of the scenarios explored in this study.

5 | DISCUSSION

The main aim of this simulation study was to assess the performance of the two‐stage meta‐analytic copula method with respect
to use of a surrogate endpoint that combines information from a short‐term and true clinical endpoint. In addition, it was of
interest to evaluate estimation of trial and individual‐level surrogacy for small samples, a scenario that is commonly faced by
individual pharmaceutical companies wishing to increase efficiency in clinical development programmes through the use of

FIGURE 2 Estimated values of R2
trial
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surrogate endpoints. A large range of scenarios were considered, including varied sample sizes, varying strength of individual‐
level and trial‐level surrogacy, and different levels of censoring.

In line with the simulation study performed by Burzykowski,[23] the two‐stage meta‐analytic copula method performed well
in estimating τ for the TTP endpoint, with the level of variability reflecting the small sample sizes used in this study. The change
in underlying data structure led to slight underestimation, but overall, the estimates were not alarmingly different to the true
values, although variability was considerably high in some cases. At worst, the estimates could be considered as lower bounds
of the true association.

For diseases where a high proportion of patients will die before they experience disease progression, TTP is not considered a
feasible choice of surrogate endpoint. In oncology drug development, for example, PFS is used much more commonly, since
events accumulate faster, trials can be conducted in a shorter period of time and patients who die without disease progression
are not lost through censoring. The two‐stage meta‐analytic copula method is currently recommended for use with any time‐to‐
event surrogate,[23] but results from this study show that caution is required when considering endpoints that incorporate infor-
mation from the true clinical endpoint (eg, PFS) as a possible surrogate endpoint, since a true low (0.2) level of individual asso-
ciation has been shown to be estimated as high as 0.7 in our simulations. This would undoubtedly be convincing enough for a
clinician to consider moving forward with use of the surrogate, which could lead to a poor phase III design and ultimately
results that do not support the benefit of the treatment under development. This overestimation was observed even for the ideal
case where there was no model misspecification. For this reason, the two‐stage meta‐analytic copula method cannot be consid-
ered suitable for assessing surrogacy of PFS from clinical trials of the size used in our study. That said, since PFS is defined as
the earliest of disease progression and death, it acts as a composite of TTP and OS, and so an encouraging assessment of TTP as
a surrogate endpoint could warrant further clinical development on the basis of a PFS endpoint. We would therefore recommend
this approach over an assessment of PFS alone for oncology studies. Other diseases areas, such as cardiovascular disease, may
also use endpoints that combine multiple events of interest, and the findings from this study may therefore be applicable to these
settings also.

With reference to the case study presented in Section 2.1, the results of the simulations hamper the interpretation of the rea-
sonably high estimate of τ, as it is not possible to know whether the estimate reflects a truly high underlying association
between endpoints or overestimation of low association. This illustrates the uncertainty in conclusions that can be drawn from
the two‐stage meta‐analytic copula method when using PFS as the surrogate, particularly when aiming to evaluate surrogacy
from small samples.

Of course, in practice, it is necessary to fully understand the underlying structure of the data before selecting a particular
copula model to apply; Burzykowski et al[12] provide details of the surrogacy method for a selection of different copula func-
tions and suggest that the choice of final model should be based on the one with best fit to the data. Results of our simulations,
together with the work conducted by Renfro et al,[30] substantiate the need for careful selection of both the copula family and the
dependence structure, showing by two different approaches that when the dependence structure of the data is different to that
assumed by the model, results cannot be considered reliable. Importantly, results from our study demonstrate that even under
the ideal conditions, where the same survival copula function is used to generate and analyse the data, performance of the
method in evaluating PFS as a surrogate endpoint is suboptimal and potentially misleading.

Burzykowski et al[12] note that one limitation of the copula model is that surrogate and true endpoints are treated symmet-
rically so that either endpoint can be shorter or longer than the other. This is clearly not the case when considering OS as the true
endpoint, and so the authors highlight that caution is recommended when interpreting results. However, it would appear from
our study that there are additional complications with the joint modelling of PFS and OS that need to be explored further. The
work of Renfro et al[30] suggests that alternative modelling using a 2‐stage, rather than simultaneous, estimation procedure may
improve the performance of the two‐stage meta‐analytic copula method. However, this improvement was not seen uniformly
across all simulation settings, and so further examination of this is needed to determine whether it can improve the current per-
formance in the assessment of PFS as a surrogate for OS. A further option would be to consider an alternative method to model
the joint distribution of the two endpoints, for example, through use of a multistate model.[35] As discussed previously, a
semicompeting risks paradigm that accounts for the restriction of S being shorter than or the same as T has also been pro-
posed[22]; however, this method separates the surrogate endpoint into the individual components. The suitability of this
approach therefore depends on the clinical setting and the intended definition of the surrogate endpoint when used in subse-
quent confirmatory clinical studies.

Importantly, it has been shown that with the limited numbers of trials explored in our study, the method cannot be consid-
ered appropriate for assessing the level to which the treatment effect on the surrogate can predict the unobserved treatment effect
on the overall clinical endpoint (R2

trial). From the pharmaceutical industry perspective, this suggests that when using this surro-
gacy assessment method, data from a limited number of small phase I to II clinical trials would generally not provide enough
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evidence to warrant use of the surrogate endpoint as a complete replacement of the true clinical endpoint in confirmatory phase
III trials. To improve estimation, if there exist additional phase III data from similar indications, these could also be included in
the surrogacy assessment, accepting the assumptions of generalisability of the treatment, doses, patient population, and general
study design characteristics. Our exploratory simulations of larger sample sizes suggested that inclusion of additional data could
improve performance of the method; however, it remains uncertain as to what could be considered a sufficient sample size, and
unfortunately, a large amount of data are not frequently available.

Further to this, there are often discussions as to whether centres within trials could be used to maximise the number of data
points for analysis when only a small number of trials are available. This approach has been studied for both continuous[25] and
time‐to‐event endpoints.[24] Renfro et al[24] make a recommendation that for time‐to‐event studies with a moderate (5‐9) number
of trials, analysis of R2

trial should be conducted using both trial and centre as the units of analysis, with the measure based on
trials being considered the primary measure for interpretation. The results of our study indicate that when there are available
data from 6 trials, a measure of R2

trial based on trials as units does not provide reliable conclusions. Additionally, even when
there are only 4 trials available for analysis, the value of R2

trial based on trials as units is considered key when making inferences
about the true underlying strength of surrogacy,[24] but based on the context explored in our study, this would be very unreliable.
Finally, it is currently unclear whether analysis of surrogacy conducted for centres within trials would be considered appropriate
by regulatory authorities.

In summary, when applied to small sample sizes, the two‐stage meta‐analytic copula method proposed for the evaluation of
time‐to‐event surrogates demonstrated poor performance in the assessment of PFS as a surrogate endpoint but has shown
encouraging results when assessing the ability of TTP to predict OS. We therefore recommend that when the desired surrogate
endpoint is TTP, an assessment of individual‐level surrogacy of TTP is performed using this method. As noted by
Burzykowski[23] and Renfro et al,[30] exploration of different copula functions and dependence structures should be conducted,
with the choice of final copula function being based on the best fit to the data under investigation. As has been demonstrated in
our study with the Gumbel‐generated data, the application of a copula model with different functional form to the available data
can lead to suboptimal estimation. When PFS is the desired surrogate endpoint, the two‐stage meta‐analytic copula method
must be used with caution, as it may lead to false conclusions that a short‐term endpoint has value as a surrogate. Given sim-
ilarities between TTP and PFS endpoints, we recommend that when PFS is of interest as a potential surrogate, a surrogacy eval-
uation of TTP is also conducted to determine whether results are consistent.

At the trial level, a formal quantitative assessment using the two‐stage meta‐analytic copula method cannot be considered
reliable for such a small number of trials (4‐6). Less formally, treatment effects that appear consistent between endpoints across
multiple trials may be considered as encouraging; however, the question remains as to how strong this relationship needs to be
before the surrogate can be accepted as a new standard endpoint in future trials.
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