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Abstract

This dissertation is a feasibility study on the use of a velocity-based moving mesh finite element

method, based on a conservation principle constant in time, to approximate the dynamical behaviour

of the Cahn-Hilliard equation. The method is implemented in both 1-D and 2-D. In the 1-D case,

both a mass monitor and an arclength monitor are assessed and compared, with only a mass monitor

assessed in the 2-D model. The method and dynamics are investigated in detail and compared to

alternative methods used to approximate the Cahn-Hilliard equation.
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Chapter 1

Introduction

In this section, I introduce the Cahn-Hilliard equation, its general form and the methods applied

in previous papers. I will also refer to a reduced version of the equation which I use in the project,

along with the relevant imposed boundary conditions. The equation is investigated in both 1-D and

2-D form, generating the equation and imposing the relavent boundary conditions for both cases.

1.1 The Cahn-Hilliard Equation

Phase field models have become a large area of research in mathematical modelling. The Cahn-

Hilliard equation (7)(8) in particular is a well known phase field model. In phase field based models,

sharp interfaces are represented by very thin transition layers in order that the phase field varies

continuously over these tansition layers, and yet remains uniform over the bulk phases .

This type of model is ideal when approaching equations involving several physical parameters

which also generates steep fronts over the transition layers. Since the interfaces are replaced by thin

transition layers or diffuse interfaces, in order to capture these dynamics correctly, high resolution

of very thin layers is required. The Cahn-Hilliard equation describes spinodal decomposition of

a continuous homogeneous fluid mixture quenched below its critical temperature, where it then

exhibits instability and develops multi-phase behaviour. Spinodal decomposition is defined as the

process by which a solution of two or more components of a mixture separate into distinct regions or

phases, ultimately displaying a discontinuous inhomogenous mixture. This process occurs uniformly

throughout the mixture and the orientation of the different phases are found not to be composed in a

random fashion. Instead, the dynamics appear to adhere very tightly to those predicted by the Cahn-

Hilliard equation. The study of multi-phase multi-component fluids is a vast field of research with

a variety of applications in engineering, most notably polymer science where interfacial phenomena,

coextrusion of polymers and phase separation under shear are key processes. Hence, exhaustive

research is being carried out in mathematical modelling to understand and capture the dynamics of

the Cahn-Hilliard equation efficiently with high resolution and accuracy.

The basis of the problem that John W. Cahn and J. E. Hilliard were reviewing in (7)(8), was

that of minimizing the free energy functional of a fluid mixture. Letting φ(x) represent the relative
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concentration of two components subject to conservation of mass,

∫

Ω
φ(x)dx = φm|Ω|, (1.1)

where φm is a constant corresponding to the spatially uniform mixture and Ω is the region of space

occupied by the system. Let f(φ) represent the bulk energy density, taken as a symmetric double

well potential given by,

f(φ) =
1

4
(1 − φ)2, (1.2)

containing two minima which correspond to the two stable phases of the fluid. With the thickness

of the interfacial layers denoted by ǫ, then the free energy functional is given as,

H[φ] =

∫

Ω
{f(φ(x)) +

1

2
ǫ2|∇φ(x)|2}dx, (1.3)

where ∇φ(x) represents the surface energy of the fluid. The chemical potential, µ, is then defined

as the first variation of the free energy functional, H[φ], given as

µ(φ) =
∂H[φ]

∂φ(x)
= f ′(φ(x)) − ǫ2∇2φ(x), (1.4)

where µ = constant gives, ultimately, the equilibrium state.

The Cahn-Hilliard equation was developed by Cahn and Hilliard to generalize the problem of

minimizing the free energy functional into a time-dependent situation by approximating interfacial

diffusive fluxes as being proportional to chemical potential gradients and enforcing conservation of

the field. This is shown by the equation

∂φ(t,x)

∂t
= −∇.J, (1.5)

where J = −λ(φ)∇µ, with λ(φ) > 0 the mobility or Onsager coefficient and J the interfacial diffusive

flux. The mobility can be adapted to model phase separation dynamics controlled by either bulk

diffusion (λ → 1) or interface diffusion (λ → (1−φ2)). In our case, we are using the basic case with

a mobility of 1. This then gives the Cahn-Hilliard equation,

∂φ(t,x)

∂t
= ∇.[λ(φ)∇µ(φ)], (1.6)

with the chemical potential µ(φ) given by equation 1.4.

There are many industrial applications of the Cahn-Hilliard equation. These mostly arise in the

study of binary fluids (mostly alloys), interfacial fluid flow and in mixtures in polymer science.

Therefore, due to applications of the equation being fundamentally linked with fluids and fluid flow,

a particular area of interest in the field of research currently is the coupling of phase separation of

the Cahn-Hilliard equations to the Navier-Stokes equations in fluid dynamics. This is a growing area

of theoretical and practical interest since many numerical methods have been tried and tested for

both the one- and two-dimensional cases. However, the three-dimensional case has been researched

very little despite being of great interest to industry for obvious practical implications. A variety of

difficulties are associated with the Cahn-Hilliard equation.
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1.2 Difficulties

There are multiple problems associated with the Cahn-Hilliard equation. Initial treatment of

the interfaces is difficult since the positions of these interfaces are unknown prior to the initial

state. It is also quickly apparent that no analytic solution of the equation exists with a complete

well-mixed mixture, as the phase field showing the relative concentration is an entirely random

function ranging from -1 to 1. From direct inspection of the equation, one can see that it contains

both a fourth derivative and a Laplacian acting on a nonlinear term, f(φ). The use of finite

elements to solve this equation generates C0 solutions, smooth within the elements themselves and

continuous across their boundaries, which are unable to represent fourth order spatial derivatives

(24). Furthermore, Laplacians acting on nonlinear terms are difficult to model and can involve

expensive computational techniques to solve. In order to bypass this problem, Ceniceros, et al.

(1) decomposed the fourth order Cahn-Hilliard equation into a coupled system of second order

equations and removed the leading linear terms to enable a semi-implicit time stepping technique.

This reduced coupled conservative system, introduced in (10), is the system to which I will be

applying my moving mesh method. I will introduce this in detail in the following section.

A further problem encountered when attempting to model the equation, is to provide an adaptive

mesh method which captures the fast dynamics involved in the formation of the steep gradients

present at phase-change boundaries (or interfacial layers) generated by the equation. This is dis-

cussed in greater detail in section 2.

1.3 Previous Approaches

Many different approaches have been taken to model the Cahn-Hilliard equation. A range of

fully and semi-implicit (10) finite difference methods and both continuous (12) and discontinuous

(11) Galerkin-based finite element methods has been used in previous studies to try and capture

the fast initial dynamics of the equation. Explicit approaches have often been discarded due to the

prohibitively small timestep required to capture the initial dynamics. These methods all involved

discretizing the time intervals, either implicitly or explicitly, and applying the solution to an adaptive

mesh.

Of greatest interest was the paper by Ceniceros, et al. (10) using a semi-implicit finite difference

method. The area of interest was not so much the method, but more the coupled equations used,

derived in a previous paper by Ceniceros, et al. (1). By reducing the equation to a coupled system

of second order ODEs, high computational costs were averted. This coupled system along with a

unity mobility is much simpler and more adaptable to alternative methods.

All previous methods have encountered problems. A basic but rather important requirement is

that the method needs high resolution in both space and time. This requires the thickness of the

interfacial layers, ǫ, to be be very small relative to the size of the domain. A common conclusion from

previous papers employing fixed grid adaptive methods, was that in order to accurately resolve the

phase field the mesh size of the finest level needs to be O(ǫ), which is the smallest scale associated
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with the width of the transition layer. Most of the previous methods used (certainly in the case of

fully implicit methods) involved the use of expensive computational techniques, which were required

to maintain at least 2nd order accuracy in both time and space, when taking account of the nonlinear

terms and high order derivatives such as the biharmonic operator.

For finite time discretization methods on fixed meshes the scheme used was also required to

be A-stable in the discretizations, otherwise the high frequency components of the equation were

not smoothed. This was investigated in greater detail in conjunction with a continuous Galerkin

finite element method by Garcke, et al. (12), and it was shown that Θ-splitting schemes, originally

proposed by Strang (23) and applied to Navier-Stokes equations by Bristeau, Glowinski & Periaux

(5), were suitable for the time discretizations with θ = 1 −
√

2
2 for 2nd order accuracy.

The use of high cost iterative solvers to solve the nonlinear term and biharmonic operator is

difficult to avoid. However, in the reduced system presented by Ceniceros, et al. (10), iterative

solvers were no longer required to solve the nonlinear term and biharmonic operator. Taking a

constant mobility, λ = 1, gives the following reduced system,

∂φ(t,x)

∂t
= ∇2(τφ − ǫ2∇2φ) + g(φ), (1.7)

for x ∈ Ω, where g(φ) = ∇2(f ′(φ) − τφ) and τ is a constant given by, τ =max f ′′(φ). Introducing

the auxilliary variables,

ϕ1 = φ and ϕ2 = τφ − ǫ2∇2φ, (1.8)

the modified equation 1.7 gives rise to the system,

∂ϕ1(t,x)

∂t
= ∇2ϕ2 + g(ϕ1) (1.9)

ϕ2(t,x) = τϕ1 − ǫ2∇2ϕ1, (1.10)

with g(ϕ1) = ∇2(f ′(ϕ1) − τϕ1). This coupled, conservative Cahn-Hilliard equation is the system I

will be using, applying a finite element-based moving mesh method to assess the effectiveness of an

r-refinement adaptive mesh method at capturing the fast initial dynamics of the equation. For the

purposes of this dissertation, I will be taking constant values of τ = 2 and ǫ2 = 0.05, where τ =max

f ′′(φ) and ǫ represents the interfacial thickness.

One can easily prove a conservation property of the Cahn-Hilliard equation when zero total flux

boundary conditions are employed, by integrating equation 1.9 over the domain Ω,

∫

Ω

∂ϕ1

∂t
dΩ =

∫

Ω
∇2
(

ϕ2 + f ′(ϕ1) − τϕ1

)

dΩ. (1.11)

Taking the time derivative outside of the integral on the left hand side, and applying the divergence

theorem to the right hand side,

d

dt

∫

Ω
ϕ1dΩ =

∮

∇
(

ϕ2 + f ′(ϕ1) − τϕ1

)

.n̂dS (1.12)

=

∮

∂

∂n

(

ϕ2 + f ′(ϕ1) − τϕ1

)

dS. (1.13)
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Introducing zero flux boundary conditions as a restriction on the outward flux at the boundaries,

∮

∂φ

∂n
ds = 0, (1.14)

ensuring that the left hand side of equation 1.12 equates to zero. We then arrive at the following

statement displaying conservation of the phase field integral,

∫

Ω
ϕ1dΩ = constant in time. (1.15)

In the following Chapters I introduce the methods that I will be using to solve the Cahn-Hilliard

equation numerically. Firstly, I will broadly discuss moving mesh methods, highlighting the velocity-

based method, upon which this feasibility study is based, which I intend to use in conjunction with

a finite element approach to model the Cahn-Hilliard equation. The middle Chapters (3, 4, 5 &

6) then guide the reader through the moving mesh finite element formulation to generate a linear

system, which when solved will provide the solution, along with supplementary material discussing

potential problems and methods used to overcome these issues. The final Chapters (7 & 8) then

analyse the results of the model and take a critical view of the velocity-based moving mesh method

as a valid approach to tackling the tricky dynamics of the Cahn-Hilliard equation.
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Chapter 2

Adaptive Mesh Method

One of the main issues associated with modelling the Cahn-Hilliard equation is in being able to

follow the fast dynamics generated from the equation as the phases form. This behaviour requires

an adaptive method to ensure points are close enough to maintain high resolution for the steeper

gradients, and more sparse for shallow gradients. This is particularly apparent in the case of the

Cahn-Hilliard equation, since the distinct regions display extreme opposites in gradients at both

boundaries and areas inside the newly-formed regions. For this reason adaptive mesh refinement is

the highest priority in the modelling of the equation.

2.1 Static Mesh Methods

The adaptive mesh refinement methods used previously, when taking an Eulerian approach, mainly

fall into two categories which both involve using a static mesh as a basis. The two methods are

called h-refinement and p-refinement.

h-refinement

h-refinement is the process where nodes are added to points of interest, in this case where the dy-

namics of the solution occur, and may involve removing nodes of little interest where no dynamics

in the solution are apparent. This requires an effective flagging strategy based on either gradients

between or at nodes, or differences in nodal values. There are three main forms of h-refinement

which have been used throughout research. The most intricate of the three is adaption using both

coarsening and refinement of a grid, flagging both cells where little and significant change occur.

The alternative methods, which are much more widely used, begin with either a highly refined initial

grid which is then coarsened, or a coarse grid which is refined. In the case of Ceniceros, et al. (10)

a coarsening, h-refinement method was applied, using a static grid and employing ghost cells and

interpolation.

p-refinement

p-refinement uses a static grid with a higher order polynomial to accurately represent the solution.
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This method is more accurate between the nodal values in comparison to h-refinement. However, in-

terpolation in the cells is limited by the degree of the polynomial chosen and hence cannot accurately

model dynamics occuring in between nodes.

2.2 Velocity Based Methods

An alternative Lagrangian-based approach is to use a specified number of nodes, moving them to

the areas of interest where the fast dynamics of the solution occur. This method is commonly re-

ferred to as r-refinement and is divided into Mapping-based and Velocity-based techniques. These

methods have been chronicled in a number of papers, most notably by Huang (14) and Budd (6).

Both velocity and mapping based methods are dependent on a suitable monitor function. The most

common types of r-refinement are mapping-based methods. These mapping-based r-refinement tech-

niques use a time-dependent mapping from the original static grid to a moving grid. A widely used

technique to solve Moving Mesh Partial Differential Equations or MMPDEs, which is an equidis-

tributive version of the mapping-based method based on equidistribution (6). In this case, a monitor

function is chosen which, when integrated over each element, is constant in space. This then implies

that x satisfies

0 =
∂

∂ξ

(

m
∂x

∂ξ

)

, (2.1)

where ξ is the reference coordinate in a fixed grid, x(ξ, t) is the mapping at a time t and m is the

chosen monitor function. The velocity of the mapped coordinate is then found via the relaxed form

of equation 2.1,
∂x

∂t
=

1

τ

∂

∂ξ

(

m
∂x

∂ξ

)

. (2.2)

or some variant of this equation.

Velocity-based techniques create a velocity to move the original grid. There are many velocity-

based approaches one can use, falling into three main categories: moving finite elements (20)(19),

deformation map method (18) and geometric conservation law (9). A form of the geometric conser-

vation law velocity-based technique, previously introduced to handle a two-phase Stefan problem by

Baines, et al. (3), is the type of method I intend to use to try to solve the Cahn-Hilliard equation.

An advantage of r-adaptivity over the other types of adaptive mesh refinement, is that the dynam-

ics of the solution can still be tracked well and the method can be less computationally expensive.

Problems with this method are a potential lack of resolution in the solution in regions away from

singularities as well as a susceptibility to node tangling. It is therefore important to resolve the

initial singularities quickly. A further possible problem with this method is that further dynamics

leading to singularities in regions previously considered relatively featureless, away from the initial

singularities, can be poorly tracked due to a lack of points/large elements in the region.

In review, most Cahn-Hilliard equation-based research undertaken so far applies a form of h-

refinement (10)(1)(11)(12) for their adaptive mesh method. Currently, there are few papers taking

a moving adaptive mesh method to model the solution of the Cahn-Hilliard equation. One such
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paper (13) took an interface tracking, Lagrangian approach to model the process. However, in

this dissertation, I intend to introduce an alternative r-refinement based adaptive mesh method,

previously used to solve high order PDEs (2)(4)(6), to help model the dynamics of the Cahn-

Hilliard equation. In theory, the velocity of the solution dictates the position of the nodes in the

subsequent timestep. This should allow for the solution to require the minimum number of nodes

for all time, instead of decreasing or increasing the number of nodes. Therefore, this could be much

less computationally expensive in comparison to previous h-refinement-based methods.
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Chapter 3

Application to the Cahn-Hilliard

Equation

We now proceed with our feasibility study using mesh movement.

3.1 A Moving Mesh Finite Element Formulation

The most important aspect of our approach to a moving mesh finite element method for a problem

is to define which property of the solution we wish to conserve with respect to time. The conserved

property is usually expressed in terms of a monitor function. There are two main monitor functions

which we will consider to model our dynamic time-dependent solution.

3.1.1 Monitor Functions

Conservation of Mass

Figure 3.1: Piecewise area of solution is conserved between nodes.
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Since, for the Cahn-Hilliard system, we know that the integral,
∫

Ω ϕ1dΩ, is conserved, it is consis-

tent to use a monitor function which conserves the partitional area under the solution, often called

a Mass Conservation monitor function. In the case of the Cahn-Hilliard equation, we may impose

conservation of the phasefield φ = ϕ1 over the local interval, i.e.
∫ i

i−1
ϕ1dΩ = δi = constant, ∀i. (3.1)

This can be written as,
∫

Ω
Wiϕ1dΩ =

∫ i

i−1
ϕ1dΩ = constant, (3.2)

where W is the characteristic function in the interval and the Wi’s form a block-based partition of

unity.

Figure 3.2: Representation of a piecewise linear hat function, wi

Introducing a more general test function wi, which is a piecewise linear hat function, also a

member of a partition of unity, we can replace 3.2 by
∫

Ω
wiϕ1dΩ = δi, ∀i, (3.3)

to generate node movement.

As one can see in 1-D, if linear hat functions are used as the test functions and ϕ1 is expanded

using the linear hat functions to give, ϕ1 =
∑

j WjΦj , we arrive at

∫ i

i−1
Wi

∑

j

WjΦjdx = δi, ∀i, (3.4)

which is a mass matrix formulation of the connection between the Φj and the δi represented in

matrix form as,

MΦ = δ, (3.5)

where M is the standard mass matrix given by
∫

WiWjdx and Φ, δ the vectors of components Φj

and δi. This shows the finite element formulation of the phase field ϕ1, now represented by Φ, as

the matrix system 3.5, where M represents the standard mass matrix, the elemental form of which

(between nodes i − 1 and i) is,

M e
i = (xi − xi−1)

(

1
3

1
6

1
6

1
3

)

. (3.6)
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Remark

Care should be taken when introducing either Dirichlet or periodic boundary conditions on ϕ1

(or Φ) (15). In order to ensure the hat functions remain a partition of unity, the second test function

can be augmented by the first and the penultimate test function by the last. For instance, if there

exists a Dirichlet condition on the first element boundary, then element two must now have an

adapted linear hat function W2 = W1 + W2 taking into account that element one is now known.

Conservation of Arclength

Figure 3.3: Piecewise arclength of solution is conserved between nodes.

An alternative monitor to ϕ1 is a normalised arclength monitor function. In this case, rather than

conserving the area under the solution between nodes, we conserve the normalised arclength of the

solution between nodes. In some instances this may be a more preferential monitor function since

extreme singularities may not form properly when using a conservation of mass approach. Using an

arclength monitor should also help to maintain a good balance between areas with many nodes and

those with few nodes. Considering the arclength defined to be

∫ i

i−1

√

1 +

(

∂ϕ1

∂x

)2

dx, (3.7)

then conservation of normalised arclength requires that

1

θ

∫ i

i−1

√

1 +

(

∂ϕ1

∂x

)2

dx = ai = constant, ∀i, (3.8)
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θ is defined as θ =
∫

wϕ1dx. Analogously to 3.3 we use,

1

θ

∫ 1

0
wi

√

1 +

(

∂ϕ1

∂x

)2

dx = ai = constant, ∀i, (3.9)

to generate node movement.
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Chapter 4

1-D Cahn-Hilliard Equation using a

Conservation of Mass Monitor

Taking the Cahn-Hilliard system of equations derived by Ceniceros, et al. (10) we have the following

1-D system,

∂ϕ1

∂t
=

∂2ϕ2

∂x2
+ g(ϕ1) (4.1)

ϕ2 = τϕ1 − ǫ2
∂2ϕ1

∂x2
(4.2)

where

g(ϕ1) =
∂2

∂x2
(f ′(ϕ1) − τϕ1). (4.3)

We apply periodic boundary conditions, as used in (10) over the interval from 0 to 1. Applying

Liebnitz Integral Rule to the left hand side of equation 4.1, we can generate an expression for a

velocity v, on which I can base my r-refinement strategy,

d

dt

∫ 1

0
wiϕ1dx =

∫ 1

0
wi

∂ϕ1

∂t
dx +

∫ 1

0
wi

∂(ϕ1v)

∂x
dx (4.4)

=

∫ 1

0
wi

[

∂2ϕ2

∂x2
+ g(ϕ1)

]

dx +

∫ 1

0
wi

∂(ϕ1v)

∂x
dx (4.5)

where v is the velocity, which we now write as ẋ.

4.1 Calculating the ∂ϕ1

∂t
Term

Applying the distributed conservation of mass principle (equation 3.3) ensures that the left hand

side of equation 4.4 is zero, giving the following weak form for equation 4.1,

d

dt

∫ 1

0
wϕ1dx = 0 =

∫ 1

0

∂

∂t
(wϕ1)dx +

∫ 1

0

∂

∂x
(wϕ1ẋ)dx (4.6)

=

∫ 1

0

[

w
∂ϕ1

∂t
+ ϕ1

∂w

∂t
+ w

∂

∂x
(ϕ1ẋ) + ϕ1ẋ

∂w

∂x

]

dx. (4.7)

Since the test function is advected with the velocity ẋ, the test function w satisfies

∂w

∂t
+ ẋ

∂w

∂x
= 0. (4.8)
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This allows us to reduce equation 4.7 to

0 =

∫ 1

0

[

w
∂ϕ1

∂t
+ w

∂

∂x
(ϕ1v)

]

dx (4.9)

=

∫ 1

0

[

w

(

∂2ϕ2

∂x2
+ g(ϕ1)

)

+ w
∂

∂x
(ϕ1v)

]

dx (4.10)

= w
∂ϕ2

∂x

∣

∣

∣

∣

1

0

−

∫ 1

0

∂w

∂x

∂ϕ2

∂x
dx +

∫ 1

0
wg(ϕ1)dx +

∫ 1

0
w

∂

∂x
(ϕ1v)dx. (4.11)

Taking w = Wi to be a member of the set of linear hat functions, and v =
∑

i Wivi to represent

the velocity, we obtain

0 = Wi
∂ϕ2

∂x

∣

∣

∣

∣

1

0

−

∫ 1

0

∂Wi

∂x

∂ϕ2

∂x
dx +

∫ 1

0
Wig(ϕ1)dx +

∫ 1

0

∑

j

Wi
∂

∂x
(ϕ1Wjvj)dx ∀i, (4.12)

We now consider the terms of equation 4.12 separately. The first term will be referred to as the

Boundary Term, the second is referred to as the ϕ2 Term, the third is called the g Term, and finally

the Velocity Term present at the far right.

Velocity Term

First we consider the velocity term and integrate by parts, giving

∫ 1

0

∑

j

Wi
∂

∂x
(ϕ1Wjvj)dx =



ϕ1

∑

j

WiWjvj





1

0

−

∫ 1

0
ϕ1

∑

j

∂Wi

∂x
Wjvjdx ∀i (4.13)

On evaluating the left hand term on the right hand side of equation 4.13 one can see that,

through the properties of the hat functions, only the boundary terms survive. However, by keeping

the boundary points stationary, this implies that the velocities of the boundary terms are both equal

to zero. Therefore the boundary term is equal to zero, leaving the much simpler version,
∫ 1

0

∑

j

Wi
∂

∂x
(ϕ1Wjvj)dx =

∫ 1

0
ϕ1

∑

j

∂Wi

∂x
Wjvjdx ∀i. (4.14)

In matrix form, this can be written

B(ϕ1)v, (4.15)

where B(ϕ1) represents the matrix with entries
∫ 1
0 ϕ1

∂Wi

∂x
Wjdx, with the following general form for

the ith row,

B(ϕ1)i =

∫ i+1

i−1
ϕ1Wi

∂Wj

∂x
dx ∀i (4.16)

=

∫ i

i−1
ϕ1Wi

∂Wj

∂x
dx +

∫ i+1

i

ϕ1Wi
∂Wj

∂x
dx (4.17)

=
1

xi − xi−1

∫ i

i−1
ϕ1Widx +

−1

xi+1 − xi

∫ i+1

i

ϕ1Widx. (4.18)

Taking the left integral from i − 1 to i on its own and evaluating the integral numerically using

Simpson’s rule,

1

xi − xi−1

∫ i

i−1
ΦWidx =

1

xi − xi−1
(xi − xi−1)

(

WiΦi + Wi−1Φi−1

2

)

(4.19)

=
1

2
(Φi + Φi−1). (4.20)
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Applying this to the remaining half of the integral, we finally obtain an expression for the ith

row of the B matrix weighted by ϕ1 to be 1
2(Φi−1 − Φi+1), which in matrix form is represented as,

B(ϕ1) =















0 −Φ1

2 . . . . . .

Φ0

2 0 −Φ2

2 . . .
...

. . .
. . . −

ΦN+1

2
... ΦN

2 0















(4.21)

This unsymmetric matrix, however, can be problematic to invert, and so we decided to take an

alternative approach by introducing a velocity potential, Ψ, where v = ∂Ψ
∂x

. Introducing this into the

equation 4.14, and expanding Ψ =
∑

j ΨjWj , we get the following representation for the Velocity

Term,
∫ 1

0
ϕ1

∂Wi

∂x

∑

j

Wjvjdx =

∫ 1

0
ϕ1

∂Wi

∂x

∑

j

∂Wj

∂x
Ψjdx ∀i, (4.22)

in matrix form,

K(ϕ1)Ψ, (4.23)

where K(ϕ1) is the symmetric stiffness matrix weighted by ϕ1. We obtain v from Ψ by minimising

the error between the velocity and the gradient of Ψ via

∫ 1

0
Wi

(

v −
∂Ψ

∂x

)

dx = 0, ∀i. (4.24)

By expanding the velocity and velocity potential using a series of linear hat functions

∫ 1

0
Wivdx =

∫ 1

0
Wi

∂Ψ

∂x
dx (4.25)

∫ 1

0
Wi

∑

j

Wjvjdx =

∫ 1

0
Wi

∑

j

∂Wj

∂x
Ψjdx (4.26)





∫ 1

0
Wi

∑

j

Wjdx



 v =





∫ 1

0
Wi

∑

j

∂Wj

∂x
dx



Ψ, (4.27)

or, in matrix form,

Mv = BΨ. (4.28)

where the matrix B is the unweighted version of B(ϕ1) in equation 4.21.

ϕ2 Term

Coming back to equation 4.12, we now evaluate the ϕ2 term, expanding ϕ2 as
∑

i Wiϕj , giving

∫

Ω

∂Wi

∂x

∑

j

∂Wj

∂x
ϕjdx =





∫

Ω

∂Wi

∂x

∑

j

∂Wj

∂x
dx



ϕ ∀i, (4.29)

which in matrix form can be expressed as

Kϕ, (4.30)
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where K is the standard stiffness matrix, the elemental form of which (between nodes i − 1 and i)

is given as

Ke
i =

1

(xi − xi−1)

(

1 −1

−1 1

)

. (4.31)

Remark

Again, great care should be taken when introducing the periodic boundary conditions into the

system. This requires a reduced system with the test function adjacent to either boundary having

an additional weight (15).

g Term

The g(ϕ1) term in equation 4.12 refers to the g(ϕ1) term in equation 4.33. Here, we start by looking

at the function f(ϕ1), given by the bulk energy density function, 1
4(1 − ϕ2

1)
2. For g(ϕ1) we require

the first derivative of f with respect to ϕ1, giving f ′(ϕ1) = ϕ3
1 − ϕ1. Therefore, by considering the

ith row of the integral equation in the weak form and integrating by parts,

∫ i+1

i−1
Wig(ϕ1)dx =

∫ i+1

i−1
Wi(ϕ

3
1 − (τ + 1)ϕ1)xxdx (4.32)

= Wi(ϕ
3
1 − (τ + 1)ϕ1)x

∣

∣

i+1

i−1
+

∫ i+1

i−1

∂Wi

∂x
(ϕ3

1 − (τ + 1)ϕ1)xdx. (4.33)

Expanding ϕ1 as ϕ1 =
∑

j WjΦj , one can easily see that the left hand term on the right hand side of

equation 4.33 vanishes, since Wi vanishes at these values. The remaining term can be approximated

by the trapezium rule to give

∫ i+1

i−1

∂Wi

∂x
(ϕ3

1−(τ +1)ϕ1)xdx =
−1

xi − xi−1

(

ϕ3
1 − (τ + 1)ϕ1

)

∣

∣

∣

∣

i

i−1

+
1

xi+1 − xi

(

ϕ3
1 − (τ + 1)ϕ1

)

∣

∣

∣

∣

i+1

i

∀i

(4.34)

which leads to the following representation in matrix form,

−Kg. (4.35)

where g = (Φ3
1 − (τ + 1)Φ1). Higher order quadrature can also be used in equation 4.34.

Boundary Term

The boundary term relies on conditions imposed on the equation. We decided to have stationary

endpoints and to consider both ϕ1 and ϕ2 to be periodic at the boundaries of the domain, effectively

those suggested in (10). With this being the case, periodicity is weakly imposed by ensuring the

first order spatial derivatives are also periodic making the boundary term in equation 4.12 vanish.

This finally gives the finite element form of the system proposed by Ceniceros, et al. (equation

4.1) to be

K(ϕ1)Ψ = −Kϕ − Kg (4.36)

Mv = BΨ. (4.37)
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Once the velocities v have been found from equation 4.37, the new positions of the nodes are

calculated by integrating the mesh forward in time with a simple Forward Euler method,

xn+1 − xn

∆t
= v. (4.38)

With the new nodal positions known, the new ϕ1 solution is obtained by solving the mass

conservation equation 3.5, with the elements of the mass matrix recalculated using the new nodal

positions.

4.2 Calculating ϕ2

So far, the generation of ϕ2 has not been discussed. This requires a weak form of equation 4.2.

Applying a test function to equation 4.2 and integrating, one gets

∫

Ω
wϕ2dx = τ

∫

Ω
wϕ1dx − ǫ2

∫

Ω
w

∂2ϕ1

∂x2
dx (4.39)

= τ

∫

Ω
wϕ1dx − ǫ2

[

w
∂ϕ1

∂x

∣

∣

∣

∣

Ω

−

∫

Ω

∂w

∂x

∂ϕ1

∂x
dx

]

(4.40)

after integration by parts.

Then by introducing the hat functions as the test functions and expanding ϕ1 =
∑

i WiΦi and

ϕ2 =
∑

i Wiϕi, one then gets the following version of equation 4.40,

∫

Ω
Wi

∑

j

Wjdxϕ = τ

∫

Ω
Wi

∑

j

WjdxΦ− ǫ2



Wi

∑

j

∂Wj

∂x
Φ





Ω

+ ǫ2
∫

Ω

∂Wi

∂x

∑

j

∂Wj

∂x
dxΦ ∀i. (4.41)

One can easily see that the boundary term vanishes from weakly imposing periodic boundary con-

ditions which we imposed when reviewing the previous Boundary Term of the ϕ1 equation. This

then allows the previous equation to be expressed in matrix form,

Mϕ = τMΦ + ǫ2KΦ. (4.42)

4.3 Adaptive Timestepping

A characteristic of the Cahn-Hilliard equations discussed in the paper by Ceniceros, et al. (10) is

the requirement of a small initial timestep to determine the fast forming phase boundaries, and a

larger timestep once the phasefields are formed. We also found in the runs of the program that ’tan-

gling’ of the coordinates initially was often likely. By introducing an adaptive timestepping method

described below, the equation itself chooses the suitable relevant timestep. Ideally we could then

employ conditions to prevent any potential tangling of the coordinates, and ensure the coordinates

were monotonically increasing. We implemented two adaptive timestepping strategies.
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Figure 4.1: 2-D stencil representing nodes at n and n+1 time levels, displaying an explicit timestep-

ping approach.

4.3.1 Explicit Adaptive Timestep Method

We introduce an explicit adaptive timestep method based on an explicit Euler approach to the

relationship between velocity and the subsequent velocity potential Ψ, in the form

v = ẋ = Ψx. (4.43)

Fig.4.1 gives a graphical representation of the stencil for the explicit method.

By applying the index n to represent the timestep, we then get an explicit form of this equation,

xn+1
i − xn

i

∆t
=

[

Ψn
i+1 − Ψn

i−1

xn
i+1 − xn

i−1

]

(4.44)

=

[

Ψn
i+1 − Ψn

i−1

∆xn
i

]

, (4.45)

where xn
i+1 − xn

i−1 is rewritten as ∆xn
i . We can write the system as

xn+1
i − xn

i

∆t
=

[

Ψn
i+1

∆xn
i

(xn
i+1 − xn

i )

(xn
i+1 − xn

i )

]

−

[

Ψn
i−1

∆xn
i

(xn
i − xn

i−1)

(xn
i − xn

i−1)

]

. (4.46)

which can be rearranged to give

xn+1
i =

Ψn
i+1∆t

∆xn
i ∆+xn

i

xn
i+1 +

[

1 −
Ψn

i+1∆t

∆xn
i ∆+xn

i

−
Ψn

i−1∆t

∆xn
i ∆−xn

i

]

xn
i

+
Ψn

i−1∆t

∆xn
i ∆−xn

i

xn
i−1

(4.47)

= axn
i+1 + bxn

i + cxn
i−1, (4.48)

say.

Here ∆xn
i is partitioned into two other differences, ∆+xn

i or ∆−xn
i , representing (xn

i+1 −xn
i ) and

(xn
i − xn

i−1) respectively. Since the equation 4.48 shows the representation of the ith row, this can

be represented in matrix form as

xn+1 = Txn, (4.49)

where T is the matrix represented by the coefficients of xn on the right hand side of 4.48. A sufficient

condition for the stability of xi is that, a > 0, b > 0, c > 0, and that a + b + c = 1. Upon inspection

of the second term b, this requires the following restriction on the timestep ∆t,

∆t < ∆xn(i)

[

∆+xn(i)

Ψn
i+1

+
∆−xn(i)

Ψn
i−1

]

. (4.50)
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This restriction on the timestep ensures that no xn+1
i -values move beyond xn

i−1 or xn
i+1. There-

fore, in order for the system to have monotonically increasing x-values, it is sufficient to reduce the

∆t to ∆t
2 . By using this as a non-tangling strategy in tandem with a suitably small initial timestep

we can get a good idea of the initial dynamics.

4.3.2 Implicit Adaptive Timestep Method

With the explicit adaptive timestepping method, ∆t often tends to be greatly restrictive. In order

to eradicate this, we considered an implicit adaptive timestepping method to model the properties

of solutions generated by the Cahn-Hilliard equation. Fig. 4.2 gives a graphical representation of

the stencil for the implicit method similar to that used by Ceniceros, et al. in (10),

Figure 4.2: 2-D stencil representing nodes at n and n+1 time levels, displaying an implicit timestep-

ping approach.

The implicit method has similar methodology to the explicit method. However, rather than

multiply the terms in equation 4.45 by unit fractions (expressed as differences in the x-values of the

current timestep over the current timestep), as in equation 4.46, we multiply by fractions expressed

as a ratio of differences in the x-values of the new timestep over those of the current timestep, (which

does not affect the first-order-in-time property of the algorithm).

This gives the following row formulation for Ψi+1 and Ψi−1,

xn+1
i − xn

i

∆t
=

[

Ψn
i+1

∆xn
i

(xn+1
i+1 − xn+1

i )

(xn
i+1 − xn

i )

]

−

[

Ψn
i−1

∆xn
i

(xn+1
i − xn+1

i−1 )

(xn
i − xn

i−1)

]

. (4.51)

Without loss of generality we can assume that both Ψi+1 and Ψi−1 are positive, since an arbitrary

constant can be added to them to ensure that this is so without affecting the velocity. This implicit

method allows us to ensure that the new xn+1
i -values would lie within xn+1

i+1 and xn+1
i−1 values, which

therefore ensures a monatonically increasing set of x-values. To show this, suppose that (xi, t) is the

first point at which a maximum value occurs in the domain, then the left hand side of equation 4.51

is positive. Along with this, the left hand term on the right hand side is negative since xn+1
i+1 < xn+1

i ,

and the right hand term on the right hand side is positive since xn
i > xn

i−1, resulting in a negative

right hand side. This gives a contradiction and implies that the maximum must lie on the boundary.

A similar argument implies that the minimum must also lie on the boundary. Therefore, since our

domain is [0, 1] × [0, t], the (i + 1)th term is always the maximum term in the stencil, giving a
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monotonically increasing set of x-values for any ∆t.

Rearranging 4.51 gives the following expression for the ith row with Ψ > 0,

xn
i =

Ψn
i+1∆t

∆xn(i)∆+xn(i)
xn+1

i+1 +

[

1 −
Ψn

i+1∆t

∆xn(i)∆+xn(i)
−

Ψn
i−1∆t

∆xn(i)∆−xn(i)

]

xn+1
i

+
Ψn

i−1∆t

∆xn(i)∆−xn(i)
xn+1

i−1

(4.52)

= axn+1
i+1 + bxn+1

i + cxn+1
i−1 , (4.53)

say. This system can be expressed in matrix form as,

Txn+1 = xn, (4.54)

where T is a tridiagonal matrix with right, centre and left entries represented by a, b and c as in

equation 4.53.

The adaptive implicit timestepping method ensures that the coordinates remain in a monotoni-

cally increasing set for any ∆t. This is an advantageous method, since it allows us to choose any

timestep and still maintain a monotonically increasing set of x-coordinates. Despite this advantage,

this method is best applied only when larger timesteps are appropriate, since it is less and less

accurate for large timesteps.

4.4 Merging Points and Steep Fronts

Through further analysis of the initial equation for ∂ϕ1

∂t
, it is possible to extract a hyperbolic term,

present when isolating the cubic term in g in the second derivative, writing it as,

∂2(ϕ3
1)

∂x2
=

∂
(

3ϕ2
1

∂ϕ1

∂x

)

∂x
(4.55)

= 3ϕ2
1

∂2ϕ1

∂x2
+ 6ϕ1

(

∂ϕ1

∂x

)2

, (4.56)

where the second term on the right hand side is the first order hyperbolic term. Such equations are

known to lead to the presence of steep fronts in a time-dependent solution. One can see that this term

on its own may generate discontinuities, since this is a viscous form of a Hamilton-Jacobi equation,

which can be manipulated into a form of the viscous Burgers’ equation present in conservation laws.

However, one can deduce that only steep fronts rather than discontinuities are apparent in this

time-dependent solution, due to the presence of the first diffusion term on the right hand side as

well as the remaining part of the g term. These diffusive terms enforce smooth solutions, diffusing

the discontinuities, but retaining the steep gradients.

When applying the explicit adaptive timestep method to the mass monitor-based model of the

Cahn-Hilliard equation, it was clear that the velocities generated were simply too large to ensure

that the x-coordinates remained in sequence. Evidently, this was undesirable, therefore in order to
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maintain the coordinate sequence, we decided to further restrict the timestep to an interval which

culminated in the first of two consecutive points in the sequence coinciding. At this stage in time

we merged the two points, giving the resultant point new ϕ1, ϕ2 and Ψ values, taken to be the

average of the values from the colliding points. These new values ensured that we reverted back

to the piecewise continuous solutions for ϕ1, ϕ2 and Ψ that we had had prior to the discontinuity

present just before merging.

Figure 4.3: Graph representing a discontinuity present in the piecewise solution.

The process of merging itself is of course undesirable, since the process requires the removal of

nodes from generated singularities, which contradicts the thoughts behind the velocity-based adap-

tive mesh method, reducing the resolution.

Remark

A further point can be made on the presence of the hyperbolic term within the coupled Cahn-

Hilliard system. For specific cases, where one models the thickness of the interfacial layers with

ǫ → 0 along with a certain bulk energy density f(φ), a Hamilton-Jacobi system can be a direct

outcome of the Cahn-Hilliard system we are using. In more general cases, once phase separation

occurs, one might suppress the diffusion terms and proceed with a discontinuous approach.

4.4.1 Additional Resolution

A potential method to counteract the reduction in resolution that merging causes, is to increase

the resolution of the initial data by introducing an initial refinement of the grid. The idea being to

resolve parts of the initial data where steep gradients occur before starting the time discretization.

This is of particular concern when attempting to use a random function between 0 and 1 to determine

the initial data. By introducing a certain tolerance level, if consecutive values in the initial data
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were beyond this value, then additional nodes were added, evenly spaced between the initial nodes

in question. These additional values were then given values of initial data via linear interpolation,

ensuring the original piecewise data remained the same.

A further solution to this problem could be from introducing smoothing into the model, to ensure

the elements are not too close together. However, this is again an undesirable process as it attempts

to remove or reduce the presence of steep fronts which are a characteristic of the solution. Unfortu-

nately, the presence of additional nodes does not remove the issue of node-tangling present in the

1-D mass monitor model. So we seek an alternative approach, deciding to introduce an arclength

monitor to gain a better distribution of the nodes and restrict overlapping.
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Chapter 5

1-D Cahn-Hilliard Equation using an

Arclength Monitor

In review of the dynamics displayed by the solution of the Cahn-Hilliard equation, it was envisaged

that an alternative monitor function may be more effective to model the solution more successfully

and, potentially, more efficiently. The alternative monitor function is an Arclength Conservation

based approach. In this case, rather than conserve the area under the solution between nodes, we

conserve the normalised arclength of the solution between nodes. In order to do this we introduce

a normalized conservation principle,

1

θ

∫ 1

0
Wi

√

1 +

(

∂ϕ1

∂x

)2

dx = ai = constant, ∀i, (5.1)

where the normalising factor θ is defined by the total arclength over the whole region,

∫ 1

0

√

1 +

(

∂ϕ1

∂x

)2

dx = θ = constant. (5.2)

This is a consistent conservation principle if
∑

i ai = 1, since the Wi form a partition of unity.

We can now differentiate the equation 5.1 with respect to time and apply the Liebnitz Integral

Rule, as with the mass conserving approach to find the nodal velocities. Assuming the points in the

interval [0, 1], along with the Wi, move with an unknown velocity v, we get the following series of

equations,

aiθ̇ =
d

dt

∫ 1

0
Wi

√

1 +

(

∂ϕn
1

∂x

)2

dx, ∀i, (5.3)

=

∫ 1

0
Wi

∂

∂t

√

1 +

(

∂ϕn
1

∂x

)2

dx +

∫ 1

0
Wi

∂

∂x



ẋ

√

1 +

(

∂ϕn
1

∂x

)2


 dx (5.4)

=

∫ 1

0
Wi

∂ϕn
1

∂x

∂2ϕn
1

∂x∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx +

∫ 1

0
Wi

∂

∂x



v

√

1 +

(

∂ϕn
1

∂x

)2


 dx, (5.5)
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where both θ̇ and v are unknown, and θ̇ = dθ
dt

. One can then find the value for θ̇ by summation over

all i,

θ̇ =

∫ 1

0

∂ϕn
1

∂x

∂2ϕn
1

∂x∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx +



v

√

1 +

(

∂ϕn
1

∂x

)2




∣

∣

∣

∣

∣

∣

1

0

. (5.6)

Since the velocities are zero at the boundaries, the boundary term involving the velocity becomes

zero, giving

θ̇ =

∫ 1

0

∂ϕn
1

∂x

∂2ϕn
1

∂x∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx. (5.7)

We can now substitute in for ∂ϕ1

∂t
using the previously defined equation 4.1, i.e.

∂ϕ1

∂t
=

∂2ϕ2

∂x2
+

∂2

∂x2
(ϕ3

1 − (τ + 1)ϕ1), (5.8)

to give

θ̇ =

∫ 1

0

∂ϕn
1

∂x
∂
∂x

(

∂2ϕn
2

∂x2 + ∂2

∂x2 [(ϕn
1 )3 − (τ + 1)ϕn

1 ]
)

√

1 +
(

∂ϕn
1

∂x

)2
dx. (5.9)

Upon integration element by element

θ̇ =
∑

elementsk















∂ϕn
1

∂x

∣

∣

∣

k− 1

2

(

∂2ϕn
2

∂x2 + ∂2

∂x2 [(ϕn
1 )3 − (τ + 1)ϕn

1 ]
)∣

∣

∣

k

k−1
√

1 +
(

∂ϕn
1

∂x

)2
∣

∣

∣

∣

∣

k− 1

2















. (5.10)

Coming back to equation 5.5, we now have only one remaining unknown, v. In order to include

the newly determined θ̇ into the system of equations in 5.5 and ensure that the equations remain

linearly independent, we impose the zero boundary conditions on v. Having set the velocities at

either end of the domain to be zero, only a reduced set of equations is used, based on internal

points. By using a test function belonging to a set of linear hat functions, and integrating the terms

in equation 5.5, we get

aiθ̇ =

∫ 1

0
Wi

∂ϕn
1

∂x

∂2ϕn
1

∂x∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx +

∫ 1

0
Wi

∂

∂x



v

√

1 +

(

∂ϕn
1

∂x

)2


 dx, ∀i, (5.11)

=

Wi









∂ϕn
1

∂x

∂ϕn
1

∂t
√

1 +
(

∂ϕn
1

∂x

)2









1

0

−

∫ 1

0

∂Wi

∂x

∂ϕn
1

∂x

∂ϕn
1

∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx

+ Wi



v

√

1 +

(

∂ϕn
1

∂x

)2




1

0

−

∫ 1

0

∂Wi

∂x



v

√

1 +

(

∂ϕn
1

∂x

)2


 dx.

(5.12)

Since we impose periodic boundary conditions along with v = 0 at the boundaries, we can remove

the boundary terms to reduce equation 5.12 to,

aiθ̇ = −

∫ 1

0

∂Wi

∂x

∂ϕn
1

∂x

∂ϕn
1

∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx −

∫ 1

0

∂Wi

∂x



v

√

1 +

(

∂ϕn
1

∂x

)2


 dx. (5.13)
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We again substitute in for ∂ϕ1

∂t
using the previously defined equation, 4.1, to give

aiθ̇ = −

∫ 1

0

∂Wi

∂x

∂ϕn
1

∂x

(

∂2ϕn
2

∂x2 + ∂2

∂x2 [(ϕn
1 )3 − (τ + 1)ϕn

1 ]
)

√

1 +
(

∂ϕn
1

∂x

)2
dx −

∫ 1

0

∂Wi

∂x



v

√

1 +

(

∂ϕn
1

∂x

)2


 dx.

(5.14)

The right hand side can be evaluated element by element since the approximate solution is

piecewise linear, hence ∂ϕ1

∂x
is constant,

aiθ̇ =

∂ϕn
1

∂x
√

1 +
∂ϕn

1

∂x

∫ i

i−1

∂Wi

∂x

(

∂ϕn
2

∂x
+

∂

∂x
[(ϕn

1 )3 − (τ + 1)ϕn
1 ]

)

dx

+

∂ϕn
1

∂x
√

1 +
∂ϕn

1

∂x

∫ i+1

i

∂Wi

∂x

(

∂ϕn
2

∂x
+

∂

∂x
[(ϕn

1 )3 − (τ + 1)ϕn
1 ]

)

dx

+

√

1 +
∂ϕn

1

∂x

∫ i

i−1

∂Wi

∂x
vdx +

√

1 +
∂ϕn

1

∂x

∫ i+1

i

∂Wi

∂x
vdx, ∀i.

(5.15)

This results in the following matrix representation for the internal points,

aθ̇ = −K1ϕ − K1(Φ
3 − (τ + 1)Φ) − B1v, (5.16)

where K1 is the stiffness matrix weighted by the first differential of the arclength,

(

∂ϕn
1

∂x
√

1+
∂ϕn

1
∂x

)

, and

B1 is the B matrix weighted by the arclength,

(

√

1 +
∂ϕn

1

∂x

)

. Once the nodal velocities are found,

we then use them to project the x-coordinates using the standard Forward Euler method,

xn+1
i = xn

i + v∆t. (5.17)

5.1 Evolution of ϕ1 values

In using an arclength monitor, it is no longer feasible to use the conservation principle directly.

Instead, the evolution of the ϕ1 values with time are generated by an Arbitrary Legrange-Eulerian

method (ALE Method). Using the area of the equation, we can introduce a new evolving variable

σ generated in the following way,

σi =

∫ 1

0
Wiϕ1dx, ∀i, (5.18)

Differentiating this with respect to time, we then arrive at the same system of equations generated

by the mass monitor in order to calculate the evolution of the new variable σ,

σi =

∫ 1

0
Wi

∂ϕ1

∂t
dx +

∫ 1

0
Wi

∂(ϕ1v)

∂x
dx, ∀i. (5.19)

Substituting in for ∂ϕ1

∂t
from equation 5.8 above, and integrating term by term, as previously shown

in the mass monitor method by equation 4.36, we arrive at the following matrix system,

σ̇ = −Kϕ − Kg − B(ϕ1)v, (5.20)
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where K is the standard stiffness matrix, g = (Φ3 − (τ + 1)Φ) and B(ϕ1) is the weighted B matrix,

both previously referenced when formulating the Cahn-Hilliard system using a mass monitor by

equations 4.31 and 4.21 respectively. Having found the change in σ values with respect to time,

expressed as σ̇, we can then find the new σ values using the standard Eulerian formula,

σn+1
i = σn

i + σ̇i
n∆t, ∀i. (5.21)

Finally, in order to calulate the new ϕ1 values, we can use the following relation for the internal

values,

MΦ = σ, (5.22)

where M is the standard mass matrix and Φ and σ are the vectors representing ϕ1 and σ values

respectively, as in equation 3.5.

5.2 Calculating ϕ2 values

The formulation for ϕ2 remains much more simple. This requires expanding the weak form of

equation 4.2. Applying a test function to equation 4.2 and integrating,

∫

Ω
wϕ2dx = τ

∫

Ω
wϕ1dx − ǫ2

∫

Ω
w

∂2ϕ1

∂x2
dx (5.23)

= τ

∫

Ω
wϕ1dx − ǫ2

[

w
∂ϕ1

∂x

∣

∣

∣

∣

Ω

−

∫

Ω

∂w

∂x

∂ϕ1

∂x
dx

]

(5.24)

Then by introducing the hat function as the test function and expanding ϕ1 =
∑

i WiΦi and

ϕ2 =
∑

i Wiϕi, equation 5.24 becomes

∫

Ω
Wi

∑

j

Wjdxϕ = τ

∫

Ω
Wi

∑

j

WjdxΦ − ǫ2



Wi

∑

j

∂Wj

∂x
Φ





Ω

+ ǫ2
∫

Ω

∂Wi

∂x

∑

j

∂Wj

∂x
Φ ∀i. (5.25)

One can easily see that the left hand ǫ2 term vanishes with periodic boundary conditions. This then

allows equation 5.25 to be expressed in the matrix form,

Mϕ = τMΦ + ǫ2KΦ. (5.26)

In addition to the arclength monitor method, several attempts were made to ensure node-tangling

was less likely to occur. Along similar steps to the mass monitor model in 1-D, an explicit adaptive

timestepping approach was used, as well as including additional nodes to further resolve the initial

data. A second approach to ensure nodes were distributed evenly in terms of arclength, to be well

suited to the monitor, was used. This was however, difficult to program with the presence of random

initial data between 0 and 1.
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Chapter 6

The 2-D Cahn-Hilliard Equation

6.1 Grid Structure

Since we are using finite elements to solve the equation, in order to produce a simple formulation

of the problem in 2-D, a triangular grid is used with piecewise linear approximation (16). The most

effective method to produce a triangulation of the region is a Delaunay triangulation, due to the

definitions of the criteria used to create the triangles. Using this method, and considering a set of

nodes, no nodes lie inside the circumcircle of each triangle generated, and there are no mesh points

in the interior of any element circumcircles. When creating the triangular elements this property

ensures that the smallest angle inside each triangle is maximised. This is extremely important

since small angles are known to cause ill-conditioning in stiffness matrices, as I will verify later on

when generating the stiffness and mass matrices for a generic triangle. With this in mind, triangular

elements were produced using a Delaunay triangulation of the region [0,1]×[0,1] with (N+1)×(N+1)

nodes in an initially uniform grid, and repeated once new nodal coordinates were generated in each

timestep.

Figure 6.1: A 2-D triangular element.

By splitting the grid into a series of small elemental triangles, the formations of the stiffness

matrix and the mass matrix are comparatively simple in 2-D. In order to understand the structure

of an elemental stiffness matrix, consider an arbitrary triangle in space, represented by the nodes
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A, B & C (Fig.6.1), with corresponding angles, α, β & γ, and lengths, AB = a, BC = b & CA = c.

The angles can be found using the cosine rule, i.e.

cosα =
a2 + c2 − b2

2ac
. (6.1)

Each diagonal element on the elemental stiffness matrix is calculated in a standard way by evaluating
∫

∆
(∇wA).(∇wA)dΩ = −

∫

∆
(∇wA).(∇wB + ∇wC)dΩ (6.2)

=
1

2
(cotβ + cotγ). (6.3)

Similarly, non-diagonal elements are calculated as
∫

∆
(∇wB).(∇wC)dΩ = −

1

2
cotα. (6.4)

This therefore gives the following expression for an element stiffness matrix for the triangle ABC,

Ke
(ABC) =

1

2









cotβ + cotγ −cotγ −cotβ

−cotγ cotγ + cotα −cotα

−cotβ −cotα cotβ + cotα









. (6.5)

The Mass Matrix has the simple form,

M e
(ABC) = area∆









1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6









. (6.6)

where area∆ is given by the formula,

area∆ =
a2

1
2(cotα + cotβ)

. (6.7)

6.2 Finite Element Formulation

6.2.1 Generating ϕ2 values

In order to generate the ϕ2 values from the known initial data of the ϕ1 values, we need to assess

the equation for ϕ2 given by the Cahn-Hilliard system generated by Ceniceros, et al. in 2-D,

ϕ2 = τϕ1 − ǫ2∇2ϕ1. (6.8)

By integrating this over the region, Ω = [0, 1] × [0, 1],
∫

Ω
wiϕ2dΩ = τ

∫

Ω
wiϕ1dΩ − ǫ2

∫

Ω
wi∇

2ϕ1dΩ. (6.9)

Integrating the far right hand term by parts,
∫

Ω
wiϕ2dΩ = τ

∫

Ω
wiϕ1dΩ − ǫ2

∮

dΩ
wi∇ϕ1.n̂dΓ + ǫ2

∫

Ω
∇wi.∇ϕ1dΩ. (6.10)

Imposing periodic boundary conditions on ϕ1 ensures that the boundary integral equates to zero.

The remaining integrals are of basic mass matrix and stiffness matrix construction, where periodicity

boundary conditions are imposed on both ϕ1 and ϕ2, resulting in the matrix system

Mϕ = τMΦ + ǫ2KΦ, (6.11)

where Φ and ϕ are the vectors representing the values of ϕ1 and ϕ2 respectively, and M & K are

assembled versions of the mass and stiffness matrices defined by equation 6.6 and equation 6.5.
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6.2.2 Generating Nodal Velocities

In the 2-D case, only the conservation of mass monitor was implemented, due to time constraints.

This version was similar in construction to the 1-D case. In 2-D, the Cahn-Hilliard system developed

by Ceniceros, et al. is now written,

∂

∂t
ϕ1 = ∇2ϕ2 + g(ϕ1) (6.12)

ϕ2 = τϕ1 − ǫ2∇2ϕ1, (6.13)

where g(ϕ1) = ∇2(ϕ3
1 − (τ + 1)ϕ1). In this 2-D case, using a conservation of mass monitor, we

assume that
∫

Ω
wiϕ1dΩ = δi, ∀i, (6.14)

where δi is a constant and wi a hat function, both located at node i. From equation 6.14,

d

dt

∫

Ω
wiϕ1dΩ = 0, ∀i. (6.15)

Since this is now a 2-D system, the Reynold’s Transport Theorem is applied in lieu of Liebnitz

Rule to the above equation, in the form

d

dt

∫

Ω
wiϕ1dΩ = 0 (6.16)

=

∫

Ω

d

dt
wiϕ1dΩ +

∮

∂Ω
wi(ϕ1v).ndΓ, ∀i,

where v is the vector representing the nodal velocities. The boundary integral can be evaluated as

an area integral using Green’s Theorem, making equation 6.17 composed entirely of area integrals,

∫

Ω
wi

[

∂

∂t
ϕ1 + ∇.(ϕ1v)

]

dΩ = 0, ∀i. (6.18)

Substituting in for ∂
∂t

ϕ1 from equation 6.12

∫

Ω
wi

[

∇2ϕ2 + g
]

dΩ +

∫

Ω
wi∇.(ϕ1v)dΩ = 0, ∀i. (6.19)

Applying Green’s Theorem to the velocity integral, the equation can then be rearranged as

∫

Ω
wi

[

∇2ϕ2 + g
]

dΩ −

∫

Ω
ϕi∇wi.vdΩ = 0, ∀i. (6.20)

Re-introducing the notion of velocity potential (vital for uniquesness in 2-D), represented as,

v = ∇Ψ, (6.21)

we can now rewrite equation 6.20, as

∫

Ω
ϕi∇wi.∇ΨdΩ =

∫

Ω
wi

[

∇2ϕ2 + g
]

dΩ, ∀i, (6.22)

which can be expressed in matrix form as,

K(ϕ1)Ψ = f, (6.23)
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where K(ϕ1) is a weighted stiffness matrix relating the nodes as an assembly of elemental matrices

representing the relations between the three nodal points of each triangle. The elemental matrix,

Ke
(ϕ1), is displayed in the following way by denoting ϕA

1 as the value of ϕ1 at the node A,

Ke
(ABC)(ϕ1)

=
(ϕA

1 + ϕB
1 + ϕC

1 )

3









cotβ + cotγ −cotγ −cotβ

−cotγ cotγ + cotα −cotα

−cotβ −cotα cotβ + cotα









. (6.24)

f Vector

Having assessed the structure of the left hand side containing the velocity potential term, we now

turn our attention to the right hand side f vector, containing the terms associated with ∂ϕ1

∂t
,

fi =

∫

Ω
wi

[

∇2ϕ2 + g(ϕ1)
]

dΩ, ∀i, (6.25)

where g(ϕ1) = ∇2(ϕ3
1 − (τ + 1)ϕ1). Through integration by parts in two dimensions, we get the

following expression for components of f ,

fi =

∮

∂Ω
wi∇ϕ2.n̂dΓ −

∫

Ω
∇wi.∇ϕ2dΩ +

∫

Ω
wig(ϕ1)dΩ, ∀i. (6.26)

Using periodic boundary conditions on both ϕ1 and ϕ2, the boundary integral equates to zero. We

can then assess the g term separately, as

∫

Ω
wig(ϕ1)dΩ =

∫

Ω
wi∇

2(ϕ3
1 − (τ + 1)ϕ1)dΩ (6.27)

=

∮

∂Ω
wi∇(ϕ3

1 − (τ + 1)ϕ1).n̂dΓ −

∫

Ω
∇wi.∇(ϕ3

1 − (τ + 1)ϕ1)dΩ, ∀i. (6.28)

Imposing periodic boundary conditions, the boundary integral equates to zero. This gives the

following components of the f vector,

fi = −

∫

Ω
∇wi.∇ϕ2dΩ −

∫

Ω
∇wi.∇(ϕ3

1 − (τ + 1)ϕ1)dΩ, ∀i. (6.29)

Re-introducing the velocity potential term, this system can be represented in matrix terms as

K(ϕ1)Ψ = f = −Kϕ − K(Φ3 − (τ + 1)Φ). (6.30)

6.2.3 Evolution of Nodes

Once the velocity potential for each node has been found, we can calculate the velocity by using

the two dimensional gradient operator on the equation,

v = ∇Ψ. (6.31)
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In order to approximate the velocity, we use the standard finite element matrix relationship between

the velocity and its potential

Mv = BΨ (6.32)

where the B matrix in 2-D has the following formulation

Bij =

∫

Ω
Wi.∇WjdΩ =

∑

elements around i

∫

∆
Wi.∇WjdΩ =

∑

elements around i

∇Wj

∫

∆
WidΩ.(6.33)

This method is only used on internal points, since one of the boundary conditions imposed on the

problem is that boundary nodes have zero velocity, and remain static nodes. However, this method

was not implemented due to time constraints, and a much coarser 2-D central difference approach

was used. The positions of the new internal nodes are then found using the explicit Forward Euler

discretization,
xn+1 − xn

∆t
= v. (6.34)

In the 1-D case, timestepping was created and restricted via an adaptive timestepping method,

ensuring a stable timestep was self-generated by the program. This approach generated a varying

timestep dependent on the nodal velocities and positions and the previous timestep. In the 2-D case,

the timestepping was determined via trial and error, and remained constant throughout the course

of the program. This was not further adapted due to time constraints as well as being difficult to

implement in 2-D.

Having found the new nodal positions, we generate a new Delaunay triangulation using the new

coordinates of the nodes. This then allows us to generate the new ϕ1 values from equation 6.14 in

the form

MΦ = δ, (6.35)

where the mass matrix, M , is recalculated with the new nodes and areas of the triangles which have

arisen from the new Delaunay triangulation.
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Chapter 7

Numerical Results

All of the 1-D and 2-D models were computed using MATLAB. Throughout the course of the

dissertation, the programs were particularly sensitive and difficult to debug. Unfortunately, all

of the programs failed to handle the extreme dynamics of phase boundary formation. Therefore,

no full dynamic solution to the Cahn-Hilliard equation was obtained via the programs. However,

the programs did present solutions prior to phase boundary formation. Despite the difficulties

encountered, I discovered interesting properties of the moving mesh method used to solve the Cahn-

Hilliard equation. Initial runs of the programs used a random function, but were then replaced

with a smooth periodic function more inclined to the boundary conditions to test the accuracy of

the method for the problem. To investigate the solutions developed by the 1-D programs, we used

smooth periodic initial data in the form

ϕ1 = sin(4πx). (7.1)

In order to assess the accuracy of the solution found by the numerical methods, the initial data

was also substituted into the Cahn-Hilliard equation and computed analytically to find a solution

exact in space and approximated in time. Furthermore, the nodal positions were evolved using a

similar Forward Euler numerical method along with the same ∆t used in the corresponding numerical

method.

7.1 1-D Mass Monitor

In the 1-D mass monitor approach, node tangling was particularly prominent. The presence of

negligible elements, culminating from the velocities generated by the equation, developed near to

singular matrices ensuring the problem quickly became ill-posed. For this reason, the adaptive

timestepping method, initial addition of nodes and merging were implemented as a preventative

technique. Unfortunately, this resulted in a limited number of timesteps that the program could

run before merging was no longer an issue, and the program encountered similar element-based

problems and the solution collapsed. Due to this, in order to show convergence of the method, only

5 timesteps were taken. Due to issues regarding matrix calculations, only even numbers of nodes

were used to set up the initial grid.
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Figure 7.1: Results for the mass monitor program with n initial nodes, m total nodes after 5

timesteps and a variable timestep along with the true solution (in green)
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Since this method contained the use of an adaptive timestepping method, where ∆t alters for

each timestep, each run was simulated to a different point in time. The factors affecting ∆t was

dependent on both the initial data and the initial number of nodes used to formulate the piecewise

initial data. Due to the process of adding further nodes to resolve the steep gradients, the total

number of nodes differed from the initial starting amount. Since we are only displaying the results

using a piecewise smooth representation of the initial data, the number of initial nodes was the

single factor affecting ∆t. By increasing the number of initial nodes from 21 to 41, ∆t decreased

by a factor of 10. Therefore, error analysis of this method remains unclear due to the disparity in

time evolved by each solution. Further analysis of the finite element method used is also difficult to

calculate due to the moving mesh.

7.2 1-D Arclength Monitor

The program designed to model the 1-D arclength monitor involved a similar set-up to the mass

monitor program. An adaptive timestepping method used along with the initial data was of the

same nature, as well as the initial number of nodes used to represent it.

From running the program, several problematic areas akin to those encountered in the mass

monitor program arose. The most significant of these was that although the process of merging

nodes/elements was not required when using an arclength monitor, the solution still collapsed after

a finite number of timesteps. However, a distinguishing feature of the arclength monitor program

was the generation of spurious oscillations at the boundaries in the case where n = 62, which were

possibly due to a bug in the program or from the boundary conditions imposed. These oscillations

suggest that the timestepping method method may be unstable, and a more A-stable scheme may

be more appropriate.
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Figure 7.2: Results for the arclength monitor program with n initial nodes after 5 timesteps and a

variable timestep along with the true solution
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7.3 2-D Case

In the 2-D case, the smooth periodic initial data used was of the form,

ϕ1 = sin(4πx)sin(4πy). (7.2)

Unfortunately, due to time constraints an analytic solution along with Forward Euler timestepping

of the initial data, with which one could compare the solution from the numerical method, was

not computed. The initial grid used was a unit square of equally spaced nodes with the Delaunay

triangulation in Fig.7.3,
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Figure 7.3: Delaunay triangulation of the unit square grid

From observations of results from the mass monitor program in 1-D, one may expect the 2-

D mass monitor program to have similar problems of node-tangling as well as the generation of

singular matrices. However, these issues were not so prevalent and the method appeared to be more

stable than the 1-D programs, allowing for a larger timestep to be used. In this case a timestep of

several orders in magnitude larger than those generated by the adaptive timestepping method in

1-D were used. This gave the result shown in Fig.7.4.
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Figure 7.4: Solution of the Cahn-Hilliard equation in 2-D with n = 20 using 10 timesteps and a

fixed ∆t = 5 × 10−6

Clearly, problems are still present in the method, displayed through the anomally in the solution

in the middle of the region (where ϕ1 ≈ 3). However, no node tangling occurs despite the use of a

large timestep. The profile did also show some signs of generating steep fronts, which is more visible

in the Delaunay triangulation of the region shown in Fig.7.5.
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Figure 7.5: Delaunay triangulation of the unit square grid after 20 timesteps

Unfortunately, error analysis of the method in 2-D has not been evaluated qualitatively, owing to

time constraints, and as such the accuracy of this solutions can not be guaranteed. Also, further

analysis of the finite element method used is difficult to evaluate due to the moving mesh method

with which it is applied.
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Chapter 8

Conclusions and Further Work

8.1 Summary

In this chapter I will be evaluating and discussing the findings and methods used, suggest possible

improvements and further avenues to pursue. In this feasibility study, a velocity-based moving mesh

method based on a monitor function was applied in tandem with a finite element method to model

the fast dynamics of the fourth order Cahn-Hilliard equation.

In Chapter 1 the system was introduced and its properties were discussed. We also discussed

the applications of the Cahn-Hilliard equation and introduced some previous approaches taken to

model it. In Chapter 2, we reviewed the various approaches available for grid adaptation, focussing

on the velocity-based approach on which the feasibility study was centred as well as discuss the

properties and advantages over the more widely used Eulerian (static-grid) approach. In Chapter 3

we discussed the most suitable monitor functions upon which to base the finite element moving mesh

method upon. Initially, we started by discussing a mass conservation approach to model the Cahn-

Hilliard equation, proven to be conservative over the region, and discussed the possible advantages

of an alternative arclength monitor. Chapter 4 detailed the equations generated by the velocity-

based moving mesh method, and solved them in detail using a finite element method subject to

the conservation of mass monitor function. The systems were derived, and the boundary conditions

then stated and implemented. In Chapter 5 we constructed the system of equations generated by

the velocity-based moving mesh method, which were solved using a finite element method with an

arclength monitor.

Chapter 6 detailed the equations developed by the moving mesh method in 2-D, which were again

solved in conjunction with a conservation of mass monitor function. The numerical method was then

used to compute solutions of the systems generated throughout Chapters 4, 5 and 6 using MATLAB.

These were then reviewed in Chapter 7 where problematic areas were highlighted in greater detail.

Of particular concern was the short length of time the programs simulated up to before exhibiting

unphysical phenomena and catastrophic node tangling.
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8.2 Remarks and Further Work

8.2.1 Timestepping

Throughout the dissertation, it was apparent that significantly small timesteps were required in

order to display a solution to the Cahn-Hilliard equation and avoid node tangling. Unfortunately,

node tangling and mesh racing (6) became a very important issue to plague all of the models. This

was overcome briefly in the 1-D models by the introduction of an explicit adaptive timestep method

to generate a maximum timestep size, used to ensure no overtaking occurred in the grid. Applying

this method, one could soon find the severe limitations of the current set-up, with timesteps of the

order 10−14 being presented as maximum timesteps in the 1-D conservation of mass approach before

node tangling occurred. Further adaptation would be advisable, applying an explicit adaptive

timestepping method until the steep fronts have been formed, subsequently applying an implicit

adaptive timestepping strategy to view the steady state solutions. Despite curtailing the issue, it

was clear the problem lay in the limitations of the timestepping method itself, rather than the

adaptivity employed.

For the purposes of the dissertation a standard first order Forward Euler method was used. This

method has clear limited stability properties and is a restrictive way of evolving nodes, although it

was particularly easy to implement and model. The implementation of more stable, higher order

methods would be an improved way of evolving nodal positions, and may remove some of the

restraining issues regarding the magnitude of the timesteps. Evidence in the behaviour of the

solution and the negligible timesteps generated by the explicit adaptive timestep method, suggest a

stiff system. Since the system was based around a series of second order PDEs and the timestepping

method used was only of first order accuracy, it is reasonable to suggest a more stable solution would

arise from implementing a method of at least second order accuracy. With this in mind, and via

review of Garcke, et al. (12), a suitable approach would be implementing a strongly A-stable second

order Θ-splitting scheme. The A-stability property of this scheme lends itself to oppose the high

frequency oscillations present in the Cahn-Hilliard model, as well as Θ-splitting schemes displaying

strong stability properties in general. Alternatively, second order methods which may be easier to

implement include a range of implicit Runge-Kutta or Backward Difference schemes.

In order to assess the viability of this moving mesh approach with an alternative timestepping

method, we applied an ODE15s stiff system solver in MATLAB to the 1-D mass monitor model. This

scheme is a significantly more stable adaptive timestepping method, and could help to show how stiff

the system is along with the properties inherent with the moving mesh finite element method used.

Inspection of Fig.8.1 shows that merging is still apparent during the formation of the interfacial

layers, despite the use of a more stable timestepping scheme. Furthermore, the scheme was unable

to produce results after a certain amount of time, due to the timestep being below the minimum

tolerance of MATLAB. This suggests that the system is particularly stiff, and that when using a mass

monitor function-based moving mesh finite element approach in 1-D, merging is inevitable. Although

Fig.8.1 shows merging, it also indicates the time and positions where phase separation occurs. This

was also found to be the case with other alternative initial data (ϕ1 = tanh(x − 1
3) − tanh(x − 1

3)
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as well as a random function), with results consistently showing merging to occur at ≈ 1.6× 10−6s.

Unfortunately, due to time constraints we were unable to implement the ODE15s solver in either

the 1-D arclength monitor nor the 2-D models.
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Figure 8.1: Timesteps produced by the ODE15s solver with initial ϕ1 = sin(4πx) in the 1-D mass

monitor model

8.2.2 Initial Grid Distribution

For the purposes of this dissertation, a uniform grid of equal node spacing was most frequently

used as a base mesh for the initial data in 2-D. Due to time constraints a method to adapt the initial

grid in 2-D was not possible. However, a uniform nodal distribution allowed for a simple basis and

subsequent formulation of the problem. The systems in 1-D were, however, particularly sensitive and

susceptible to node tangling or overtaking. Two simple alternative approaches to the initial mesh

were attempted in order to avoid node tangling or overtaking, which soon became a major obstacle

in the modelling of the dynamics of the Cahn-Hilliard equation, along with the resolution of steep

fronts in initial data. Since the initial data was a piecewise distribution, discontinuous at nodes but

continuous in the elements, there was a possibility of steep gradients forming in the initial data, with

few points able to resolve and model the evolution of these sharp initial fronts suitably. The approach

employed to overcome this problem involved placing additional nodes between nodes with relative

intial data differing beyond a certain tolerance level. The number of additional nodes was then

determined by the magnitude over the tolerance of the difference in initial data. These additional

nodes were then distributed evenly element-wise between the two initial nodes, with corresponding

initial data given by linear interpolation. Despite this approach ensuring that the steep fronts were

resolved more accurately from the initial data, node tangling was even more apparent, and hence

required a heavily reduced timestep.

A suitable approach for avoiding potential node tangling was much tougher to formulate with

piecewise linear initial data. A method involving equidistribution of arclength was employed with
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smooth initial data, with a view to adapting it to incorporate random piecewise initial data. An

iterative solver was employed in order to achieve an equidistribution of the arclength of the initial

data, which although helping to prolong the time stepsize, added additional computational expense.

Unfortunately, due to the time constraint, further exploration of adaptative methods concerning the

initial mesh could not be pursued in greater detail. However, the issue quickly became apparent as

a way of introducing a more resolved initial grid against the cost of iterative solvers.

8.2.3 Extensions to Further Work

A velocity-based moving mesh approach has potential for further modelling of the Cahn-Hilliard

equation. This is mainly due to the fact there exist many more methods with which it can be

applied and still remain a novel approach. Previous work (3) suggests that the method can model

thin diffusive interfaces successfully, however, an alternative approach may curtail the large velocities

present and remove the likelihood of node tangling and mesh racing. Extensions to the moving mesh

approach one may initially like to consider, is to implement a finite difference method (FDM) in 1-D.

Finite difference methods have been used almost exhaustively in previous papers on modelling the

Cahn-Hilliard equation, although few have attempted employing a Lagrangian-based adaptive mesh

method. In particular, velocity-based adaptive mesh methods may have a more significant role to

play in developing current models. In using finite differences to approach the problem, one can more

easily find the errors apparent in the method. A further point one may pursue includes the weighting

or scaling of the monitor function in any future finite element approach. One suggestion for future

work may involve a comparison study on the eifficiency of alternative adaptive mesh techniques such

as geometric conservation law (9)(14) and moving finite element (20)(19) approaches. However, these

methods are also highly susceptible to node tangling, and an alternative approach may need to be

adapted significantly in order to address this issue.

Further alternative approaches to tackling the Cahn-Hilliard equation may also be succesful.

Certainly, by assessing the individual components of the second derivative of the g term in equation

4.56, and the subsequent discovery of a diffusive Hamilton-Jacobi equation in conservation form,

one can see that the presence of a hyperbolic term may also lend itself to a level set method due to

its links to conservation laws (22). In fact, level set methods have been developed in recent times

to be able to handle multiple interfaces and simulate multiphase fluids (21)(17). However, previous

approaches using this method have seemingly only used an Eulerian view of grid adaptation. Hence,

a mapping-based moving mesh approach (18), in tandem with a level set method may be something

to pursue in greater detail. Alternatively, a joint approach may be applied to model the interfacial

layers. In this case, once phase separation occurs one may wish to suppress the diffusion terms

present in the system and pursue a conservation law approach, treating the interfacial layers as

discontinuities. Hybrid level set methods have already been produced to model the Cahn-Hilliard

equation as a joint approach (17), however there exist many alternative methods with which one can

model evolving Hamilton-Jacobi discontinuities and which may be used for a different approach.
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