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Abstract

For data assimilation in numerical weather prediction, the initial forecast error covariance matrix P f is
required. For variational assimilation it is particularly important to prescribe an accurate initial matrix
P f , since P f is either static (in the 3D-VAR case) or constant at the beginning of each assimilation
window (in the 4D-VAR case). At large scale the atmospheric flow is well approximated by hydrostatic
balance and this balance is strongly enforced in the initial matrix P f used in operational variational
assimilation systems such as that of the Met Office. However, at convective scales this balance does
not necessarily hold any more. Here we examine the extent to which hydrostatic balance is valid in
the vertical forecast error covariances for high resolution models in order to determine whether there
is a need to relax this balance constraint in convective scale data assimilation. We use the Met Office
Global and Regional Ensemble Prediction System (MOGREPS) and a 1.5 km resolution version of the
Unified Model for a case study characterized by the presence of convective activity. An ensemble of high-
resolution forecasts valid up to three hours after the onset of convection are produced. We show that
at 1.5 km resolution hydrostatic balance does not hold for forecast errors in regions of convection. This
suggests that in the presence of convection the covariance matrix used for variational data assimilation
at this scale should not enforce hydrostatic balance. Finally, we give a measure of the balance present
in the forecast perturbations as a function of the horizontal scale (from 3 km to 90 km) using a set of
diagnostics.

1 Introduction

Due to a continuing increase in computer power, it has become possible for meteo-
rological centres to run high resolution models. These models are expected to produce
more realistic forecasts because of their better representation of small-scale forcing from
orography and land use, as well as their explicit representation of convection. Modelling

1



2 Ensemble prediction system at convective scales 2

at high resolution should thus lead to more accurate forecasting of high impact weather
events such as flooding, with potential social and economic benefits.

Another important advantage of high-resolution models is that these may be used to
assimilate high-resolution observations, e.g. from radar. To do so, it is important that
the assumptions made for assimilation are still valid at these scales. For example, data
assimilation systems used by operational meteorological centres such as the Met Office
assume that the errors in the state variables of the model are hydrostatically balanced.
While this assumption is reasonable for large scale models, it does not necessarily hold
for perturbations at convective scales. It is then of interest, and an aim of this paper, to
determine whether (and to what extent) forecast errors are hydrostatically balanced for
a 1.5 km horizontal resolution version of the Met Office Unified Model (UM).

To this end, a set of high-resolution forecasts is generated for a case study on 27/07/2008
using the Met Office ensemble prediction system and the 1.5 km Unified Model over con-
vective and non-convective regions of the southern UK for a period up to three hours
after the onset of convection. The validity of hydrostatic balance in the forecast errors is
examined for four selected vertical columns in the domain of the high resolution 1.5 km
model. In addition, the degree to which the hydrostatic balance holds in the forecast per-
turbations is investigated as a function of the horizontal scale, by coarsening the 1.5 km
data to produce 3 km up to 90 km resolution data sets.

The ensemble prediction system at convective scales used for this work is briefly de-
scribed in section 2. The derivation of the hydrostatic balance relations for perturbations
of the relevant fields is presented in section 3. Finally, in section 4 the results of the statisti-
cal analysis of the comparison between hydrostatically balanced and actual perturbations
are discussed in terms of their vertical correlation structures, explained variances and
root-mean-square (RMS) errors.

2 Ensemble prediction system at convective scales

Over the past few years, the Met Office has developed an ensemble prediction system,
the Met Office Global and Regional Ensemble Prediction System (MOGREPS), which
employs an ensemble transform Kalman filter (ETKF) to produce a set of initial condi-
tions for generating predictions using the UM [3]. In this paper, the 24 km horizontal
resolution initial conditions from the operational North Atlantic European (NAE) version
of MOGREPS are interpolated to a 1.5 km resolution grid and used to integrate forward
for three hours a high-resolution version of the UM. In this section, descriptions of the
ETKF algorithm, the convective scale version of the UM and the interpolation strategy
used to downscale the initial condition ensemble are provided.

2.1 The Ensemble Transform Kalman Filter (ETKF)

The ensemble Kalman filter (EnKF) [7] is a useful approximation to the Kalman filter
(KF) [8] as it represents the errors in the state of a given system – composed, in the
case of operational numerical weather prediction (NWP) models, of a number of variables
of the order of 107−8 – with a basis spanning only a much lower dimensional sub-space
of the state space. As in the case of the Kalman filter, the EnKF assumes all errors to
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be Gaussian. In the case of forecast errors of nonlinear models, such as those used for
NWP, this assumption may often not be valid. Nevertheless, there are indications that
the EnKF behaves well even when the errors are not Gaussian [3].

In the EnKF, the ensemble matrix X is defined as

X = (x1, x2, . . . ,xN) , (1)

where xi ∈ Rk is a state vector representing the i-th ensemble member, k is the number
of components in the state vector and N is the number of ensemble members (equal to
24 in the version of MOGREPS used in this study). The ensemble mean is represented
by x and the ensemble perturbation matrix is given by

X′ = (x1 − x, x2 − x, . . . ,xN − x). (2)

Superscripts f, a are used as in Xf ,Xa to mean forecast and analysis, respectively. Thus,
from the ensemble forecasts the background-error covariance can be estimated by

Pf =
X′f (X′f )T

N − 1
. (3)

The ensemble mean analysis is updated by

xa = xf +K
(
y −H(xf )

)
, (4)

where y are the observations and H is the observation operator. The Kalman gain K is
given by

K = PfHT
(
HPfHT +R

)−1
, (5)

where R is the observation error covariance matrix and H is a linearized version of H.
The ETKF is very closely related to the EnKF, allowing for a rapid calculation of the

analysis perturbations [3]. The analysis ensemble perturbations in the ETKF are given
by

X′a = X′fTΠm, (6)

where T is a transform matrix and Πm is an inflation factor (discussed below) for forecast
cycle m. The transform matrix is computed according to [10] as

T = C (Γ+ I)−
1
2 CT , (7)

where C,Γ are matrices composed of the eigenvectors and eigenvalues respectively of the
matrix

E =

(
R− 1

2Zf
)T (

R− 1
2Zf

)
N − 1

. (8)

The columns of Zf are given by zfi = H(xf
i )−H(xf ), which are the ensemble perturbations

in observation space for each ensemble member i and are found using the non-linear
observation operator.

The variance in an ensemble generated by an EnKF is often smaller than required, due
to an insufficient ensemble size [3]. To overcome this problem a variable inflation factor is
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used, which seeks to ensure that the perturbation spread matches the RMS of the mean
forecast,

Πm = Πm−1

√
((tr(dmdT

m)− tr(R))tr(Sm−1))
1
2

tr(Sm)
, (9)

where dm = y−H(Xf ) is the ‘average’ innovation vector and Sm = HPfHT is the spread
of the forecast ensemble in observational space for forecast cycle m. (Here H(Xf ) denotes
the matrix with columns given by H(xf

i ) and H(Xf ) denotes the vector average of these
columns.)

2.2 The Met Office Unified Model

The 1.5 km version of the UM used in this work uses non-hydrostatic deep atmosphere
equations with a hybrid height/terrain-following vertical coordinate [4]. The model has
staggered grids in the horizontal and the vertical. The Arakawa C-grid is used for hor-
izontal staggering where the zonal velocity component u is east-west staggered, and the
temperature and the meridional velocity component v are north-south staggered. The
Charney Phillips grid is used for vertical staggering, where potential temperature is on
the same levels as the vertical velocity.

The high resolution model has a grid length of 1.5 km with 360 grid points in latitude
and 288 in longitude covering Southern England and Wales. The model has a grid with
70 vertical levels, where only about 50 lowermost levels are affected by orography. The
24 km NAE model has 360 grid-points in latitude, 215 in longitude and 38 vertical levels.

The current data assimilation (DA) system for the 1.5 km model is similar to that
used with the operational UK 4 km Met Office model, which is discussed in detail in [6].
In summary, the DA combines a 3D-Var scheme, used to assimilate the conventional
observations producing the large scale analysis, and nudging systems used to update the
high resolution moisture and surface precipitation data. The system uses a cloud nudging
(CN) procedure to nudge humidity increments, whereas surface precipitation rates are
assimilated via latent heat nudging (LHN). The increments produced by 3D-Var and
nudging procedures are used to correct the model trajectory at each time step during
the DA window. The main differences between the 1.5-km and the 4-km model DA
configurations are as follows. The former uses hourly assimilation cycles, rather than
the three-hourly used in the operational 4-km system, starting from fields interpolated
to the southern England and Wales 1.5-km grid from the operational UK 4-km forecast.
The 1.5-km DA system also uses more frequent cloud (hourly) and precipitation (every
15 minuntes) observations.

2.3 Generation of high-resolution perturbations

To obtain the initial condition ensemble at 1.5 km resolution, the following steps are
performed (see figure 7 in Appendix 1). First, an ensemble of atmospheric fields is formed
by adding an ensemble of operational MOGREPS NAE analysis perturbations at 24 km
resolution valid at a given time (18Z), denoted as X′

24km, to the operational 4D-Var
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atmospheric analysis at 18Z over the NAE domain, denoted as x24km, resampled at a
resolution of 24 km from its original resolution of 12 km. This 24 km resolution ensemble,
denoted as X24km, and the 4D-Var control, x24km, are interpolated to a 1.5 km resolution
grid to obtain X1.5/24km and x1.5/24km, respectively. The ensemble of perturbations at
1.5 km resolution, denoted as X′

1.5/24km, is then obtained by subtracting the reconfigured
4D-Var analysis x1.5/24km from each column of the ensemble matrix X1.5/24km. Finally, to
obtain the ensemble of initial conditions at 1.5 km resolution at 18Z, denoted as X1.5km,
the 1.5 km ensemble perturbations X′

1.5/24km are combined with a 3D-Var high-resolution
analysis – including nudging of precipitation and cloud observations – valid at 18Z from
the 1.5 km model and data assimilation system over the southern UK [6]. The 18Z analysis
was generated as part of a 1.5-km assimilation experiment with hourly DA cycles that
were started at 2Z on 27 July 2008 and initialized with a 4-km model forecast valid at
the same time and started at 0Z. To initiate the ensemble forecast at 1.5 km resolution, a
1.5 km version of UM is integrated forward in time, starting with the 18Z 3D-Var 1.5 km
analysis and adding in the perturbations over 20 min using incremental analysis update
[2]. Forecasts are produced at 19Z, 20Z, and 21Z on the same day. All ensemble members
use the same boundary conditions taken from the operational 4 km UK forecasts.

The full ensemble matrix has dimensions of X ∈ R(360×288×70)×24. However, in this
paper we have considered only the vertical part of the state by extracting vertical compo-
nents from each ensemble member at a given location. For a given location and a given
state variable, the ensemble matrix is then given by X ∈ R70×24.

3 Hydrostatic balance in the perturbations

In this section we derive the approximation of hydrostatic balance for perturbations.
This allows us to compute the hydrostatically balanced potential temperature perturba-
tions, θ′H (where subscriptH stands for hydrostatically balanced), for each of the ensemble
members. In section 4 we use θ′H to measure how close the perturbations are to hydrostatic
balance.

Available fields at a given location at a given vertical level are Exner pressure Π,
potential temperature θ, and specific humidity q. The ensemble mean values for each of
these fields are denoted by Π, θ, and q , and Π′, θ′, and q′ denote the perturbation from
the mean of an individual ensemble member at the given location and height.

Hydrostatic balance is given by (e.g. see [9]),

dp

dz
= − gp

RT
, (10)

where p(z) is pressure, T (z) is temperature, z is vertical height, and R = 287.06 J K−1kg−1

is the gas constant for dry air. We can rewrite equation (10) in terms of the available
variables, i.e. Π and θ, using the definition of the Exner pressure

Π =

(
p

p0

)R/cp

(11)

=
T

θv
, (12)
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where cp = 1005 J kg−1K−1 is the specific heat at constant pressure, p0 = 1000 hPa is
a reference pressure at the ground level z0, and θv is the virtual potential temperature,
given by (e.g [9])

θv = θ
(
1 + (ϵ−1 − 1)q

)
, (13)

with ϵ being the ratio of the mass of water liquid to dry air in the atmosphere and q
being the specific humidity. Using θv instead of θ allows us to take the moisture of the
atmosphere into account. Hence, we may write

p = p0Π
cp/R (14)

T = Πθv. (15)

Substituting equations (14)–(15) into (10) and using (13), we find that the hydrostatic
balance may be expressed in terms of the available variables Π and θ as

dΠ

dz
= − g

cp

(
1 + (ϵ−1 − 1)q

)−1
θ−1. (16)

This equation may be linearised, giving a hydrostatic equation for the mean variables

dΠ

dz
= − g

cp

1

(1 + (ϵ−1 − 1)q)θ
(17)

and a first order approximation to the hydrostatic equation for the perturbations

dΠ′

dz
=

g

cp

[
(ϵ−1 − 1)q′

(1 + (ϵ−1 − 1)q̄)2θ̄
+

θ′

(1 + (ϵ−1 − 1)q̄)θ̄2

]
, (18)

where Π = Π + Π′ , θ = θ + θ′ and q = q + q′.
This equation may be rearranged to give

θ′H = − (ϵ−1 − 1)q′θ

1 + (ϵ−1 − 1)q
+

cp
g

dΠ′

dz
θ
2
(1 + (ϵ−1 − 1)q). (19)

Hence, using the ensemble perturbations and mean, i.e. q′, q, Π′, and θ we can calculate
the perturbation values of the potential temperature θ′H that are in hydrostatic balance
with these variables at each location and height.

The perturbation ensemble of each variable is defined as

• Potential temperature ensemble

Θ′ = [θ′1, θ
′
2, ..., θ

′
24] (20)

• Specific humidity ensemble

Q′ = [q′
1,q

′
2, ...,q

′
24] (21)

• Exner pressure ensemble
Π′

e = [Π′
1,Π

′
2, ...,Π

′
24] (22)
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where .′i , i = 1, ..., 24, denote the ensemble members – vectors containing the fields at all
vertical grid points at a given location.

Then the hydrostatically balanced potential temperature perturbation, θ′H , is computed
for each element of each ensemble member, i = 1, ..., 24, leading to the ensemble vertical
error covariance matrix

Pe =
⟨
Θ′

HΘ
′T
H

⟩
, (23)

where Θ′
H is the hydrostatically balanced potential temperature perturbation ensemble.

The correlation matrix Ce is obtained by scaling matrix Pe by its own variance.

4 Results

This section discusses the results from applying the equation (19) to the data obtained
from the ensemble of 1.5 km forecasts. The model was initialised with a set of ensemble
atmospheric states valid at 18Z on 27/07/2008 and determined as explained in section 2
and Appendix 1. Ensemble forecasts were produced at each hour for the following 3 hours,
19Z, 20Z, and 21Z, on the same day, 27/07/2008. This case was selected as the convection
had already occurred before 18Z and at the time of initialisation, 18Z, the system was
fully convective with convection moving in the domain over the next three hours.

Although figures showing the degree of hydrostatic balance present in forecast pertur-
bations were computed for various vertical columns, here only the ”extreme” cases are
investigated. The column for which the ensemble mean precipitation was zero over the
entire 3 hours is labeled ’Non-Conv’ and columns for which the ensemble mean precipi-
tation was the highest for each hour 1 are labeled, ’Conv19Z’, ’Conv20Z’, and ’Conv21Z’,
respectively. Column location is indicated in the figure 1.

To find the degree to which hydrostatic balance holds in the perturbations as a function
of horizontal scale the original 1.5 km resolution data were aggregated into boxes ranging
from sides 3 km up to 90 km resolution around the non-convective point ’Non-Conv’ and
the convective column ’Conv19Z’.

The following quantities were calculated from both the 1.5 km and the coarsened
resolution data:

• Correlation matrices for Θ′, Θ′
H, see figures 2, 3.

• Explained variances computed at each vertical level and 19Z, 20Z, 21Z, see fig-
ures 4, 5.

• Root mean square (RMS) errors between Θ′ and Θ′
H computed for each of the

four columns as a mean error over all members, levels and the three hour forecast
window, see table 1.

• Mean ensemble time-dependent error between Θ′ and Θ′
H computed for each of

the four columns at each vertical level and for each hour as a mean error over all
ensemble members, see figure 6.

1 E.g. The column ’Conv19Z’ has the highest rain rate at 19Z.
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Fig. 1: 1.5 km resolution domain and the chosen vertical columns for testing

The dependence of hydrostatic balance can be ascertained in a quantitative way by means
of the two error measures and the explained variance and in a more subjective way by
inspection of the correlation matrices.

4.1 Correlation matrices for Θ′ and Θ′
H

The balanced and ”raw” data ensemble correlation matrices of Θ′ and Θ′
H for the

columns ’Non-Conv’ and ’Conv19Z’, at 1.5 km resolution, are shown in figure 2 for 19Z.
As discussed in section 3, the balanced variable θ′H is computed using equation (19) for
each ensemble member and each vertical level. From figure 2 we can see that at 1.5 km
resolution in the case of no convection (figures 2(a) and 2(b)) the ensemble correlation
matrices for Θ′ and Θ′

H are indistinguishable, meaning that hydrostatic balance holds
very well in the perturbations when convection is not present. However, in the presence
of convection (figures 2(c) and 2(d)) the ensemble correlation matrices for Θ′ and Θ′

H

are clearly different, especially just above the boundary layer (between vertical levels 20
and 40) where the convection is the strongest. Hence, in the cases (vertical levels) where
the convection is present, the balance is no longer valid in the perturbations.

At 1.5 km resolution when convection is present, the Θ′ is less correlated in the bound-
ary layer (vertical levels 0 to 20) than Θ′

H . However, Θ′ is more correlated than Θ′
H

right above the boundary layer at vertical levels 20 to 30.
By coarsening the grid we expect the perturbations to become more hydrostatically

balanced. This is visually confirmed in figure 3, where correlation matrices of Θ′ and Θ′
H

for convective columns at 4.5 km and 12 km resolutions are shown. Notice, that even
though at these resolutions the perturbations are not in hydrostatic balance in the mid-
atmosphere (levels 20 - 40), they appear to be much more in the balance in the boundary
layer.
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(a) Θ′, Non-Conv (b) Θ′
H , Non-Conv

(c) θ′, Conv19Z (d) θ′H , Conv19Z

Fig. 2: Auto-correlations for Θ and auto-correlations for the corresponding Θ′
H at 19Z

for non-convective column ’Non-Conv’ and convective column ’Conv19Z’ at 1.5 km
data resolution

4.2 Explained variances

Plots in figure 2 show qualitatively that hydrostatic balance in perturbations is dis-
turbed when convection is present. To determine the extent to which the hydrostatic
balance holds in the perturbations quantitatively, we consider a measure known as ex-
plained variance [5]. The explained variance shows the extent to which the assumed
balance relationship actually exists in the model and gives an indication of the optimality
of the assumed algebraic form of the relationship.

The explained variance is given by

E(z) =

(
1− σ2

U(z)

σ2(z)

)
, (24)

where σ2 is the grid-point variance of Θ′ and σ2
U is the variance of the unbalanced part of

the perturbations, i.e. Θ′
U = Θ′ −Θ′

H , and z is the vertical level. Thus, if E ≈ 1 then
perturbations are close to hydrostatic balance and if E ≈ 0 then they are unbalanced.
Figure 4 shows the explained variance as a function of height for all of the columns of the
original 1.5 km data at 19Z, 20Z, and 21Z. This clearly shows that for the columns in the
convective regions (i.e. ’Conv19Z’, ’Conv20Z’, and ’Conv21Z’) at the time of convection
the perturbations are not consistent with hydrostatic balance. By contrast, the perturba-
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(a) Θ′, Conv19Z4km (b) Θ′
H , Conv19Z4km

(c) Θ′, Conv19Z12km (d) Θ′
H , Conv19Z12km

Fig. 3: Auto-correlations for Θ′ and auto-correlations for the corresponding Θ′
H at 19Z

for the convective column ’Conv19Z4km’ at 4.5 km resolution and the convective
column ’Conv19Z12km’ at 12 km resolution

tions in all of the non-convective columns are very well explained by hydrostatic balance.
Figure 5 shows the explained variance as a function of height for the convective columns
from 3 km up to 22.5 km coarsened data at 19Z, 20Z, and 21Z. This shows the degree
to which hydrostatic balance (in convective regions) increases as a function of horizontal
scale and demonstrates that at resolutions coarser than about 20 km hydrostatic balance
holds very strongly. It follows that the resolution at which hydrostatic balance holds in
the perturbations over the whole domain, i.e. for convective and non-convective regions,
is coarser than 20 km. At 45 km and 90 km resolutions (not shown) the perturbations are
consistent with hydrostatic balance, as are perturbations for the non-convective columns
for all coarsened resolutions (not shown).

Notice that the convective coarsened column data was obtained by coarsening around
the position of ’Conv19Z’, i.e. the column with the highest rain rate in the ensemble
mean at 19Z. As the convection moves out from ’Conv19Z’ column over the two hours,
the variances explain more of hydrostatic balance at 20Z and 21Z compared with 19Z.
However, since with coarser horizontal resolution a larger area is encompassed, a coarser
column may have more convection on average than the 1.5 km grid point. Hence, hydro-
static balance at some coarser resolutions may be less well explained by variances than
at 1.5 km resolution. Compare the peaks of figures 4 (b), (c) with figures 5 (b), (c).
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(a) 19Z (b) 20Z (c) 21Z

Fig. 4: Explained variance E(z) at 1.5 km for each vertical level at a) 19Z, b) 20Z and c)
21Z

For the 1.5 km data the ’Conv20Z’ and ’Conv21Z’ are more in hydrostatic balance
initially at 19Z, and they become more unbalanced as convection becomes stronger in
these columns at 20Z and 21Z, respectively.

4.3 High resolution RMS errors between Θ′ and Θ′
H

Another measure of the hydrostatic balance in the perturbations is the RMS error
between Θ′

H and Θ′, using the standard formula for the RMS,√
(Θ′

H −Θ′)2. (25)

This provides an average measure of how far the full perturbations are from the hydrostatic
perturbations, averaged over all the ensemble members and vertical levels. Results for
the 1.5 km data are displayed in table 1 and results for the coarse data are given in
Appendix 2.

Column index 19Z 20Z 21Z

’Non-Conv’ 0.82 0.83 1.59
’Conv19Z’ 17.97 3.81 3.44
’Conv20Z’ 3.26 9.41 1.89
’Conv21Z’ 2.64 8.59 28.29

Tab. 1: RMS error (×10−2) for the selected vertical columns at 1.5 km resolution

¿From table 1 we see that for the non-convective column the RMS error grows slightly
over the three hour period, but this growth is insignificant. However, for the convective
columns, hydrostatic balance holds much better in each column when convection is either
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(a) 19Z (b) 20Z (c) 21Z

Fig. 5: Explained variance E(z) for resolutions of 3 km to 22.5 km of convective ’Conv19Z’
column only for each vertical level at a) 19Z, b) 20Z and c) 21Z

not present or weak. For example, for column ’Conv20Z’ the RMS error is small at 19Z
since convection is very weak at this time in the region; however at 20Z, when convection
in this column is strongest in the ensmeble mean, the RMS error is three times larger.
Finally, at 21Z the convection has moved out of the column and the RMS error for
’Conv20Z’ has decreased again. Similarly, for columns ’Conv19Z’ and ’Conv21Z’. The
ensemble mean precipitation rates are shown in Appendix 3.

4.4 The time-dependence of relative error

Here the error between an average ensemble value for each vertical level and time is
computed, given by

rel.error =

√
(Θ′

H −Θ′)2

|Θ′
H |

× 100. (26)

Figure 6 shows the relative error for all five columns at 1.5 km resolution. The perturba-
tions from convective columns ’Conv19Z’, ’Conv20Z’, and ’Conv21Z’ are far from being
in balance at the time when the convection is the strongest in each column, whereas, for
the non-convective column ’Non-Conv’, the perturbations are close to being balanced at
all times. From the figure it is possible to see that convection moves in space over the
three hours and this is consistent with the results in sections 4.2 and 4.3 obtained from
the explained variances and the RMS error.
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(a) ’Non-Conv’ (b) ’Conv19Z’ (c) ’Conv20Z’ (d) ’Conv21Z’

Fig. 6: Relative error between Θ′
H and Θ′ averaged over all ensemble members in vertical

space and time at 1.5 km resolution

5 Summary and conclusions

To investigate how well the hydrostatic balance holds for forecast errors at convective
scales we used an ensemble with 24 members obtained from running the 1.5 km resolution
version of the UM that was initialised according to the procedure described in section 2.3
and in Appendix 1. The ensemble was initialised at 18Z on 27/07/2008 when convection
was fully developed and data for analysis were available at 19Z, 20Z, and 21Z on the same
day. In this paper we focused on the vertical analysis of forecast errors. Four vertical
columns from the whole domain were selected for testing purposes for each forecast hour:
a column with no precipitation and three columns with highest rain rates in the ensemble
mean, for each forecast hour 19Z, 20Z and 21Z, respectively. Data around two columns,
one non-convective and one convective were aggregated from 3 km up to 90 km resolution.
For each of these columns the hydrostatically balanced potential temperature perturba-
tions, θ′H , were calculated using the approximated hydrostatic equation for perturbations,
expressed in the terms of the available fields - potential temperature θ, Exner pressure Π
and specific humidity q.

By constructing the correlation matrices for these columns it was shown that at 1.5 km
resolution the hydrostatic balance does not hold in the perturbations in the regions of
convection but does hold in the regions where convection is not present. Note, that from
the explained variances and mean error in the vertical we establish not only the extent
to which the perturbations are not in hydrostatic balance but also, that perturbations
are in balance at all resolutions in all columns in the stratosphere (above vertical level
55) where the atmosphere is dry. Also, from the explained variances we see that at the
vertical levels 10 – 30 the perturbations are very far from being balanced. This suggests
that the hydrostatic balance should be relaxed around these columns and levels in the
correlation matrices at 1.5 km resolution. This would require a redesign of the control
variable transform in variational data assimilation system used by the Met Office.

We also showed using the explained variances that 20 km horizontal resolution is the
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limit at which the hydrostatic balance becomes valid over the entire domain.
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Fig. 7: Setup and flow of the reconfigured ensemble prediction system. Here t0=18Z,
t1=19Z, t2=20Z, and t3=21Z all on 27/07/2008. The UM forward integration step
at 1.5 km includes the addition of perturbations over 20 min via incremental anal-
ysis update [2] from 18Z onwards. All ensemble members use the same operational
4 km boundary conditions.
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Resolution (km) Col. type 19Z 20Z 21Z

3 conv. 12.0619 3.3082 3.2973

3 non-conv. 0.8335 0.8379 1.4559

4.5 conv. 7.8751 3.1099 2.8045

4.5 non-conv. 0.8445 0.8359 1.3021

6 conv. 5.2717 2.7469 3.0582

6 non-conv. 0.8446 0.8281 1.2450

9 conv. 4.9439 2.5643 2.4611

9 non-conv. 0.8239 0.7909 1.1596

12 conv. 4.7447 2.4807 1.9634

12 non-conv. 0.8176 0.7759 1.1191

18 conv. 1.4827 1.9645 2.4036

18 non-conv. 0.7968 0.7369 1.0726

22 non-conv. 1.7442 1.8898 2.2769

22 non-conv. 0.7794 0.8594 1.0379

45 conv. 0.9137 1.2158 1.2769

45 non-conv. 0.7640 0.7295 0.9387

90 conv. 0.7494 0.9231 0.9995

90 non-conv. 0.7189 0.7951 0.8869

Tab. 2: RMS error with coarsened resolutions around ’Conv19Z’ and ’NonConv’ columns,

×10−2.
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(a) 19Z (b) 20Z

(c) 21Z

Fig. 8: Mean precipitation rates (mm/hr), at 19Z, 20Z, and 21Z. Black dots are coordi-
nates of the selected vertical columns.
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