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Chapter �

Introduction

The process of modelling the Earth�s atmosphere and the movement of

weather systems is a large and complicated problem� The atmosphere is a

non	linear system which becomes less predictable with time� Advancements

in computing power and better understanding of the meteorology have made

improvements in weather forecasting�

An advancement associated with the increasing computing power is in

data assimilation� This process brings together observations and information

from numerical models in a consistent way� In numerical weather prediction

it is used as a means of providing representations of the weather but also

initial conditions for atmospheric models to give accurate forecasts� �
���

The set of equations generally used to describe the evolution of the at	

mosphere are usually in terms of pressure� density� wind� temperature and

�



humidity� There are normally non	linear interactions between the variables�

varying in time� ����� ����� ����� ���� and �����

As an approximation to the atmosphere the 
	D non	linear shallow water

equations on a rotating sphere are seen as a good choice� The equations

support most of the motions that are present in the atmosphere and are the

kernal of many atmospheric models� ����� They describe the atmosphere as

a thin layer of incompressible �uid de�ned on a 
	D surface with varying

height and horizontal velocities� �����

The atmosphere is continually adjusting towards an equilibrium state

and as such the motions in the atmosphere are constrained� ����� There is

a broad spectrum of waves in the atmosphere� some travelling fast� such as

sound waves� and those with slower motions� such as Rossby waves� ����� The

large	scale features are forced to travel more slowly due to the small amount

of the total energy being used as kinetic energy� ����� When these large	scale

features are moving slowly then the quantities associated with them are said

to be balanced with respect to each other� The fast waves are assumed to

not have a direct e�ect on the large	scale �ow�

As we have mentioned in this Introduction� data assimilation is a means

of deriving a set of consistent initial conditions for the numerical models�

It is desirable to have these initial conditions such that they will not excite

spurious waves that introduce errors into the model�






The problem with data assimilation is the sparseness of observations of

the atmosphere over certain areas of the Earth� mainly the oceans� does

not provide initial conditions at the required operational resolution� This

problem is overcome by using information about the atmospheric movements

prior to the data assimilation and this requires the evaluation of the balanced

and unbalanced parts of the �ow� The decomposition is often referred to as

a control variable transform�

Currently at the Met O�ce this decomposition is achieved by transform	

ing the wind �eld� u� into its rotational part� �relative vorticity�� �� and diver	

gent part� �� From these there are two elliptic partial di�erential equations

that are solved for a balanced stream function� �� given � and an unbalanced

velocity potential� �� given �� The two variables� � and � are the control

variables where the third control variable is an unbalanced pressure and is

calculated from the linear balance equation� �����

This current decomposition only allows the �ow that is rotational and

divergence free to be considered as balanced� This is the case for certain

types of �ow� such as geostrophic �ow on an f plane � but the atmosphere is

not always in geostrophic balance�

Salmon in his three papers� ����� ���� and ����� through using Hamiltonian

dynamics� is able to derive a sub	space in the phase space of the shallow

water equations� this de�nes a balanced wind �eld that is divergent which

�



represents the semi	geostrophic part of the equations� Associated with this

phase space is a set of canonical coordinates which turned out to be those

derived by Hoskins in �
��� These coordinates have special features and have

been used operationally� ����� but the semi	geostrophic equations are also

seen as an important part of research in numerical weather modelling� �����

����� ���� and ��
��

McIntyre and Roulstone in ���� and ���� are able to extend the ideas de	

rived by Salmon and are able to derive a relationship between the sub	space�

�they refer to it as a constrained submanifold� and the canonical coordi	

nates� The potential vorticity associated with the manifolds can be written

as a Monge	Amp�ere equation between the canonical coordinates and the La	

grangian �uid particle coordinates�

If we consider the vertical component of the relative vorticity of the bal	

anced wind �eld then this is related to the depth of the �uid by a Monge	

Amp�ere equation for a balanced height� From this height we calculate the

balanced wind �eld� This �eld is not divergence free� but is balanced as it

de�nes the sub	space of the shallow water equations that does not excite the

fast waves�

In this thesis we investigate this new wind �eld as a possible alternative for

the current decomposition to rotational and divergent �elds in the control

variable transform� We start in Chapter 
 where we brie�y introduce the
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process of initialisation and the shallow water equations and summarise a

method of initialising the equations so that the fast waves are not excited�

We also introduce the time scale associated with the two types of motions

and di�erentiate between initialised and balanced�

In Section 
�� we introduce the �	D primitive equations which are the

set of equations regularly used to model the atmosphere and summarise a

technique explained in ���� where we derive what is referred to as the non�

linear balance equation�

In Chapter � we introduce the basics of Hamiltonian dynamics� which

are the tools that are used by Salmon� ���� ���� and ����� and McIntyre

and Roulstone� ���� and ����� to derive a new expression for balanced wind

�elds� There are special properties associated with these �elds and we review

these also in Chapter � as well as summarising the wind �eld expressions

including the two that we use for the research in this thesis� Associated

with these balanced wind �elds is a balanced height which we consider as a

possible alternative for the current balanced variable in the Met O�ce�s data

assimilation scheme�

Because we are considering whether or not this new variable could be

of any bene�t in the Met O�ce�s incremental data assimilation scheme� we

derive the balanced wind �eld in spherical coordinates� We also require

a linear equation for the height if this is to be used in the Met O�ce�s
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incremental VAR scheme� All of this is derived in Chapter �� where we also

introduce the spherical shallow water equations as these are the equations

that we use to perform the numerical experiments with in Chapters � and ��

The linearised equations that we derive are for a balanced height incre	

ment given either a relative vorticity �RV� or a potential vorticity �PV�� In

Section ��� we introduce a possible set of new control variables that would

be associated with the balanced height�

As these are partial di�erential equations� there is theory associated with

these problems that ensures that there are solutions to the equations� We in	

troduce this theory and de�nition in Chapter � where we derive the condition

necessary for the two di�erential equations to be elliptic for the continuous

problem� We also introduce the theory for the discrete problem�

We also explain the numerical approximations that we apply to obtain the

solutions to the elliptic equations and derive the approximations to calculate

the new control variables as well as the new balanced wind �eld on the C

grid� This is the grid that the Met O�ce�s shallow water equations model

runs on and is introduced in this chapter along with the Rossby	Haurwitz

wave which we use in our idealised experiments� Finally in this chapter we

introduce three test cases that we use throughout the remainder of the thesis�

In Chapter � we explain the experiments that we perform to test the

ellipticity condition� which is the condition that ensures that there are solu	
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tions to the elliptic equations� and compare these results with those from the

constant coe�cient equations to see if there is any extra information coming

from the extra terms� We also perform a scale analysis at �
 hrs on the terms

in the di�erential equation for the same reason�

The reason for these experiments is that the new equation requires a nine	

point stencil to approximate it rather than the �ve	point for the Laplacian

and as such if the Laplacian is the dominant term then it may not be eco	

nomical to calculate the extra terms involving the variable coe�cients� We

also perform a scale analysis of the terms in the ellipticity conditions at �


hrs to see if there are any terms that could be removed from the equations�

The second set of experiments involve the numerical solutions of the new

elliptic equations where we consider� as a �rst choice� a zonal averaged base

state and we examine the e�ects that this has when considered with the three

test cases� We also test to see if the result about using the PV with a low

Burger number �ow regime� ����� carries over to the higher form of the PV

that we derive in Chapter �� We also test to see if the balanced wind �eld is

divergent for a constant Coriolis parameter�

We �nish the thesis with conclusions from the experiments and present

suggestions for possible further work�
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Chapter �

Initialisation and Balance

As we mentioned in Chapter �� there are large	scale movements in the atmo	

sphere that are slow and the variables associated with these movements are

said to be balanced with each other� In this chapter we give a more mathe	

matical description of what is meant by balanced and initialised and we do

this in the next section�

In Section 
�
 we introduce the shallow water equations in Cartesian

coordinates and explain the motions that are present in this model� We also

derive the potential vorticity� �PV�� for the shallow water equations�

We then summarise a procedure derived by Hinkelmann and Phillips that

de�nes a set of initial conditions for the shallow water equations that prevents

the fast waves forming in the numerical solution�

In Section 
�� we introduce the primitive equations and summarise a pro	
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cedure to derive an initialisation that prevents the fast motions forming in

the numerical solution� The result is a choice between two sets of conditions�

The �rst is a set of initial conditions and the second is a Monge	Amp�ere equa	

tion that is referred to as a non�linear balance equation whose solution

does not include the fast waves�

��� Atmospheric Motions

We begin with a quote from a letter that appears in ���� from Jule Charney to

Phillip Thompson� Charney has the following description for the atmosphere�

� We might say that the atmosphere is a musical instrument on which

one can play many tunes� High notes are the sound waves� low notes are

long inertial waves� and nature is a musician more of the Beethoven than

of the Chopin type� He much prefers the low notes and only occasionally

plays arpeggios in the treble and then only with a light hand� The oceans

and the continents are the elephants in Saint�Saens� animal suite� marching

in a slow cumbrous rhythm� one step every day or so� Of course� there are

overtones� sound waves� billow clouds �gravity waves�� inertial oscillations�

etc�� but these are unimportant��

In his ���� paper� ���� Charney discusses the characteristics of atmo	

spheric motion by making the following assumption� he assumes that the
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atmosphere is statically stable� by this he is assuming that the horizontal

scale� LH � is larger than the vertical� LZ � He takes LZ to be of the order of

one atmospheric height� ��km� and the horizontal scale to be ���km� The

e�ect of this is that the atmospheric motions are in quasi�hydrostatic balance

and are of planetary scale� �����

A consequence of the hydrostatic assumption is that there are no sound

waves and the equations that govern such an atmosphere are the primitive

equations� which we introduce in Section 
���

In ����� Daley de�nes two types of time scales that are observed in this

type of atmosphere� These are given by

�� �
�

f
� �� �

LH

VH
� �
���

where f is the Coriolis parameter and VH is a characteristic horizontal ve	

locity� These two time scales are referred to as the �inertial� and �advective�

time scales respectively� The Rossby number associated with these scales is

given by the ratio

R� �
��
��

�
VH
LHf

	 �
�
�

In the atmosphere R� is usually small� This implies that the advective time

scale is much larger that the inertial time scale� The time scale �� is usually

a few hours whereas �� is considered to be longer than a day�

There are two kinds of atmospheric motions that can be identi�ed as
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normal modes of the primitive equations� linearised about a simple base

state� ����� The �rst kinds of motions are known as inertia�gravity waves

and have time scales � �� with velocities of propagation considerably larger

than VH � The second kind of motions have time scales similar to �� and

velocity propagation similar to VH � With a few exceptions� it is the motions

of the second type that are of primary meteorological signi�cance�

In the tropics we have f � � and so �� is almost the same order as �� and

therefore R� is no longer small� Thus at low latitudes we have the problem

that inertia	gravity waves can not be separated from the other �ows on the

basis of the characteristic time scale�

The consequence is the motions where the advective time scales dominate

the synoptic and planetary scales of the atmosphere and the inertia	gravity

waves are considered to be a small part of the �ow� It is the advectivemotions

that are considered to be balanced� The question is how do we model these

balanced �ows in our numerical models�

Later in Charney�s letter there is a remark that the atmosphere is like

a transmitter and the computers like the receivers� He assumes that the

computer does not introduce any substantial noise� He goes on to say that

the noise is coming from the input� To overcome this he says

�Now there are two ways to eliminate the noise in the input� The �rst is

to make sure that the input is free from objectionable noise� and the second
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is to employ a �ltering system in the receiver� Translating� the �rst method

implies that the unwanted harmonics shall be eliminated from the raw data by

some type of harmonic analysis� the second that you transform the equations

of motion and make the approximations in such a way that the bad harmonics

are automatically eliminated��

Charney is saying that there are two methods in which to perform the

numerical modelling to prevent inertia	gravity waves�

�� Integrate a model that does not permit inertia	gravity wave mo	

tion�


� Integrate a primitive equations model but modify the initial state

in such a way that the inertia	gravity waves are not excited�

It is the second method that is of interest in modern numerical weather

prediction and is referred to as initialisation�

����� Initialisation

The bene�t of an initialisation to the primitive equations is that the initial

conditions do not excite spurious inertia	gravity waves� In e�ect because

the models only approximate the atmosphere� then the atmospheric multi	

variate relationships are not duplicated exactly� This results in inconsistent�

�




unbalanced initial conditions for the model and a large projection onto the

inertia	gravity mode of the equations�

An important thing to note is the atmosphere cannot be initialised but

can be in balance� Initialisation is a process and can result in a balanced set

of initial conditions�

In the next section we look at a way of initialising the shallow water equa	

tions to prevent the formation of inertia	gravity waves that are supported in

this model�

��� Shallow Water Theory

In this section we give a brief description of the shallow water model and

the equations associated with this model� We also introduce the PV for this

model and show that is materially invariant� Finally we give a review of

an initialisation performed by Hinkelmann and Phillips to the shallow water

equations�

����� Shallow Water Model

The underlying assumptions� as described in ����� for the shallow water model

are that the �ow is a sheet of �uid with constant and uniform density with

a free surface height� h� where the �uid is assumed to be inviscid and in

��



rotation� The �ow is also assumed to be incompressible� A diagram of the

model is in Figure 
���

y� v

x� u

h �x� y� t�
D

hB �x� y�

�

L

z� w

Figure 
��� Diagram of the Shallow Water Model�

In Figure 
�� the variable h is the height above a reference level z � �

and is a function of the horizontal coordinates� x and y and time t� � is

the rotation rate� u and v are the horizontal winds that are parallel to the

horizontal coordinates� z is the vertical coordinate� w is the vertical wind

which is parallel to the vertical axis� and hB is the rigid bed of the �uid�

Hence D is the depth� given by h � hB� which does vary with time� For the

scale analysis that allows us to consider these equations as a substitute for

the atmosphere� we choose a sensible characteristic value� The characteristic

horizontal length scale is given by L� and the parametric condition which

��



characterises shallow water theory is

D

L
� �	 �
���

Therefore we require the horizontal length scale to be considerably larger

than the vertical scale�

����� Shallow Water Equations

The set of equations that govern this model is comprised of two momentum

equations� one for each of the horizontal directions� and a continuity equation�

These are given by


u


t
� u


u


x
� v


u


y
� fv � g


h


x
� �� �
���


v


t
� u


v


x
� v


v


y
� fu � g


h


y
� �� �
���


h


t
� u


h


x
� v


h


y
� h

�

u


x
�

v


y

�
� �� �
���

where u is the wind component in the eastward direction� v is the wind

component in the northward direction� h is the height of the free surface� g is

the acceleration due to gravity and is taken to be �	��ms��� f is the Coriolis

parameter� given by 
� sin �� and � is the angle of latitude� For the theory

that is described in Section 
�
�� we assume a constant value for f of f�� this

is referred to as the f 	plane approximation� ����� Equations �
��� 	 �
��� are

��



in their Eulerian form� The Lagrangian counterpart is given by

Du

Dt
� fk� u � �grh� �
���

Dh

Dt
� �hr � u� �
���

where

D

Dt
�





t
� u � r�

k is the z direction unit vector and r � u is the horizontal divergence�

An interesting feature of the shallow water equations� �SWE�� is that the

model supports gravity waves� The speed at which these waves travel is given

by c �
p
gh� These waves will always break after a time of order c

U where

U is some typical �ow speed�

Another variable that is associated with the shallow water model is the

potential vorticity� �PV�� We now derive the PV for the shallow water equa	

tions and show that it is materially invariant�

We start by considering the vertical component of the relative vortic	

ity� �RV�� as we are only working in two dimensions in the shallow water

equations� This then is

� � k � �r� u� �

v


x
� 
u


y
	 �
���

If we now take the curl of �
��� then we obtain

D

Dt
�� � f� � �� � f� � � �� �
����

��



where � represents the horizontal divergence� Rearranging �
��� we obtain

� � ��

h

Dh

Dt
	 �
����

Substituting �
���� into �
���� gives

D

Dt
�� � f�� �� � f�

h

Dh

Dt
� �	 �
��
�

This can be written in the form

D

Dt

�
� � f

h

�
� �	 �
����

This last equation gives the information that the potential vorticity�

Q � f � �

h
�
f � 
v


x
� 
u

y

h
� �
����

is conserved following the motion of the vertical �uid columns� We will

use the shallow water equations� potential vorticity in many of the following

chapters but we now review an initialisation to the shallow water equations

to stop the excitation of the gravity waves�

����� Initialisation of the Shallow Water Equations�

The initialisation that we summarise here is given in more detail in �����

We start with the SWE in Cartesian coordinates� �
��� 	 �
���� and linearise

about a constant wind� U � which is independent of x� y and t� There is also

��



a base state geopotential� 
� � g
h� which is only a function of y� where U is

related to 
� geostrophically through

U � � �

f�


 
�


y
	

It is also assumed that the perturbations with respect to the velocity and the

geopotential are only functions of x� When these assumptions are applied to

equations �
��� 	 �
��� then the result is a much simpler set of equations�

Next stage in this process is to introduce the Helmholtz theorem that

allows the wind �eld� u� to be written in terms of derivatives of a stream

function� �� and velocity potential� �� This is given by

u � k�r� �r��

which in component form is

u � �
�

y

�

�


x
� v �


�


x
�

�


y
	 �
����

This can be used to write equations �
��� 	 �
��� in terms of �� � and ��

Next a wave solution is assumed for each of the three variables of the form��������������

� �x� t�

� �x� t�

� �x� t�

��������������
�

��������������

 �� �t�

 �o �t�

 �� �t�

��������������
exp

�
imx

a
� iUmt

a

�
� �
����

where m is the x wave number� a is the radius of the Earth and the subscript

denotes the variable at the initial time� These are then substituted into the

��



reduced equations and a Laplace transform is then applied to each of the

three variables� The transfer function for � is given by

L � �� �
 ��
�
s� � s

�
f�  �� �  ��

�
� �� � if����

 ��� ��
�

s� � sf���
�
� � if����

� �
����

where i �
p��� �� �

q
� �m�!��a�f�� and �� � Um�af��

The �� and �� are nondimensional frequencies� The �rst being that of

inertia	gravity wave frequency with time scale �� and ��� that of the advective

time scale� ���

The denominator is then factorised so that the transform can be inverted

using standard results for Laplace transforms� Hinkelmann and Phillips then

make a simpli�cation to the denominator by ignoring the term if���� which

is assumed to be small relative to the other two terms� The consequences of

this are explained in �����

The result for the inverse transform of �
���� is

 � �t� e�if���t �

��i��  ��
���

�

�
 �� �

i��  ��
���

�
cos f���t

�

�
f�  �� �  ��

f���

�
sin f���t

�
e�if���t	 �
����

This is a solution in the form of an inertia	gravity wave with characteristic

frequency� ��� modulated by the slower advective frequency� ��� To prevent

these gravity waves from forming then� there are two situations� The �rst is

the degenerate case where a term in the reduced continuity equation is set

��



to zero� This removes the term i��  ��
���

from �
���� and in that case for there

to be no inertia	gravity waves we must have the coe�cients of the sine and

cosine terms initially zero� This then gives the conditions

 �� � � and f�  �� �  �� � �	 �
����

This condition is seen as a zeroth order initialisation state as it is saying

that the initial state should be in geostrophic balance and that there should

be a zero initial velocity potential�

If we now allow all the terms to stay in the reduced equations then this

gives

 �� �
i��  ��
���

� � and f�  �� �  �� � �	 �
�
��

This is seen as a �rst order set of conditions� as we require more than just

geostrophy and a zero initial velocity potential�

This then gives two di�erent sets of initial conditions with which to start

the numerical integration of the linearised shallow water equations that will

not generate inertia gravity waves� the �rst� �
����� is giving a set of non	

divergent conditions whereas �
�
��� is a set of divergent conditions� �����

As we mentioned in Chapter �� the shallow water equations provide an

approximation to the movements in the horizontal direction in the atmo	

sphere� These equations also support inertia	gravity waves and as such if we

can remove these from the shallow water equations then we hope to also to re	


�



move these from the more sophisticated models in �	D� namely the primitive

equations� �PE� and we do this in the next section�

��� Primitive Equation Model

In the last section we summarised a technique to derive an initialisation to the


	D non	linear shallow water equations to remove the inertia	gravity waves

from the numerical model�

In this section we introduce the �	D primitive equations and summarise

a technique that initialises the PE such that the gravity waves are removed

but also brie�y look at the limitations of the method�

����� Primitive Equations

The primitive equations comprise of the equations of motion� �
�
��� hydro	

static equation� �
�

�� conservation of mass� �
�
��� and the thermodynamic

equation� �
�
��� These are


u


t
� u � ru� 



u


P
� fk� u�r� � F� �
�
��


�


P
�
RT

P
� �� �
�

�

r � u�





P
� �� �
�
���





t
� u � r

�

�


P
� 
" � � RQ

CpP
� �
�
��


�



where P is the pressure and is used as the vertical coordinate system� 
 �

dP�dt is the vertical velocity� R is the gas constant� CP is the speci�c heat

at constant pressure� T is the temperature and � is the geopotential� F� is

the frictional force per unit mass� Q here is the time rate of heating per

unit mass� " is the static stability� r is the gradient operator as de�ned in

Appendix A and u � �u� v�T is the horizontal wind �eld�

Firstly we nondimensionalise �
�
��	�
�
�� using the following scales

� LH is the horizontal scale �m�

� LZ is the vertical scale �m�

� # is the vertical pressure scale �mb�

� VH is the horizontal winds speed �ms���

� N� is the Brunt	V$ais$al$a frequency �s���

� LH
VH

is the advective time scale �s�

� g is the gravitational constant �ms���

The variables are nondimensionalised as follows

u� � V ��
H u� r� � LHr� t� � VHL

��
H t�

�x�� y�� � L��
H �x� y� � P � � #��P� 
� � LH#

��V ��
H 
	 �
�
��







The Coriolis parameter is approximated through a beta	plane as de�ned in

Pedlosky� ����� given by

f� �
f


�
�
�
f�� �

LH

a
��y�

�
� �
�
��

where f�� � sin �� and �� � cos ��� where �� is a reference latitude� Next Q

and F are ignored to make the equations homogenous� This then gives


u�


t
� u�ru� � 



u�


P �
�R��

�

��
f�� � LHa

����y�
�
k� u� �r���

�
� �� �
�
��

r� � u� � 

�


P �
� �� �
�
���





t�
� u � r

�

��


P �
�

L�
H

R�L�
H


�!"� � 
�"� � �� �
�
��

where the Rossby number is given by

R� �
VH


�LH

� �
����

and the Rossby radius of deformation is

LR �
N�LZ


�
	 �
����

Both of these two quantities are nondimensional�

Before we move onto the next step of the derivation we give a brief ex	

planation of the quasi	geostrophic approximation that will be used in the

analysis of the nondimensionalised equations� �
�
�� 	 �
�
���

Holton� ����� derives the relationship that de�nes a �ow to be geostrophic

through applying a scale analysis to �
�
�� using typical synoptic scales for


�



the mid	latitudes� The result is that the leading terms� in magnitude� are

the Coriolis term and the geopotential gradients�

� fv � �
�

x

� fu � �
�

y

	 �
��
�

The two conditions in �
��
� are seen as �rst order approximations to the �ow

and is only valid for small Rossby numbers as explained in ����� Therefore a

�ow is said to be quasi�geostrophic if the motion is nearly geostrophic�

To apply this approximation to �
�
�� 	 �
�
�� we require the parameters

R�� LR and LH
a � �� If we consider

LH � ���m� LZ � ���m� VH � ��ms��� g � ��ms���

� � ����s��� a � ���m� N� � ����s��� LR � ���m�

to be typical values for the mid	latitudes� ����� then we see that the three

parametersR�� LR and LH
a are around ���� We now introduce a small param	

eter� �� that is the same magnitude as the Rossby number� This makes the

three dimensionless numbers O ���� We will use this information to initialise

the model�

����� Quasi�Geostrophic Initialisation

Two possible methods to derive the quasi	geostrophic equations are� �rstly

expand the dependent variables u� v and � in an asymptotic series in terms


�



of the small parameter� �� This is detailed in ����� The second method uses

a bounded derivative method as detailed in ��� and �
�� but is also explained

in ����� It is the latter that we review here�

The method works by noticing that the scales that were chosen to nondi	

mensionalise with have the time scale the size of the advective scale� There	

fore the time derivatives are O ��� and as such all subsequent time derivatives

must be of the same order otherwise di�erent time scales would be introduced�

For the �rst time derivative to be O ��� then the following must hold


�


x
� f�v � �Gu �x� y� P� t� � �
����


�


y
� f�u � �Gv �x� y� P� t� � �
����


 � �G� �x� y� p� t� � �
����

where Gu� Gv and G� are O ��� functions� Then we introduce the Helmholtz

theorem for the horizontal velocities and scale the divergent wind by ��

u � k�r� � �r� � u� � �u�	 �
����

The �rst order set of initial conditions to ensure motions of the advective

scale is to set all terms that are O ��� to zero� This gives

u � � �

f�


�


y
� v �

�

f�


�


x
� 
 � �	 �
����

The �rst two terms are the geostrophic balance given in �
��
��


�



To derive a higher order set of conditions� we require the second time

derivatives of u� v and � to be order one functions in �� After many ma	

nipulations� for more details see ����� the �nal outcome is a version of the

non�linear balance equation� given by

r�� � f� � �� ��u� �r � �u� � ru��� � �
����

where u� is the u component of u��

The important feature of this equation is that it relates the stream func	

tion to the geopotential� through a Monge	Amp�ere type equation� to prevent

motions of the same size as the inertia	gravity waves forming in the model�

Therefore the initial data that satisfy �
���� is balanced and integrating a

primitive equations model with this data will not excite gravity waves�

We now consider brie�y the limitations of the quasi	geostrophic initiali	

sations to both the shallow water and primitive equations models before a

�nal summary of the whole chapter�

����� Limitations of Quasi�Geostrophic Initialisation

The scaling that was performed to the primitive equations assumed mid	

latitudinal values for the variables and as such ensured that the Rossby

number was small� A result of this was that the �ow was nearly geostrophic�


�



This meant

R� �
VH


�LH

�
LH

a
�

R�L
�
H

L�
R

�

were order �� The main problem occurs when we start to enter the lower

latitudes and the Rossby number is growing and as such the rotational �ow

associated with geostrophic �ows is not correctly modelling the �ow here�

This restrains this type of initialisation to the mid	latitudes for best results�

��� Summary

In this chapter was we have introduced the motivation and techniques for

the removal of inertia	gravity waves from either a shallow water or primitive

equations model�

There were two di�erent techniques used to derive the initialisation� The

�rst uses a Laplace transform and the other a bounded derivative method�

The main result that arose from both approaches was that a simple geostrophic

condition would prevent the fast motions but this is often felt to be too severe

a restriction� �����

Applying the bounded derivativemethod to the non	dimensionalised prim	

itive equations resulted in a non	linear partial di�erential equation whose

solution is considered �balanced� and as such if used in the model will not

excite the gravity waves�


�



In the next chapter we consider a di�erent approach to this problem by

considering Hamiltonian dynamics and derive a di�erent non	linear partial

di�erential equation that also prevents these fast motions�


�



Chapter �

Balance Via Hamiltonian

Dynamics

In the previous chapter we reviewed two initialisation techniques� one for

the shallow water equations and the other for the primitive equations� For

the primitive equations the process resulted in a non	linear balance equation�

�
����� where the stream function was related to the geopotential through a

Monge	Amp�ere equation�

In this chapter we review other mathematical techniques to derive a bal	

ance equation� We start by introducing the basics of Hamiltonian dynamics�

which will be used to derive a di�erent balance equation� We then show how

the shallow water equations can be derived in Hamiltonian dynamics through

a variational principle� This is important as from this di�erent balance equa	


�



tions are derived�

We then move onto a higher order balance from geostrophy to semi	

geostrophy where we review the consequences of semigeostrophy and de�ne

a new version for the semi	geostrophic PV in terms of a new form for the

horizontal wind �eld derived by Roulstone and Sewell in ����� We then review

brie�y the geostrophic coordinates discovered by Hoskins in ����� �
��� In the

next section we give a brief summary of the results by Salmon from the three

papers� ����� ���� and ����� where he makes approximations to the Lagrangian

that describes the shallow water equations in order to derive a set of balance

conditions�

The �nal section is a review of the work by McIntyre and Roulstone� ����

and ����� where they extend the ideas by Salmon to de�ne a balanced wind

�eld� uc� which captures the balanced divergent �ow� They also de�ne an

extension to the geostrophic coordinates� It is from these uc that we are able

to de�ne a di�erent balance equation which the remainder of the thesis is

concerned with�

��� Hamiltonian Dynamics

We start by considering the shallow water equations by considering a �uid

as a continuum� which is a continuous distribution of mass in space� �����

��



There are two di�erent ways of describing the continuum motion� The �rst

is the Eulerian where the independent variables are the space coordinates�

x � �x� y�� and the time� t� The dependent variables are the height �eld�

h �x� y� t�� and the velocities� u �x� y� t��

In the Lagrangian description� the independent variables are a set of

particle labels a � �a� b�� and the time � � The dependent variables are the

coordinates

x �a� b� � � � y �a� b� � � � �����

at time � � of the �uid parcel identi�ed by �a� b�� The particle labels vary con	

tinuously throughout the �uid� but the values of �a� b� on each �uid particle

remain �xed as the �uid particle moves from place to place� Also the use

of � to denote time is to make clear that 
�
� means �a� b� are being held

�xed� For the Eulerian description 
�
t means that �x� y� are held �xed�

A way to view these descriptions is to think of a label space with coordi	

nates �a� b� and a location space with coordinates �x� y�� The �uid motion is

a time dependent mapping between these two spaces�

The derivative with respect to Eulerian and Lagrangian coordinates are

related by the chain rule


F


�
�

F


t


t


�
�

F


x


x


�
�

F


y


y


�
� ���
�

��



where F is a function of �x� y� t� or �a� b� � �� This leads to


F


�
�

F


t
� u


F


x
� v


F


y
�

F


t
� u � rF	 �����

which is the form used in Section 
�
��� A detailed derivation is given in ��
��

With the basic description of �uid motions described here in terms of

Lagrangian and Eulerian framework we now show how these are used in

derivation of motions using Hamilton�s principle�

����� Hamilton�s Principle

Hamilton�s principle states that the action

A �
Z t�

t�

Ldt� �����

is stationary� where L is called the Lagrangian and is given by

L � T � V� �����

where T is the kinetic energy and V is the potential energy� We will brie�y

give two examples of how this is formulated� The �rst is for a system com	

prised of point masses and the second a �uid continuum�

For the �rst example we consider a system composed of N point	particles

each with masses�mi� �i � � to N�� and locations� xi �t�� Now let V �x�� 	 	 	 �xN �

be the potential energy of the system� The kinetic energy is given by

T �
�




NX
i��

mi

dxi
dt

� dxi
dt

	 �����

�




Hamilton�s principle states that the �rst variation of the action� �A� satis�es

�A � �
Z t�

t�

�
�




NX
i��

mi

dxi
dt

� dxi
dt

� V

�
dt � �� �����

for arbitrary� independent variations f�xi �t� � �yi �t�g that vanish at t� and

t�� Therefore we must have �xi �t�� � �xi �t�� � �� From applying variational

techniques we obtain

� �
Z t�

t�

�
�mi

d�xi
dt�

� dV

dxi

�
� �xidt	 �����

As a result of the arbitrariness of the variations the quantity inside the brack	

ets must be zero� The result is Newton�s second law�

For the second example we consider a barotropic �uid� The di�erence

between the system of point masses and the �uid continuum is that the

masses are distributed continuously in space in the continuum� Therefore�

instead of a summation to represent the masses we have

Z Z Z
dm �

Z Z Z
dadbdc� �����

as derived in ��
�� The kinetic energy is given by

T �
�




Z Z Z
dadbdc


x


�
� 
x

�

	 ������

For the potential energy we assume that this arises from external and inter	

particle forces that depend on the particle location x �a� b� c� � �� The potential

energy is

V �
Z Z Z

dadbdc �E ��� � � �x�� � ������

��



where � is the speci�c volume and is given by

� � �

�
�

 �x� y� z�


 �a� b� c�
�

��������������


x

a


x

b


x

c


y

a


y

b


y

c


z

a


z

b


z

c

��������������
�

 �x�


 �a�
�

� is the density and E ��� is the speci�c internal energy and is a function of ��

and � �x �a� t�� is the external potential and is dependent on the �uid	particle

locations�

This then gives the action for this system as

Z
d� �T � V � �

Z
d�

Z Z Z
da

�
�





x


�
� 
x

�

� E

�

 �x�


 �a�

�
� � �x �a� � ��

�
�

����
�

which must be stationary with respect to the arbitrary variations �x �a� b� c� � ��

in the location of the �uid particles� A full derivation of the resulting equa	

tions can be found in ��
��

We now extend these ideas to the shallow water equations� where in the

next section we will de�ne the Lagrangian for the shallow water equations as

shown in ���� and derive the shallow water equations from this�

��



��� Hamiltonian Form for the Shallow Water

Equations

In Salmon�s ���� and ���� papers� ���� and ����� he shows that Hamilton�s

principle for a mechanical system with N degrees of freedom can be written

in the form

�
Z

d�

�X
i

pi

qi

�

�H �q�� p�� 	 	 	 � qN � pN �

�
� �� ������

where the variables qi are the generalised coordinates� pi are the correspond	

ing momenta� H is the Hamiltonian and � denotes the �rst variation with

respect to the arbitrary variations

�qi �� � � �pi �� � �

at �xed time � �

We are considering the shallow water equations as a layer of inviscid

homogeneous �uid� We are using the de�nition for the height as the Jacobian

of the mapping between the particle labels and the coordinates such that the

conservation of mass is given by

dadb �
dm

�
� hdxdy� ������

where

h �

 �a� b�


 �x� y�
�

���������
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x
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y
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y

b

���������
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In ���� the Lagrangian for the shallow water momentumequations is given

by

L �
Z Z

dadb

�
�u�R�


x


�
� �v � P �


y


�

�
�H� ������

where H is the Hamiltonian and is given by

H �
�




Z Z
dadb

�
u� � v� � gh

�
� ������

and the functions R �x� y� and P �x� y� are representing the e�ect of rotation

and have the property


R


y
�

P


x
� f �x� y� � ������

where f is the Coriolis parameter� Applying variations to x� y� u and v

results in the following Euler	Lagrange equations

�x �

u


�
� f


y


�
� �g
h


x
� ������

�y �

v


�
� f


x


�
� �g
h


y
� ���
��

�u � u �

x


�
� ���
��

�v � v �

y


�
	 ���

�

Substituting equations ���
�� and ���

� into ������ and ���
�� and recalling

����� then ������ and ���
�� are the shallow water momentum equations�

�
��� and �
��� respectively� The continuity equation arises from applying a

variation to h in ������ given �������

��



We shall return to the shallow water Lagrangian in Section ��� but we �rst

describe an approximation made to ������ and ���
��� This approximation

results in the semi�geostrophic equations� We look at this approximation

in the next section and review certain properties that arise from this and

extended these in Section ����

��� Semi�Geostrophic Theory

In this section we will look at how the semi	geostrophic equations are derived

from ������ and ���
��� We also look at the PV that is associated with these

equations� We then give a review of the geostrophic coordinates that were

devised by Hoskins� �
��� We �nish this section with a summary of the Monge	

Amp�ere equation that connects the Cartesian and geostrophic coordinates�

����� Semi�Geostrophic Approximation

We start by noticing that the equations ������ and ���
�� can be written in

terms of �$x� $y�� where �%� represents 


� � This then enables ������ and ���
��

to be written as

$x� g

h


x
� %yf � �� $y � g


h


y
� %xf � �	 ���
��

The semi	geostrophic approximation is to replace the acceleration terms�

�$x� $y�� with the material derivatives of ug � �ug� vg�� which are the geostrophic

��



winds� �
��
�� This then leads to the equations

%ug � g

h


x
� %yf � �� %vg � g


h


y
� %xf � �	 ���
��

These are referred to as the semi	geostrophic equations when they are com	

bined with the continuity equation� �
����

This system has the Hamiltonian

H � V �
Z
D

�



jugj�dm� ���
��

where D is the domain of interest and dm is the mass element� and

V �
Z
D

�



ghdm� ���
��

is the potential energy of the mass con�guration� There is a conserved quan	

tity like potential vorticity associated with this model� which is given by

Qsg �
�

h

�
f �


vg

x

� 
ug

y

�
�

f


 �ug� vg�


 �x� y�

�
	 ���
��

This potential vorticity is materially invariant i�e�
DQsg

Dt � �� �����

����� Geostrophic Coordinates

Hoskins in his paper in ����� �
��� shows that the semi	geostrophic equations�

���
��� could be simpli�ed through the following variable transform

X � x�

�


x
� Y � y �


�


y
� ���
��

��



where � is de�ned by

� �x� y� t� �
g

f�
h �x� y� t� 	 ���
��

This choice of � enables us to write the de�nition of geostrophic winds� �
��
��

as

ug � �f 
�

y

� vg � f

�


x
	 ������

This transformation� x 	� X� is referred to as the geostrophic momentum

transformation and when we assume f is constant then �X�Y � are referred

to as the momentum coordinates and have the property

%X � ug� %Y � vg	 ������

When h �x� y� t�� or corresponding � �x� y� t�� is regarded as a known func	

tion of x� y with t �xed� then ���
�� speci�es a transformation�

X � X �x� y� t� � Y � Y �x� y� t� �t �xed� � ����
�

which at each time step is assumed to have an inverse of the form

x � x �X�Y� t� � y � y �X�Y� t� 	 ������

We introduce a new variable dependent on the new coordinates�

� �X�Y� t� � ��
�



�X � x�� � �Y � y�� 	 ������

This has the derivatives


�


X
�

�


x
� X � x�


�


y
�

�


y
� Y � y	 ������

��



This then enables us to write the material derivative of the geostrophic co	

ordinates in terms of � as

%X � �f 
�

Y

� %Y � f

�


X
	 ������

It is shown in ���� that

Qsg �
�

h

	

f �


vg


x
� 
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y
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�
uG� vG

�

 �x� y�

�
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�
g

f�

�

X
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y
� 
X
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x

�

�
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 �X�Y �


 �x� y�
� �� ������

Therefore we are able to obtain the PV in terms of the new coordinates� but

in the form of a Jacobian� This means that the semi	geostrophic evolution

can be described in terms of this Jacobian�

In the next subsection we look at the mathematical form of the equation

that is de�ning the PV and the conditions for its solution�

����� Monge�Amp�ere Equations

In the previous subsection we summarised the derivation of the PV in terms

of the geostrophic coordinates� The result was that the PV could be written

as the Jacobian of the mapping between the two coordinate systems� �������

The original equation for the PV� ���
��� when the de�nitions for the

��



geostrophic winds are substituted in� gives

Qsg �
�

h

	

f �

�

��


x�
�

��


y�

�
� �


f

	


��

x�


��


y�
�
�

��


x
y

��
�
A
�
A 	 ������

This partial di�erential equation is referred to as a Monge�Amp�ere Equa�

tion � There is a condition on the equation to ensure solvablility but �rst

we give the general form of the Monge	Amp�ere equation as expressed in ����

and then give this condition�

The general form of the Monge	Amp�ere equation is

A�Br � 
Cs�Dt� E
�
rt� s�

�
� �� ������

where for �x� y� space we can de�ne p� q� r� s and t to be

p �

�


x
� q �


�


y
� r �


��


x�
� s �


��


x
y
� t �


��


y�
� ������

where A� B� C� D and E are given functions of �x� y� �� p� q�� It must be

noted that p and q are the general notation used in ����� The solvability

condition for non	linear second order partial di�erential equations is

BD � C� �AE � �� ������

and is referred to as the ellipticity condition� ����� This comes from the

following theorem� �����

Theorem � The non�linear Monge�Amp�ere equation� �	�	
�� has at most

two solutions in the interior of the domain and satis�es the boundary condi�

��



tions if

BD � C� �AE � ��

and the coe�cients in �	�	
� are all continuous in the domain�

Returning to ������ then� after we have multiplied throughout by h
f � we

have the following coe�cients B � D � �� C � �� E � � and A � � � Qsgh
f

�

Then evaluating ������ gives us the condition Qsg � � which was assumed in

Section ����
� In ���� they derive the condition for the transformed variable

and arrive at the same condition for the PV�

In Section ��� we derive another Monge	Amp�ere equation whose solutions

gives a balanced height �eld� Before this we return to the Hamiltonian dy	

namics to explain a series of approximations to the shallow water Lagrangian

that were performed by Salmon� ����� ����� which results in an initialisation

through Hamiltonian dynamics�

��� Salmon�s L� and L� Dynamics

In Section ��
 we introduced the Lagrangian for the shallow water equa	

tions� ������� as derived in ����� We now summarise two approximations that

Salmon makes to this functional which result in sets of initial conditions for

the shallow water equations� and yet have a Hamiltonian structure associated

�




with them� We start with what Salmon refers to as L� dynamics� ���� and

�����

����� L� Dynamics

Salmon is concerned with approximations to ������� The �rst approximation

that he makes is to set u � v � �� He labels this L�� where L� is given by

L� �
Z Z

dadb

�
�R �x� y�


x


�
� P �x� y�


y


�
� g





 �a� b�


 �x� y�

�
� ����
�

which is only dependent on the particle locations� If we now apply variations

to x� y and h we obtain

�x � �f 
y

�

� �g
h

x

�

�y � f

x


�
� �g
h


y
	

Through the set up of the dynamics� the conservation of mass is implicit and

so the resulting dynamical equations are

�fv � �g
h

x

� ������

fu � �g
h

y

� ������


h


t
�





x
�uh� �





y
�vh� � �� ������

where the last equation arises from �h� As Salmon comments in ����� we have

neglected the relative accelerations� which he sees as too severe to model

��



geophysical �uid dynamics� He suggests not dropping the wind �eld but to

replace them with the geostrophic winds� He labels this approximation L��

����� L� Dynamics

We return to the full Lagrangian for the shallow water equations� where

Salmon now uses the geostrophic winds� �ug� vg�� which are dependent on

the height �eld� as an approximation to the full wind �elds� The resulting

Lagrangian is labelled L� and is given by

L� �
Z Z

dadb

�
�ug �R�


x


�
� �vg � P �


y


�
� �




�
u�g � v�g � g


 �a� b�


 �x� y�

��
	

������

L� is still dependent only on the particle locations as the geostrophic winds

are determined by the mass distribution�

To apply Hamilton�s principle to L�� Salmon introduces variations to x�

y� ug� vg� h� R and P � Substituting these quantities into ������ and ignoring

terms of O ���� gives

Z Z
dadb �ug �R�


�x


�
��vg � P �


�y


�
� %x�R� %y�P �� %x� uG� � �ug� �



g�h	

������

Salmon now introduces the ageostrophic velocity� which he de�nes to be

uag � 
x


�
� ug	 ������

��



The next step is to integrate ������ and then substitute ������� This then

results in

Z Z
�� %ug � f %y� �x� �� %vg � f %x� �y � uag � �ug � �



g�h	 ������

The �nal stage of the derivation to the equations is shown in Appendices

A and B in ����� The resulting equations in an Eulerian framework are the

momentum equations

h

�




t
ug � ug � rug � uag � rug � uag � rug

�
� fk� h �ug � uag� � gr

�
�



h�
�

� �gr
�
h�k � r�

�
uag
f

��
� gr

�
�



h�
��

uag �r
�
�

f

��
� k� ������

and a continuity equation


h


t
�r � ��ug � uag�h� � �	 ������

To simplify equations ������ and ������ Salmon uses the information that

every Hamiltonian system is precisely de�ned by the two geometrical objects�

the Poisson	bracket operator and the Hamiltonian itself� ����� ����� We will

not go into how Salmon manages to derive the results but there is a full

explanation in �����

Salmon notices that it is possible to de�ne a set of canonical coordinates

that enables the Poisson	bracket operator to take its simplest form� He then

applies these coordinates to the shallow water Lagrangian and then applies

the variations with respect to these coordinates� The result is the coordinates

��



derived by Hoskins� �
��� and the resulting dynamical equations are the semi	

geostrophic equations in 
	D for a constant f � which show that the potential

vorticity for these equations� ���
��� is conserved�

One �nal remark from ���� is the description that Salmon has for the re	

duced dynamics� Salmon says that the approximations L � L� and L � L�

can be viewed as projections of the �uid state vector in the in�nite di	

mensional phase space spanned byfx� y� u� vg onto the subspace spanned by

fx� yg� For L� the projected coordinates fu� vg are set to zero whereas for

L� these are replaced by the geostrophic values� �ug� vg��

In ���� Salmon gives a mathematical interpretation for the approxima	

tions that he has applied� In the paper he shows that the semi	geostrophic

approximation is a speci�c projection onto the phase space manifold corre	

sponding to geostrophic balance� Associated with these is a set of canonical

coordinates� He goes on to derive the expression for the balanced part of the

phase space in terms of the approximation to the wind �eld� u� and he shows

that for the semi	geostrophic approximation the subspace in the phase space

is given by

ucs � ug � �


f
�ug � r� �k� ug� 	 ����
�

In ����� Salmon comments that it would be possible to make further ap	

proximations of higher order to the wind �eld that would also have a subspace

��



associated with them� McIntyre and Roulstone extend this theory from the

semi	geostrophic subspace to link the coordinates with the subspace� ���� and

����� We summarise their work in the next section�

��� McIntyre and Roulstone

In the previous section we summarised the work undertaken by Salmon in

����� ���� and ����� The important result that arises from these papers is the

ability to de�ne a subspace in the phase space of the shallow water equations

that captures the balanced �ow�

Salmon found that for the shallow water equations the semi	geostrophic

equations could be found from applying the canonical coordinates that Hoskins

found� ���
��� to ������� From this he was able to �nd the expression that

de�ned the subspace in the phase space� ����
�� He commented that there

is a family of these subspaces depending on the type of balance that is re	

quired to be enforced on the �ow� In this section we look at the work that

was undertaken by McIntyre and Roulstone in ���� and ���� where they are

able to de�ne a general expression that links the canonical coordinates to the

subspaces�

We are interested in how it would be possible to use this subspace to

de�ne a balanced variable to be used in the data assimilation scheme� The

��



result is a Monge	Amp�ere equation� where the solution is a balanced height

�eld� From this we are able to construct the wind �eld� uc which is the

subspace in the full phase space which� from the work done by Salmon� is

the balanced component of the �ow�

We begin with a result from a paper by Roulstone and Sewell� ����� where

they are able to link the PV for the semi	geostophic case to the manifold

de�ned by ����
��

����� Wind Field Constraints

We recall the form for the semi	geostrophic PV� ���
��� given by

Qsg �
�

h

�
f �


vg

x

� 
ug

y

�
�

f


 �ug� vg�


 �x� y�

�
	

In the Lagrangian description then the conserved PV is

Q �
�

h

�
f �


 %y


x
� 
 %x


y

�
	 ������

Roulstone and Sewell noticed that instead of replacing the terms � %x� %y� with

the geostrophic winds if you used what they refer to as a constrained wind

�eld� ucs� as it is a restriction to a sub	manifold of the phase space�

ucs � ug � �


f
ug � r �k� ug� 	 ������

We are then able to write the PV as

Q �
�

h

�
f �


vsg

x

� 
usg

y

�
� Qsg� ������

��



which is of the same form as in Section 
�
�
�

The constrained wind �eld ucs is the expression given for the subspace for

the semi	geostrophic balance� ����
�� Equation ������ is the same as ���
���

We next describe the work undertaken by McIntyre and Roulstone where

they extend the ideas by Salmon�

����� Higher Order Balance

In ����� McIntyre and Roulstone note that the constrained wind �eld� ucs�

that Salmon derived for the slow manifold� ����
�� is both a �eld and a mass	

con�guration functional� They denote this by

uc � uc �x�h ���� 	 ������

They make useful comments on how to view the constraint as a splitting of

the parent velocity �eld� up� into two di�erent �elds� The �rst of these being

uc itself which has the property of entering into the conservation relations�

importantly the PV relation

Qc �
�

h

�
f �


vc


x
� 
uc


y

�
�

�

h
�f � �c� 	 ������

The second is the particle velocity %x � up� where the term up is the full wind

�eld� Its di�erence from uc is taken to be us � up � uc� where us is referred

to as the velocity split� �����

��



McIntyre and Roulstone then derive an extension to the canonical coordi	

nates that Salmon uses to derive the semi	geostrophic equations form� They

are able to derive a set of set of canonical coordinates so that the PV can be

written in the form

Qc �
f

h


 �X�Y �


 �x� y�
� ������

where the canonical coordinates are given by

X � x�r�� i�k�r�� ������

where i �
p�� and � �

q
�
�� ��� They show that the � in ������ is

related to the sub	spaces by

uc �
�



fk� x� ug �

�

f
ug � r �k� ug� 	 ������

To obtain the form for the semi	geostrophic model� ����
�� we substitute

� � ��

 in ������ and ignore the �rst term� This extra term in ������ arises

in ���� and ���� as when we take k � r � uc using ������ then we obtain the

balanced absolute vorticity� �c� rather than the balanced relative vorticity

with ����
�� The canonical coordinates associated with � � ��

 are those

derived by Hoskins� �
���

If we take � � �� ignoring the �rst part in ������ then uc � ug and so we

are constraining the �ow to be solely geostrophic� Finally if we take � � �

��



then the resulting balanced wind �eld is

uc � ug �
�

f
ug � r �k� ug� � ������

where we have again ignored the �rst term in ������� Equation ������ is

consistent with a Rossby number expansion for the velocity ����� when this

number is small and is a higher order balance condition than geostrophic

balance which is only O ����

McIntyre and Roulstone noticed that the substitution of the canonical

coordinates into ������ gives a general Monge	Amp�ere equation�

� �r���
�
�� ��

�
hessxy ��� �

�c

f
� ����
�

where

hessxy ��� �

����������

��

x�


��

x
y


��

x
y


��

y�

����������
�

�c is the constrained absolute vorticity given by

�c � f �

vc


x
� 
uc


y
	

The coe�cients for the ellipticity condition are now� A � �� �c

f
� B � D � ��

C � � and E � ��� ���� This then gives the condition

�
�� � �

� �c
f
� c�� ������

and is always satis�ed for the L� dynamics� � � �� � � �� For the semi	

geostrophic case then we satisfy this condition if �
c

f � � which is the same as

��



the condition derived in Section ������ For the third situation we have � � �

and � �
p
� and as such the equation is elliptic if �

c

f � �

 which is satis�ed

provided that the sub	space actually approximates the slow moving manifold

and this is so only when we have the Rossby number small�

The balanced wind �eld de�ned by ������ has the property that for con	

stant f this is not divergence free� Therefore if we could use this to �nd

a balanced height then the associated uc with this would be a divergent

rotational balanced wind�

This is possible by calculating the relative vorticity from uc and we do

that here

�c � k � r � uc � k � r � ug �
�

f
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which has the following coe�cients for the ellipticity condition� A � f��c


g�
�

B � D � � f�


g�
� C � � and E � �� This then gives a condition of f
 � �c�

It is from this last Monge	Amp�ere equation and the equation arising from

forming �c when � � � that the rest of the thesis is concerned with�

�




��� Summary

We started this chapter with a brief introduction to Hamiltonian dynamics

and summarised how a �uid motion could be described with respect to a

Eulerian or Lagrangian framework� From this we then showed Hamilton�s

principle for point masses and for a continuous �ow� In section ��
 we de	

scribed the Lagrangian that Salmon de�nes for the shallow water equations�

In Section ��� we introduced the semi	geostrophic approximation that is

made to the shallow water equations along with the semi	geostrophic PV �

���
�� which di�ered from the expression in Section 
�
�
 where we now have

the Jacobian term� In Section ����
 we reviewed the canonical coordinates

that were introduced by Hoskins in �
�� which have the property of enabling

the PV to be written in terms of a Jacobian between the canonical and

Cartesian coordinates� ������ which is a Monge	Amp�ere equation�

In Section ��� we summarised results from ����� ���� and ���� where ap	

proximations to u in the Lagrangian ������ are made� The �rst approxima	

tion is to set u � �� The resulting dynamical equations were geostrophic

balance� ������ and ������� The second approximation uses u � ug� The

resulting equation� ������� was simpli�ed by Salmon in ���� by introducing

a general canonical coordinate system which has to satisfy strict equalities�

These were the semi	geostrophic equations and Hoskin�s coordinate system

��



associated with these�

In ����� Salmon gives a mathematical structure to the approximations he

makes in ���� and ���� by deriving an expression for a balanced wind �eld�

����
�� which he shows de�nes a slow moving manifold in the phase space of

the shallow water equations�

In Section ��� we summarised a result by Roulstone and Sewell� �����

where they show that the balanced wind �eld� ����
�� when used in the PV

for the semi	geostrophic case� removes the Jacobian term and has the same

appearance as �
�����

In Section ����
 we reviewed the extensions to Salmon�s ideas by McIntyre

and Roulstone� ���� and ����� where they derive a set of submanifolds and

the canonical coordinates associated with these� They also show that the

balance relation for the semi	geostrophic case was a speci�c case for their

general formula�

In the remainder of the thesis we develop the balanced wind �eld� �������

as a possible alternative for the current balanced wind �eld which is only

the rotational part of the �ow� We started this development by deriving the

Monge	Amp�ere equation� ������� for the balanced height for a given �c�

In the next chapter we derive the spherical version of the balanced wind

�eld and the practical aspects of how it could be used in an incremental data

assimilation scheme�

��



Chapter �

Balance Equations on the

Sphere

Before we start the development of the balanced wind on the sphere we

summarise the di�erent methods used so far to eliminate the fast motions in

either the shallow water equations or the �	D primitive equations�

In Section 
�
�� we summarised a method by Hinkelmann and Phillips

where they arrived at two possible initialisations� �
���� and �
�
��� for the

non	linear shallow water equations�

The conditions were arrived at by setting the terms in the solution for the

velocity potential� �
����� that were multiples of the inertial time scale� ��� to

zero� The �rst set of conditions involved a form of geostrophic balance� �����

and a zero initial velocity potential� �
����� The second set of conditions�

��



�
�
��� required again some form of geostrophic balance but now with a

non	zero velocity potential� These are seen as di�ering in that the second

conditions allow for an initial divergence�

In Section 
�� we reviewed a method that nondimensionalised the prim	

itive equations so that the time scale was that of the advective scale� To

these equations a bounded derivative method was applied� Through bound	

ing the �rst time derivatives to be O ��� we arrived at �
����� which is the

geostrophic balance condition� By bounding the second derivatives we arrive

at an equation that links the geopotential to the stream function� �
�����

This is referred to as a non	linear balance equation� ����� �����

In Section ��� we introduce a form of balance that is referred to as semi	

geostrophic� This is where� in equation ���
��� the acceleration term is re	

placed by the time derivative of the geostrophic winds� These equations have

the property that there exists a set of canonical coordinates� ���
��� which

enable the PV to be written as the Jacobian of the canonical coordinates

with respect to the Cartesian coordinates� �������

In Section ��� we looked at Salmon�s approximations to Lagrangian of the

shallow water equations� ������� His �rst approximation was to set u � v � ��

the result was the geostrophic balance relation� ������ and ������� His second

approximation was to substitute the geostrophic winds for the full �elds� The

result was a balance equation for the ageostrophic wind� ������� Through

��



using information about the structure of Hamiltonian dynamics� Salmon is

able to de�ne a subspace in the phase space of the shallow water equations

where the semi	geostrophic motions lie� ����
��

In Section ��� we reviewed ���� and ���� where McIntyre and Roulstone

extend the subspace to a more generalised form as Salmon suggests in ����� to

link a set of sub	spaces that represent the slow motions in the shallow water

equations to a set of canonical coordinates� ������ with ������� and enables

the PV to be written in the Jacobian form� �������

One of these sub	spaces is given by

uc � ug �
�

f
�ug � r� �k� ug� �

������ which is the same as the Rossby number expansion for the wind �elds

correct to second order� ����� ����� This is also de�ning a balanced wind�

In this chapter we develop the mathematics necessary to calculate a bal	

anced height through the same approach that we described at the end of

Section ����
� but on the sphere� We also derive the spherical component

form for the balanced wind and the spherical version of the Monge	Amp�ere

equation given in Cartesian coordinates by �������

We then modify this technique to be able to use this with an incremen	

tal data assimilation scheme� We achieve this by linearising the spherical

de�nition of the balanced wind �eld and following the same procedure for

��



calculating �c as in Section ����
�

We also derive a linearised version of Qc associated with ������ for the

sphere� The result is a variable coe�cient Poisson equation for the relative

vorticity and a variable coe�cient Helmholtz equation for the PV� The so	

lution of these equations is a balanced height increment from which we can

reconstruct the balanced wind �eld� If � � � in the spherical version of ������

then the resulting wind �eld is divergent for constant f �

As we are concerned with the possibility of using this variable in a varia	

tional data assimilation scheme� we brie�y describe the current control vari	

able transforms employed in the Met� O�ce�s incremental �	D variational

data assimilation scheme� ��D VAR�� and then explain how the balanced

height could be used as an alternative to the stream function and introduce

two new unbalanced variables in the last section�

We begin with a brief derivation of the shallow water equations as this

model is used to calculate the linearisation states for ������ and then review

a derivation from �

�� which results in the dimensional spherical version of

�
�����

��



��� Spherical SWE and Balance

The aim of this section is to introduce the spherical shallow water equations

and then to derive the spherical version of the non	linear balance equation�

This is the equivalent to the Cartesian version that can be found following

the derivation in ����� To arrive at the spherical version we follow the proof

set out in �

��

����� Spherical Shallow Water Equations

We recall the vectorial version of the Cartesian form of the shallow water

equations in Section 
�
�
� �
��� and �
���� We start with �
����

Du

Dt
� fk� u � �grh	

Writing in component form gives� using Appendix A�


u


t
�

u

a cos �


u


�
�
v

a


u


�
� tan �

a
vu� fv � � g

a cos �


h


�
� �����


v


t
�

u

a cos �


v


�
�
v

a


v


�
�

tan �

a
u� � fu � �g

a


h


�
� ���
�

where a is the Earth�s radius� f � 
� sin �� � is the angle of latitude and

has the values � 

h
��
 � �


i
� � is the angle of longitude and has the value

� 
 ��� 
���

Using the information from Appendix A gives the spherical version of the

��



continuity equation� �
���� as


h


t
�

u

a cos �


h


�
�
v

a


h


�
�

h

a cos �

�

u


�
�

 �cos �v�


�

�
� �	 �����

Therefore� equations ������ ���
� and ����� are the spherical version of the

shallow water equations�

����� Spherical Non�Linear Balance Equation

In Section 
�� we summarised an initialisation technique that resulted in a

non	dimensional non	linear balance equation� �
����� To derive the dimen	

sional spherical version of �
���� we consider the spherical version of the equa	

tions of motion for the �	D primitive equations model� �
�
��� We make the

assumption of homogeneity and ignore the vertical wind� ����� The remain	

ing terms are similar to the spherical version of the shallow water equations�

����� and ���
�� but with geopotential gradients rather than height gradients�

We start by taking the divergence of the equations and ignoring the time

derivative of the divergence� The reason for this is that the removal of this

term ��lters� the inertia	gravity waves� ����� The remaining terms are

r � ��u � r�u� �r�� �r � �fk� u� � �	 �����

Expanding the term r � �u � r�u using the spherical de�nitions in Ap	

��



pendix A gives

�

a� cos� �

	

�
u


�

��

� u

�u


��

�
A�

�

a� cos�

�



v


�


u


�
� u


�v


�
�
� v


�u


�
�

�

� tan �

a� cos �

�
v

u


�
� 
u


v


�

�
� tan �

a�
v

v


�
�

�
�

a� cos �
� tan� �

a�

�
u�

�
�

a�

	

�
v


�

��

� v

�v


��
�


 tan �

a�
u

u


�

�
A � r � �u � r�u	 �����

In the next step we use the trigonometric identity sec� � � tan� ���� We

now use the Helmholtz theorem for the wind �eld�

u � k�r� �r��

which in spherical coordinates� where we are only considering the balanced

component�

u � ��

a


�


�
� v �

�

a cos �


�


�
	 �����

Substituting ����� into ����� gives

r � �u � r�u �
�

a� cos� �

	




�

��


�
�

��

� 


��


��

��


��
� � tan �


�


�


��


�
�

�
�

 tan� � � �

� �
�

�

���A �
�

a�

�

�


�

��

�

 tan �

a�

�


�


��


��
	 �����

In ����� the third order terms have cancelled� We now consider the divergence

of the Coriolis term� which gives

r � �fk� u� �
�

a cos �





�
��fv�� tan �

a
�fu� �

�

a





�
�fu� 	 �����

��



Substituting ����� for the wind �eld and di�erentiating the Coriolis parameter

gives

r � �fk� u�� �

a� cos� �
f

��


��
�

tan �

a�
f

�


�
� �

a�

�


�
� f


��


��
� �����

where

� �

f


�
	

Collecting all the terms and using the following notation

r �

��


��
� s �


��


�
�
� t �


��


��
�

as used in Houghton �

� then ����� becomes




a� cos �

�
rt� s�

�
� � tan �

a� cos� �
��s�

�
f

a�
� 
 tan �

a�
��

�
t�

f

a� cos� �
r

�

�
f tan �

a�
� �

a

�
�� �r�� �


 tan� �

a� cos� �
��
� �

�

a�

�
��
� �

��
�

cos� �

�
	 ������

Therefore� equation ������ is a spherical version of a non	linear balance equa	

tion for � given � and can be considered as the dimensional spherical version

of �
����� Therefore� the solutions � do not include inertia gravity waves�

The di�erential equation for � is another Monge	Amp�ere equation�

In the next section we derive a general spherical Monge	Amp�ere equation

from the spherical version of ������ by calculating �c � k �r�uc� This then

gives a Monge	Amp�ere equation whose solution is a balanced height� We also

derive a non	linear equation from the balanced potential vorticity� Qc from

the balanced wind �eld for h�

�




��� New Non�Linear Balance Equation

In this section we derive an alternative balance equation to ������ to �nd

a balanced height� We derive the equation from the general form of the

balanced wind �eld� ������ with the �rst term ignored� and then �nd the

form of the equation for � � � and ��

We begin by recalling the general form of the balanced wind �eld� �������

uc � ug �
�

f
ug � r �k� ug� � ������

where we have removed the �rst term to calculate the relative vorticity� To

�nd its spherical form we use the spherical expression given in Appendix A�

Therefore� in component form this is

uc � ug � �

f

�
ug

a cos �


vg

�

�
vg
a


vg

�

�
tan �

a
u�g

�
� ����
�

vc � vg �
�

f

�
ug

a cos �


ug

�

�
vg
a


ug

�

� tan �

a
ugvg

�
	 ������

To form �c we take the vertical component of the curl of ����
� and �������

This gives

�c � �

a cos �

�

vc


�
� 



�
�cos �uc�

�
� ������

which in component form is

�c �
�

a cos �
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�

�
vg �

�

f

�
ug

a cos �
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�
vg
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ug

�
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a
ugvg
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�
� cos �uc �

�
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�
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�

�
cos �vg

a
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�

�
sin �

a
u�g

���
	 ������

��



We now introduce the height version of the geostrophic winds in spherical

coordinates� These are

ug � � g

f


h


�
� vg � g

fa cos �


h


�
	 ������

To derive the Monge	Amp�ere equation we substitute ������ into ������� The

result is

�c �
g

fa�

�
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�h
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�
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� tan �
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�
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� 
 tan� �

�

h


�

��

� sin � cos �

h


�
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�
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�

��
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�
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�
A
�
A 	 ������

In the expression above all the third order terms have cancelled out� To

obtain this expression we have assumed a constant f � This is often referred

to the f plane approximation� ����� which is often used as a �rst stage of

testing of new model variables�

If we consider the geostrophic sub	space� � � �� then ������ simpli�es to

�c �
g

fa�

�
�

cos� �


�h


��
�

�h


��
� tan �


h


�

�
� ������

which is a spherical Poisson equation� If we take � � � then the result is

�c �
g
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�
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� tan �
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We now consider an extension to �c to form the constrained potential

vorticity� Qc� We start from the de�nition

Qc � f � �c

h
� �c

h
� ������

where we would substitute the right hand side of ������ into ������ for �c�

This then gives

Qc � �

h

	

f �

g
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�
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� tan �
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To use this in an incremental variational data assimilation scheme we

would require a linear equation for the height� In the next section we intro	

duce a linearisation to ������ and derive a linearised Monge	Amp�ere equation

for the height increment�

��� Linearisation

In this section we introduce a linearisation to ������ about a geostrophic

base state� From the linearised version of the balanced wind �eld we derive

a linearised Monge	Amp�ere equation for the height increment�

From this we follow the extension to form the PV from Section ��
� �������

��



However� we do not use ������ to de�ne the PV but a linearised form that

we derive in Section ������

����� Linearised Balanced Wind Field

The non	linear aspect of the balanced wind �eld� ������� arises from the term

ug � r �k� ug�� To linearise this we introduce a base state for the height

and consider increments to this� We start by expressing the height �eld� h�

as h � 
h � h�� where 
h is a base state height and h� is an increment� The

geostrophic wind then becomes

ug � 
ug � u�g� ���
��

where

u�g � � g

af


h�


�
� v�g �

g

af cos �


h�


�
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vg � g
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�
	 ���
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Substituting ���
�� into ������ gives the increment to uc as

uc� � u�g �
�

f

�

ug � r

�
k� u�g

�
� u�g � r �k� 
ug�

�
	 ���
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In component form this is given by
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As in Section ��
� we can construct a balance equation for the height�

given either the constrained relative or potential vorticity� Over the next

two subsections we derive two linear partial di�erential equations from both

variables�

����� Relative Vorticity Approach 	RV


We now consider constructing a �balance equation� from uc� by forming the

relative vorticity associated with uc�� This is achieved by considering the

vertical component of r� uc�� Applying this to equation ���
�� results in

�c� � k � r� uc� � k � r � u�g �
�

f

�
k �

�
r
�
�
ug � r
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k� u�g
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�
� u�g � r �k� 
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�

where we have used the vector identity� ��
��

r� fG � fr�G �rf �G�

to obtain the second line in ���
���

The �rst term in ���
�� is
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where� for convenience� we use "� to represent the �rst derivative of f�� and

"�� the second derivative with respect to �� Therefore these are
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The next term in ���
�� is k�r�
�
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�
k� u�g
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� Evaluating 
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Taking the di�erential operators through gives
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For convenience we will write ������ as ��i� ��j� where
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The �nal step is to form k � r � ����i� ��j�� This is
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Substituting ������ and ����
� into the right hand side of ������ gives
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For the remainder of the derivation of k �
�
r�

�

ug � r

�
k� u�g

���
we sub	

stitute ���

� for the incremental height and use the variables� h� ug� vg� to

represent h�� 
ug� 
vg respectively�

The �rst term� T�� in ������ is
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The second term� T�� becomes
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The third term� T�� is
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The fourth term� T�� involves the derivative of sec � which is tan � sec �� Using

this information and "� from ���
�� makes
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The �fth term� T	� is broken down into three parts� The �rst� T	a� is
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The second part� T	b� is
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The third part� T	c� is the largest and most complicated� The �rst part of

the derivation is
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This can be simpli�ed by the identity sec� � � tan� � � �� This result in
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The sixth term� T�� from ������ result in
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We can simplify

vg

�

in ������ by using the following identity
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A derivation of this is in Appendix B� Collecting the terms� T�� 	 	 	 � T�� equa	

tions ������ 	 ����
�� with ������ substituted into ������ results in
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This simpli�es to
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We now derive k �
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��� The result is

k �
�
r�

�
u�g � r �k� 
ug�

��
�

�

a cos �
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T�

�
CCCCCA �

������

where we use the same T notation to represent the terms in ������� We again

represent h�� 
ug and 
vg by h� ug and vg respectively� The �rst term� T�� is

T� �
�

a cos �





�

�
� g

af


h


�


ug

�

�
� � g

a�f cos �

�

�h


�
�


ug

�

�

h


�


�ug

��

�
	

������

The second term� T�� becomes

T� �




�

�
g

a�f cos �


h


�


ug

�

�
�

g

a�f cos �

�

�h


��

ug

�

�

h


�


�ug

�
�
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	 ������

The third term� T�� is

T� �




�

�
g tan �

a�f


h


�
vg

�
�
g tan �

a�f

�

�h


�
�
vg �


h


�


vg

�

�
	 ������

The fourth term� T�� becomes

T� � � 
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g
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The �fth term� T	� at the moment� is
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The sixth term� T�� is given by

T� � � 
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g sin �

a�f
ug
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Returning to equations ������ and ������ these are currently dependent on


vg

� �


�vg

��

or

�vg

�
� � We have an identity for the �rst derivative� ������� and

can extend this to obtain identities for the second derivatives� These are as

follows� where the derivations are in Appendix B�


�vg

�
�

� tan �

vg

�

� �

cos �


�ug

��

� f

vg

�

"�� ����
�


�vg

��

�
�

 tan� � � �

�
vg � 
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�ug

�
�

� 
f tan �vg"�

� 
f

cos �


ug

�

"� � fvg"�	 ������

Substituting ������� ����
� and ������ into equations ������ and ������ then

collect all the terms� T�� 	 	 	 � T�� equations ������ 	 ������� gives

� g

a�f� cos� �
�
ug�h�� � h�ug�� � ug�h�� � h�ug�� � sin �vgh�� � sin �h�vg�

�cos �vg�h�� � sin �vg�h� � ug��h� � sin �vgh�� � �
 tan � sin � � cos �� vgh�

�
 tan �ug�h� � u��h� � cos� �ugh� � sin � cos � �ug�h� � ugh���
�
	

After cancellations the �nal result is ������ again�

��



We now consider the second line of ���
��� where we have rf��� As f is

only a function of � we have the vector rf�� � ���"�� ��
T � Therefore

k � r
�
�

f

�
�
�

ug � r

�
k� u�g

�
� u�g � r �k� 
ug�

�
�

�"�
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�
�

a cos �
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� v�g
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tan �

a
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�

g

�
	������

If we were modeling with a constant f then k � r � uc� gives

�c� � k � r� uc� � g

f
r�h� � 
�g

a�f� cos� �
�
ug�h�� � cos �vg�h�� � ug�h��

�
 tan �ug�h� � cos �vgh� � 
 tan � sin �vgh� � 
 sin �vgh�� � cos� �ugh�

�sin � cos � �ug�h� � ugh���� 	 ������

Currently ������ is an equivalence and not an equation�To form an equation

for ������ we approximate the balanced relative vorticity� �c�� by an increment

to the full relative vorticity� �c� � �� � � � 
�� where 
� is a base state relative

vorticity�

If we allow for a variable f then we have ������ plus the extra terms

� �g"�
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If we recall the values for � that are of interest to us� � and �� then

substituting these into equation ������ we obtain a spherical Poisson equation

��



for h when � � � and ������ with � replaced with �� This gives two elliptic

equations whose solutions are balanced increments to the height �eld�

We now consider a di�erent method of using the balanced wind �eld to

derive an equation for the balanced height increment where instead of using

the relative vorticity we now consider the potential vorticity�

����� Potential Vorticity Approach 	PV


In this section we derive a generalised version of the balance equation from the

potential vorticity of shallow water equations model� The resulting elliptic

partial di�erential equation is a variable coe�cient Helmholtz equation� We

then �nd the speci�c form of the equation for � � � and � � ��

We start by considering the potential vorticity of the shallow water model

given by

Q � f � �

h
� ������

where � � k � r � u� To form the balanced potential vorticity� ������� we

make the substitution of the balanced relative vorticity� �c� for � in �������

This now gives us the balanced PV as

Qc � f � �c

h
	 ������

Equation ������ is a non	linear equation for h as �c � k � uc where uc is

dependent on h� To linearise ������ we linearise uc by uc � 
uc � uc�� This

��



then gives us a base state for �c� This is denoted by 
�c� We apply the same

linearisation to the height �eld� h � 
h� h�� and we still have uc� de�ned by

���
��� but 
uc is de�ned by


uc � 
ug �

�

f

ug � r �k� 
ug� 	 ������

This is written in component form as
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In the next step we follow standard procedures for linearisation

Qc� �
f � k � r � �
uc � uc��


h� h�
� f � k � r� 
uc


h

�

h �f � k � r � �
uc � uc����

�

h� h�

�
�f � k � r� 
uc�


h
�

h� h�

�
�

k � r� uc�


h� h�
� �f � k � r� 
uc�h�


h
�

h� h�

� 	 ����
�

However� this equation is still non	linear� Applying a binomial expansion�

�

h

�
� �

h�


h

�
��

�
�

h
� h�


h�
�

h��



h�
� � � � � ������

from which we only require the �rst term as higher terms introduce non	linear

terms� The �nal result is

Qc� �
k � r � uc�


h
� �f � k � r� 
uc�


h�
h�	 ������

��



The right hand side of ������ is a variable coe�cient Helmholtz equation

for the balanced height increment� h��

To complete the balance equation we require a linearisation to the left

hand side of ������ as we use this to approximate the balanced PV� We

achieve this by introducing a linearisation to the full wind� u � 
u�u�� This

then enables us to linearise the relative vorticity as

� � k � r � u � k � r � �
u � u�� � 
� � ��	 ������

We follow the same procedure set out to derive the linearised balanced PV�

����
�� but now substitute ������ into ������� The result is

Q� �

�

h
� f � ��


h�
h�f � ������

where h�f is the full height increment�

The result is another elliptic partial di�erential equation� which is a bal	

ance equation for the height increment but now using the potential vorticity

rather than the relative vorticity to derive the equation� The pde is

��
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h�
h�f �

�c�


h
�
�
f � 
�c

�

h�

h� ������

To complete the derivation of the variable coe�cient Helmholtz equation we

require a de�nition for 
�c� Following the derivation set out in Section ����


for �c� using ������ gives


�c � k � r � 
uc �
�

a cos �
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Equation ������ is quite substantially di�erent from ������ yet the variable

coe�cient Helmholtz equation is dependent on �c�� Therefore we can again

choose either � or � for �� Although the classi�cation of the equation will

still be the same� i�e� a variable coe�cient Helmholtz equation� the variability

coming from the division by 
h� the ellipticity conditions will be di�erent and

we discuss this in Chapter ��

The motivation for this chapter so far has been to try and derive a possible

use of these balanced wind �elds to enable a better approximation to the

balanced �ow in an incremental variational data assimilation scheme� We

have derived four balance equations� ������ with � � � or �� and ������ with

� � � or �� All four solutions are a balanced height increment� h��

As we mention in Chapter �� currently the wind �eld is decomposed into

a balanced and an unbalanced variable through considering the vorticity and

divergence of u� In the next section we brie�y describe the current control

variable transforms used in the �D VAR scheme at the Met O�ce before we

give a set of alternative control variables and describe their transforms�

��



��� Alternative Control Variables

In this section we brie�y describe the transforms that are currently used to

move between the state variables and the control variables before we describe

an alternative set of control variables and transforms using h� as the balanced

variable�

����� Current T and U Transforms

The current set of control variables used at the Met O�ce are comprised of

a streamfunction� �� velocity potential� �� and an unbalanced pressure� AP �

In this section we explain the current transforms from the model variable

to the control variables� �T transform�� and the transform from the control

variables back to the model variables� �U transform��

We start with a brief description of the main aim of an incremental �D

VAR scheme� This is to minimise the following cost functional

J ��x� � ��x� �xb�T B�� ��x� �xb�

� �y �H��x��T R�� �y �H��x�� � ������

where �x is the increment to the model state vector� �xb are the increments to

a background states� y is the vector of observations� H is an interpolation op	

erator� B is the background error covariance matrix and R is the observation

error covariance matrix�

��



Currently� the model at the Met O�ce uses around ��� model variables

across the whole grid and around ��� observations� Therefore the two inverse

matrices in ������ are large and full� although they are never stored�

One advantage of the T transform is it allows a simpli�cation to be made

to B� It transforms the matrix into block diagonal as the three control vari	

ables are assumed to be uncorrelated� ����� This then makes the minimisation

problem

J ��z� � ��z� �zb�T  B�� ��z� �zb�

� �y �H�T�z��T R�� �y �H�T�z�� � ������

where we have applied a transform matrix� T � such that z � Tx and this

gives �z � T�x� �zb � T�xb and  B � TBT T �

The current T transform is de�ned as follows to calculate the stream	

function and velocity potential increments� where we shall now use the prime

notation that we have used for increment in the thesis so far�

�� � r� u� � r���� ������

�� � r � u� � r���	 ����
�

The transform to calculate the unbalanced pressure involves the solution

of a linear balance equation� ����� and statistical regression which we shall

not go into here�

��



The inverse transform from � and � to u is achieved through a Helmholtz

decomposition similar to the one in Section 
��� �
���� with � � �� This then

gives

u� � k�r���r��	 ������

This then gives the wind �eld� u� expressed as the sum of its balanced com	

ponent� k �r�� and its unbalanced part given by r�� where the balanced

wind �eld is simply rotational �ow�

We now give an alternative set of T and U transforms involving uc�� us��

which we de�ne in the next section� and h��

����� Alternative T and U Transforms

The T transform that would be used to calculate the alternative balanced

control variable� h�� would either be ������ or ������� given either an increment

to the relative or potential vorticity�

To calculate the two unbalanced variables we would have to reconstruct

uc� through ���
�� and ���
�� and then subtract this from the full wind �eld

increment� This then gives

us� � u� � uc�� ������

where us� is the unbalanced wind �eld� the velocity split or the generalised

ageostrophic wind� From this we would calculate the unbalanced vorticity

��



and divergence and form the two elliptic equations

�s� � r� us� � r��s�� ������

�s� � r � us� � r��s�� ������

to �nd an unbalanced streamfunction and velocity potential increments� The

main di�erence here from the current T transform is we have separated the

balanced divergent �ow from the full divergence which the standard method

using the full vorticity and divergence does not do�

We would be able to reconstruct the unbalanced wind increment through

applying the Helmholtz decomposition� ������ with �s� and �s� in place of ��

and ��� and then adding the balanced and unbalanced wind �eld together

u� � uc� � us�	 ������

An alternative method of �nding an unbalanced height or stream function

is to consider equation ������ but substitute � for the left hand side� This

comes from ����� where in Wlasak�s thesis he considers unbalanced variables

have zero PV�

��� Summary

We began this chapter with a summary of the di�erent techniques for ini	

tialising the 
	D shallow water equations and the �	D primitive equations

�




model� We also summarised the signi�cant results from the work by Salmon

and McIntyre and Roulstone and the de�nition of the balanced wind �eld�

������� the work in this thesis is based on�

After the summary we brie�y derived the SWE for the sphere� ������ ���
�

and ����� in Section ������ where we also reviewed a derivation of a spherical

non	linear balance equation� �

�� which is �������

In Section ��
 we derived the spherical version of the balanced wind �eld�

����
� and ������ based on ������� It is from these that we derived a spherical

Monge	Amp�ere equation� ������� through taking k � r � uc which gives us

the constrained relative vorticity� �c�

The aim of Sections ��� and ��� was to develop the balanced wind �eld

in spherical coordinates to be used with an incremental �	D or �	D VAR

scheme� As the scheme works with increments to the model variables we

introduced a linearisation to the height� h � 
h � h�� which enables us to

derive a generalised form for the balanced wind �eld in vector form� ���
���

and in component form� ���
�� and ���
���

In Section ����
 we formed �c� through �c� � k�r�uc�� The �nal result for

a constant f is a variable coe�cient Poisson equation� ������� We complete

the implementation of the approximation by substituting the variable �� �

�� 
� for �c�� We brie�y commented about the equation for the two values of

� but we go into more detail in Chapter ��

��



We then extended this idea to a PV approach in Section ������ We started

from the PV equation� ������� and through the substitution of a linearisation

to �c as �c � 
�c � �c� which arises from a linearisation to the height �eld�

h � 
h � h�� The �nal equation is �������

In the last section� Section ���� we gave a brief description of the current

control variable transform� ������ and ����
� and brie�y explained the �D

VAR scheme�s cost functional�

In Section ����
 we described an alternative to the T transform using

������ or ������ to calculate the balanced variable� where the two unbal	

anced variables could be calculated from ������ and ������� The alternative

U transforms were ���
��� ���
�� and ������ �evaluated with �s� and �s���

In the next chapter we develop the numerical tools to solve ������ and

������ and to calculate ���
�� and ���
��� but also explain the underlying

theory for elliptic partial di�erential equations for both the continuous and

discrete problems� We also derive the ellipticity conditions for the four equa	

tions as well as giving a brief description of the numerical model that we use

to generate the base states for three di�erent test cases that are introduced

in Chapter ��

��



Chapter �

Ellipticity Theory

In Chapter � we derived two new generalised balance equations whose solu	

tions are a balanced height increment� The �rst equation� ������

�� �
g

f
r�h� � 
�g

a�f� cos� �
�
ug�h�� � cos �vg�h�� � ug�h��

�
 tan �ug�h� � cos �vgh� � 
 tan � sin �vgh� � 
 sin �vgh�� � cos� �ugh�

�sin � cos � �ug�h� � ugh���� 	 �����

is for the relative vorticity method and ������

��


h
� f � 
�


h�
h�f �

�c�


h
�
�
f � 
�c

�

h�

h�� ���
�

is for the potential vorticity method� If we consider ����� then we have two

choices for �� If we take � � � then we obtain a Poisson equation� If we

allow � � � then the equation is a variable coe�cient Poisson equation� For

��



���
� then � is implicit in the �c� and 
�c� terms� For either value of �� � or ��

the resulting equation is a variable coe�cient Helmholtz equation� All four

of these equations are boundary value problems and as such there is a large

amount of theory associated with these types of equation� ���� ����� ����� �����

�
��� ��
�� �����

In Section ��� we brie�y begin by explaining the spherical grid and the

choices for the boundary conditions� we then go on to introduce the theory

for the continuous problem by �rst de�ning what is meant by an elliptic

di�erential operator and then state the theorem that allows for a solution to

exist� This theorem is dependent on the ellipticity condition which we

introduce in Section ����
� We have seen this for the non	linear case �Section

������ but we now introduce the linear version in Section ����
�

We then derive the ellipticity condition for the four new balance equations

in Section ������ This condition has a signi�cant e�ect on the equations

and many meteorologists have looked for a link between certain �ows in the

atmosphere and this condition� �
��� �
�� and �����

We start Section ��
 with a brief description of the Met O�ce�s shallow

water model from which we generate the base state data� In Section ��
�


we describe the numerical approximation that we use to solve ����� and ���
�

and we also introduce the theory for discrete elliptic equations�

In the �nal section� ���� we start with a description of the experiments

��



for which we show results in Chapters � and �� The �rst is to investigate

the structure of the ellipticity condition and the coe�cients of the discrete

equations� The second is to see the di�erence between the solutions to the

balanced equations� We also describe experiments associated with the as	

sumption that under constant f then the geostrophic wind is non	divergent

and the higher order balance� uc� is not divergence free�

To start the shallow water equation model that is described in Section

��
��� we use a Rossby	Haurwitz wave and we introduce this in Section ����
�

In Section ����� we introduce three test cases that describe three di�erent

Burger regimes� We begin with a summary of the four new balance equations

with which the remainder of the thesis is concerned�

��� Linearised Balance Equations

As we mention in the introduction to this chapter the four linearised equa	

tions are given by ����� with � � � or � and by ���
� again with either

� � �� � but for ���
�� � is in �c� and 
�c�

The two methods arise from considering either the relative vorticity to

capture the balanced �ow� �Section ����
�� or the potential vorticity� �Section

������� In this section we look at the four equations and their classi�cation

as elliptic equations �Section ������� and the boundary conditions associated

��



with the equations� The theorem for the existence of the elliptic equation

which introduces the ellipticity condition for linear pdes is given in Section

����
� and we examine this condition for the four balance equations in Section

������

����� Balance Equations and Boundary Conditions

As we mention in Chapter �� the four balance relations are all boundary

value problems but so far we have not mentioned the boundary conditions

associated with the equations� If we consider the following two diagrams of

the domains� �Figures ��� and ��
�� we see that the boundary condition for

the � axis is periodicity� but the � directional boundary condition poses a

problem�

The same condition that we use for the � direction is a possible choice for

the two � boundaries� However� as we cross the poles we change direction� If

we consider the direction that the j unit vector is pointing in as we enter the

northern pole then the values of � are increasing� but as we cross the pole

the values of � are now decreasing�

Another boundary condition is the information that there cannot be a �

derivative at either of the poles due to the singularity there� i�e� all the lines

of latitude coincide there� but there is no change in the longitudinal direction

��



� � �

� � ��
�

� � �� ��

� � �
�

Figure ���� Diagram of the Spherical Domain�

�

�

Figure ��
� Diagram Showing the Spherical Coordinates at The Pole�

��



�see Figure ��
��

A straightforward condition� for the two poles� is a Dirichlet condition�

If we were considering a simple Poisson equation then there is a proof in ����

that shows by assigning a constant boundary condition then the solution is

uniquely determined�

For our problems we shall use the periodicity condition for � and a Dirich	

let condition for the poles�

����� Elliptic Di�erential Equations

We start by considering the general form for a second order partial di�erential

equation

A ��� ��

�S


��
�B ��� ��


�S


�
�
� C ��� ��


�S


��

�D ��� ��

S


�
� E ��� ��


S


�
� F ��� �� S � G ��� �� � �����

where the coe�cients� A� � � � � G are functions of � and � and S is the solution

to the equation� This can be classi�ed as either a hyperbolic� parabolic or

elliptic equation� ���� ���� and �����

Before we give the theorem for the existence of the unique solution for a

general linear elliptic equation we give the following de�nitions for an elliptic

operator�

��



De
nition � A pde of the form

AS�� �BS�� � CS�� �DS� � ES� � FS � G� �����

where the coe�cients� A� 	 	 	 � G are functions of � and �� is hyperbolic if

B� � �AC � �� parabolic if B� � �AC � � and elliptic if B� � �AC � ��

This then enables the following de�nition for the operator to be elliptic�

De
nition � The di�erential operator

L �S� � AS�� �BS�� � CS��� �����

is elliptic if and only if B� � �AC � ��

We now give a speci�c version of a theorem from ����� that de�nes the exis	

tence and uniqueness of the solution to a homogenous elliptic problem�

Theorem � Given the elliptic operator� L �S�� then the di�erential equation

L �S� �DS� � ES� � FS � � �����

has one solution which has continuous derivatives up to second order in the

interior of the domain and is continuous throughout the interior and the

boundaries and assumes the prescribed boundary conditions values on the

boundary�

The more speci�c theorem is given ���� for the inhomogenous case�

We can classify the equations further with the following de�nition�

��



De
nition � The pde� �
�	� is said to be semi�linear if A� B and C are

only functions of the independent variables and quasi�linear if the same

coe�cients are functions of the independent variables and S� S� or S��

Therefore the three balance relations� ����� with � � � and both values for

� in ���
�� are semi	linear where the Poisson equation is linear�

The inequality� B� � �AC � � in de�nition � is the ellipticity condi�

tions as they are the conditions that ensures that the di�erential equation

has complex characteristics� ����� ����� This condition is an important prop	

erty of elliptic equations� We examine the ellipticity condition for the new

balance equations next in Section ������

����� Ellipticity Conditions

We start with ����� where we multiply throughout by a�f� cos � to remove the

singularity at the poles due to the terms �
cos � and also� from a numerical

point of view� for the approximations in Section ��
�
� to remove a large

number from the denominator� a�� The coe�cients A�B and C are then

given as

A ��� �� � gf � 
g�


ug

�

� �����

B ��� �� � ��g�


ug

�

�
�g� sin �

a

vg� �����

C ��� �� � gf cos� � � 
g� cos �


vg

�

� 
g� sin � cos �

a

ug	 �����

�




The coe�cents for the ellipticity condition� B� � �AC � �� are given by

B� � ��

	

��g�

�


ug

�

��

� �
g� sin �

a



ug

�


vg �
��g� sin� �

a�

v�g

�
A � ������

�AC � �g�f� cos� � � ��g�f cos �


vg

�

� ��g�f sin � cos �

a

ug ������

� ��g�f cos� �


ug

�

� ����g� cos �


vg

�



ug

�

� ����g� sin � cos �

a



ug

�


ug	

Therefore for the ellipticity condition to hold and hence for there to be solu	

tions we require ������ � ������ � �� If we recall ������� we may write

�c � �

cos �

�

vg

�

� 
ug

�

�
sin �

a
ug

�
�


�

f cos� �

	

�
ug


�

��

� cos �

vg

�


ug

�

� 

sin �

a
vg

ug

�

�
sin� �

a�
v�g �

sin � cos �

a
ug

ug

�

�
cos� �


a�

�
u�g � v�g

��
	 ����
�

Comparing ����
� with ������ we see that we can now write the ellipticity

condition for ����� as

� cos� �f�c �
ug� 
vg� �
cos� �


a�

�
f�a� � ��f

�

u�g � 
v�g

��
� ������

where �c �
ug� 
vg� represents ����
� evaluated with 
ug� 
vg instead of ug� vg� This

is therefore a bound on the choice of base state� which we may use for the

linearisation� If we set � � � ������ we see that the condition for the interior

of the domain�
�
��
 � �


�
� ��� 
� �� is

� � f�� ������

and is always satis�ed� given the boundary condition� for a constant f �

��



For the PV equation� ���
�� then the coe�cients for the ellipticity condi	

tion are given by

A ��� �� �

�
gf � 
�g



ug

�

�

h

� ������

B ��� �� �

�
���g



ug

�

�
��g sin �

a

vg

�

h

� ������

C ��� �� �

�
gf cos� � � 
�g cos �



vg

�

� 
�g sin � cos �

a

ug

�

h

	 ������

This then gives the ellipticity condition coe�cients as

B� �

����g�
�


ug

�

��


h�
�
���
g� sin �



ug

�


vg

a
h�
�
����g� sin� �
v�g

a�
h�
� ������

�AC �
�g�f� cos� �


h�
�
��g�f cos �



vg

�


h�
�
��g�f cos� �



ug

�


h�

�
����g� cos �



ug

�



vg

�


h�
�
����g� sin � cos �



ug

�


ug

a
h�

���g�f sin � cos �
ug
a
h�

	 ������

For ���
� to be elliptic we require ������ � ������� As with the RV ellipticity

condition� ������� we are able to reduce the condition to be in terms of the

base state relative constrained vorticity� If we multiply throughout by 
h��

then the resulting condition is ������ and for � � � then the result is also

the same as for the RV condition�

In the next section we describe the numerical approximations we use

to solve ����� and ���
� and introduce the condition for a solution to the

��



numerical approximation to exist�

��� Numerical Approximations

In the last section we derived the ellipticity conditions for the four balance

equations� ����� and ���
� with either � � �� �� As we see from theorem 
�

these are the conditions for the di�erential equations to have solutions�

In this section we summarise the numerical approximations to ����� and

���
� along with the boundary conditions that we use to calculate the bal	

anced wind �eld with� We also introduce� in Section ��
�
� the condition for

solutions to the discrete problem to exist�

We start with an introduction to the Met O�ce�s shallow water model

that we use to calculate the base states�

����� Met O�ce�s Shallow Water Model

In this section we brie�y introduce the numerical model that we use to calcu	

late the base states� These base states are the three output variables� height�

h� zonal wind� u and meridional wind� v�

The grid which the model uses is the Arakawa C	grid� �Figure ����� This

grid staggers the points� where the height �eld discrete values are at the

points
�
�j � ��&����
 � �i� ��&�

�
� with i � �� 
� 	 	 	 � N � j � �� 
� 	 	 	 �M �

��



hi���j�� ui���j�� hi���j ui���j hi���j�� ui���j��

vi�j�� vi�j vi�j��

hi�j��

vi���j��

hi���j��

ui�j��

ui���j��

hi�j

hi���j

ui�j

ui���j hi���j��

ui�j��hi�j��

ui���j��

vi���j�� vi���j��

Figure ���� Diagram of the Arakawa C Grid�

and the constants N and M are the total number of points in the � and �

directions respectively� The step sizes &� and &� are given by

&� �

�

M
� &� �

�

�N � ��
	 ���
��

The u points are
�
�j � ��&�� &�


 ���
 � �i� ��&�
�
and the v points are�

�j � ��&����
 � &�

 � �i� ��&�

�
�

The code that solves the shallow water equations is the same as that

used within the Met O�ce�s numerical weather prediction model� this is

referred to as the Uni�ed Model� �
��� ����� The numerical approximation is

a semi	Lagrangian� semi	implicit� predictor	corrector scheme� The wind �eld

is predicted for the next time step and the di�erence between the present time

step and the next is calculated and stored� From the continuity equation a

variable coe�cient Helmholtz equation is solved for the di�erence between

��



the two time levels� The solution to the Helmholtz problem is obtained

through using a multigrid procedure� There is a more detailed description in

�
���

����� Numerical Approximations to the New Balance

Equations

In this section we describe the numerical approximations that we use to solve

equations ����� and ���
�� we also give a description of the approximations

to calculate uc��

We shall also summarise the conditions for a solution to the discrete equa	

tion to exist� a more detailed description is given in ��
� and ����� We start

with a description of the numerical approximations used for the coe�cients

in the di�erential equation�

The linearisation factors are the geostrophic winds and their derivatives�

We calculate the geostrophic winds from the base height� 
h� given in spherical

coordinates by ���

� and ���
��� We approximate these with the central

di�erences

ug�i�j � � g

fia


hi
��j � 
hi���j

&�

� vg�i�j � g

afi cos �i


hi�j
� � 
hi�j��

&�

� ���
��

where fi � 
� sin �i and �i � ��
 � �i� ��&�� These approximations are

second order���
�� ���� and consistent with ���

� and ���
��� ��� and �
���

��



To enforce the periodicity condition in the � direction we use the conditions

that for the points j � M then j � � � � and for the points j � � then

j � � � M � At the two � boundaries� we use the periodicity condition to

approximate �i� �� j� at the north pole with
�
i� �� j � M




�
for j � M


 and

�
i� �� j � M




�
for M
 � j � M � For the south pole it is the �i� �� j� term

that is approximated� Then for �i� �� j� this is
�
i� �� j � M




�
for j � M




and �i� �� j� is
�
i� �� j � M




�
for M
 � j �M �

For the numerical experiments we perform in Chapters � and � we have

taken M � �� and N � ���

To calculate the �rst derivatives of the geostrophic winds we apply the

central di�erences



ug

�

� 
ug�i�j
� � 
ug�i�j��

&�

�


vg

�

� 
vg�i�j
� � 
vg�i�j��

&�

� ���

�

for the � derivatives and



ug

�

� 
ug�i
��j � 
ug�i���j

&�

� ���
��

for the � derivative�

The stencil we use to approximate ����� and ���
� is a nine	point sten	

cil� This entails the nine points surrounding and including the central point

shown in Figure ���� To approximate the second derivative of the height �eld

we use the standard central di�erences for the � and �� These approximations

��



are given by


�h�


��
� h�i�j
� � 
h�i�j � h�i�j��

a�&��
�


�h�


��
� h�i
��j � 
h�i�j � h�i���j

a�&��
	 ���
��

where for the � direction we use a periodicity condition and apply this the

same way as for the geostrophic wind calculations� These can be shown to

be a second order approximation� ����� ��
�� and also consistent� ���� �
���

i� �� j � �

i� j � �

i� �� j � �i� �� ji� �� j � �

i� j � � i� j

i � �� ji� �� j � �

Figure ���� Diagram of the Nine	Point Stencil�

The cross derivative approximation is derived as follows


�h�


�
�
� �


&�

�
h�i
��j
� � h�i
��j��


&�
� h�i���j
� � h�i���j��


&�

�
�

� h�i
��j
� � h�i���j�� � h�i
��j�� � h�i���j
�
�&�&�

	 ���
��

��



It is this last approximation that makes the numerical approximate to the

di�erential equation into a nine	point stencil� as we use the four corner points

in Figure ����

To complete the discrete approximation to equations ����� and ���
� we

require approximations for 
�c and �c�� We use the full relative vorticity� ��

and calculate 
� � k � r � 
u� with �� � � � 
�� and 
u is the base state wind

�eld�

We require �� at the h points in the grid but this variable is dependent on

the derivatives of the wind �elds which are not evaluated at the h points� We

overcome this by using the following approximation which is second order in

the horizontal directions� �����

��i�j �
�
k � r � u�i�j

�
� ���
��

� �

a cos �

�

v�


�
� 



�
�cos �u��

�
i�j

�

� �

a cos �i

�
v�i�j
� � v�i�j�� � v�i���j
� � v�i���j��

�&�

�
cos �i
�

�
u�i
��j � u�i
��j��

�
� cos �i��

�
u�i���j � u�i���j��

�
�&�

�
A 	

In some of the experiments that we perform on uc� we require an approxima	

tion for the divergence� The expression for �� is given by

��i�j � r � u�i�j � ���
��

� �

a cos �

�

u�


�
�





�
�cos �v��

�
i�j

���



� �

a cos �i

�
u�i
��j � u�i�j

&�
�

cos �i��v
�

i�j � cos �i��v
�

i���j

&�

�
	

The result of using the nine	point stencil to approximate the elliptic equa	

tions is a large� sparse matrix to invert� We apply a direct method to invert

the matrix by using the two NAG routines� F��BRF and F��AXF�

The program F��BRF performs a LU decomposition

WAV � LU� ���
��

where the matrices W and V are permutation matrices to enable pivoting

of the matrix to make the decomposition stable� ���� The matrix L is unit

lower triangular and U is upper triangular� The factorisation uses a sparse

variant of Gaussian elimination to maintain a balance between the sparseness

property of the matrix and the accuracy through round o� error� More details

are available from www�nag�co�uk� The routine F��AXF takes the output

from the �rst routine and solves the equation through a block forward or

backward substitution�

We now brie�y summarise the theory for the solution to the matrix equa	

tion� We start with a de�nition�

De
nition � The matrix A is called a M�matrix if the following are all true�

�� aii � �� ai�j � � �i �� j��

���



�� A is diagonally dominant and strictly diagonally dominant for at

least one row�

	� A is irreducible�

This then leads to the following theorem� �����

Theorem � If the matrix A is a M�Matrix� then it is invertible�

Therefore if the matrix that arises from the discretisation of the elliptic pde

satis�es these conditions then there exist a solution�

The �nal set of numerical approximations we derive concern uc�� Once we

have solved the discrete elliptic equation we have a balanced height increment

but to calculate the other two control variables� �s� and �s�� �Section �����

we have to calculate the velocity split� ������� and so we have to calculate uc�

from the height� ���
�� i�e� we have to numerically approximate ���
�� and

���
��� To do this we have to calculate both the base state and incremental

geostrophic wind� 
ug� 
vg� u�g and v�g at the u� v points� along with their �rst

derivatives�

To do this we follow a similar method that is used to calculate ��� We

begin with ug at the u points� where ug is geostrophic wind� If we follow

the approximation for �� we see that the �elds have been averaged to be

evaluated at the half points either side of the hi�j point� We extend this idea

to have the height �elds averaged either side of the u or v point�

��




To calculate the ug component at the u points we evaluate the following

expression

��

a


h


�

�����
i�j
 �

�

� �

a

�
hi���j � hi���j
� � �hi
��j
� � hi
��j�

�&�

�
	 ���
��

If we look at Figure ��� we see where the averages lie and how we can use

these to calculate ug at the u points� Here we have used a general height to

illustrate that we can apply the same approximation to either 
h or h��

hi���j hi���j��

hi�j

hi���j

ui�j

hi���j��

hi�j��

�hi��

�hi��

Figure ���� Diagram for the weighting of the u component of the

geostrophic wind at the u point� where  hi
� �
hi
��j
� � hi
��j


 and  hi�� �

hi���j
� � hi���j

 �

To calculate the vg component at the u point we use

�

a cos �


h


�

�����
i�j
 �

�

� �

a cos �i

�
hi�j
� � hi�j
� � �hi�j � hi�j���

�&�

�
	 ������

We have drawn a diagram to show where the averages lie for this approxi	

mation� Figure ���� For the two geostrophic winds to be evaluated at the v

���



vi�j�� vi�j vi�j��

hi�j��

vi���j��

hi�j hi�j��

vi���j�� vi���j��

�hj��
�hj��

Figure ���� Diagram for the weighting of the v component of the geostrophic

wind at the u point where  hj
� �
hi�j
� � hi�j
�


 and  hj�� �
hi�j�� � hi�j


 �

points we use the following expression �see also the diagrams of the approx	

imations in Figures ��� and ����

��

a


h


�

�����
i
 �

�
�j

� ��

a

�
hi
��j � hi�j � hi���j � hi���j

�&�

�
� ������

�

a cos �


h


�

�����
i
 �

�
�j

� �

a cos �i
 �

�

�
hi�j�� � hi���j�� � hi�j
� � hi���j
�

�&�

�
	

����
�

This completes all the numerical approximations we use to calculate h��

uc�� vc�� us� and vs�� we de�ne these in Section ���� For �s� and �s�� also

derived in Section ���� we evaluate ���
�� and ���
�� with us� and use a �ve	

point stencil� ��
�� to approximate ������ and ������ with Dirichlet boundary

conditions�

���
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Figure ���� Diagram for the weighting of the u component of the geostrophic

wind at the v point where  hi
� �
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��j � hi
��j


 and  hi �
hi�j � hi���j


 �
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Figure ���� Diagram for the weighting of the v component of the

geostrophic wind at the v point where  hj
� �
hi�j
� � hi
��j
�


 and  hj�� �

hi
��j�� � hi�j��

 �

���



��� Initial Conditions

In this section we describe brie�y in ����� the experiments that we perform

using the data generated from the shallow water model� Then in Section

����
 we introduce the Rossby	Haurwitz wave� This wave is the initial con	

dition that we use to generate di�erent types of �ow regimes in the SWE

model� In Section ����� we introduce three test cases that arise from vary	

ing certain parameters in the Rossby	Haurwitz wave� This then generates

di�erent Burger number regimes� which we also introduce in this section�

����� Experiments

There are four sets of experiments that we perform involving the four balance

equations� The �rst experiment involves evaluating the ellipticity condition

for ����� and ���
� with � � �� for three test cases both at the initial time and

at �
 hrs into the model run� At both time levels we compare the condition

to that of the equations when � � ��

The second set involves a scale analysis at � � ���N of the terms in the

ellipticity conditions and the coe�cients of the di�erential equation to see

if there are any terms that could be removed to make the solution of the

numerical equation more economical�

The other two experiments� the results of which are presented in Chapter

���



�� are concerned with the numerical solutions of the four balance relations

on the sphere for the same three test cases� We look at kbk� �

vuut NX
i��

b�i

where b is a general vector and bi is a general entry in b� For our experiment

we form a vector for each latitudinal ring of the di�erence between the full

height increment� h�f � and the balanced height increment� h�� in the mid	

latitudes to see how each method di�ers in the di�erent Burger regimes� The

last experiment involves testing the hypothesis that for constant f the new

balanced wind �eld is divergent�

����� Rossby Haurwitz Wave

The Rossby	Haurwitz wave was shown to be an analytical solution to the

non	linear barotropic vorticity equation on the sphere by Haurwitz ����� The

equation for the barotropic vorticity model is


�


t
� �u � r� � � �� ������

with

u � k �r�� � � k	r� u � r��	

A solution to this di�erential equation is of the following form

� � �a�
 sin � �K cosR � sin � cosR�� ������

���



where 
�K and R are constants� In Williamson et al� ����� the values of


 � K � �	��� � ����s�� and R � � are suggested as good conditions for

the initial wave pro�le�

In Wlasak�s thesis� ����� the value for 
 of �	��� � ����s�� was also used

in some experiments� The e�ect of using di�erent values for 
� and hence K�

is to change the height �eld from the pole to the equator� This a�ects the

ellipticity condition�

The Rossby	Haurwitz waves do not have the non	dispersive property that

it has in the non	linear barotropic vorticity model� Williamson et al reassures

us that the use of both the SWE model and the initial condition are good

approximations for numerical weather modelling�

In ���� expressions are given for the height� h� the horizontal wind com	

ponents� u and v and also the absolute vorticity � that make up the Rossby	

Haurwitz wave� These are given in terms of constants 
� K and R and

are

h �
�

g

�
gh� � a�A ��� � a�B ��� cosR� � a�C ��� cos 
R�

�
� ������

u � a
 cos � � aK cosR�� �
�
R sin� � � cos� �

�
cosR�� ������

v � �aKR cosR�� � sin � sinR�� ������

� � 

 sin � � K sin � cosR �
�
R� � �R � 


�
cosR�� ������

���



where A ��� � B ��� and C ��� are given by

A ��� �





�
� � 
� cos� � �

�

�
K� cos�R �

h
�R � �� cos� �

�
�

R� �R� 


�
� 
R� cos�� �

i
� ������

B ��� �

 �� � 
�K

�R � �� �R� 
�
cosR �

h�
R� � 
R � 


�
� �R� ��� cos� �

i
�

������

C ��� �
K�

�
cos�R �

h
�R� �� cos� � � �R � 
�

i
	 ������

The main feature of this wave in equation ������ is that it travels west to

east in a non	divergent form� The direction in which the wave travels in the

SWE model is in the same direction but the wave is diverging i�e� r�u �� ��

����� Test Cases

As we mentioned earlier in this section� we perform numerical experiments in

Chapters � and � using data from three di�erent test cases� We now de�ne

these three test cases and the type of �ows associated with them� We use

the Rossby	Haurwitz wave described in Section ����
 where we are able to

generate three di�erent test cases by varying the height at the poles� h�� and

the amplitude and speed through 
�

Before we explain the three test cases that we use with the balance equa	

���



tions we de�ne the Burger number� ���� ���� Bu� given by

Bu �
p
gh

fL
�
LR

L
� ����
�

where LR is the Rossby radius of deformation� As we can see from ����
�� as

we approach the equator� � � �� then f � � and so Bu ��� The three test

cases that we consider generate di�erent values for Bu at di�erent latitudinal

levels�

As we mentioned in Section 
��� it is often assumed that the atmospheric

motions in the horizontal directions are larger than those in the vertical�

A result of this is that the atmosphere can be considered as a number of

layers of �uid� A �uid with this property is said to be stably stratis�ed� �����

The Burger number describes the relative importance between the e�ects of

strati�cation and rotation� When the number is larger than one then the

layers are stable with respect to changes in the interfaces between them� If

the Burger number is less than one then the rotation dominates the �ow�

Returning to the expression for the initial height pro�le of the Rossby	

Haurwitz� ������� there are three parameters that can be chosen to a�ect the

wave�s pro�le� h�� 
 and K� We have chosen the wavenumber to be � as it

is the largest stable wavenumber of the wave� �
��� ����� However there has

been a paper recently that questions this� ����� in certain numerical models�

The �rst test case� �TC��� is de�ned to be h� � ��m� 
 � K � �	��� �

���



����s��� The second test case� �TC
�� is de�ned to be h� � ����m� 
 � K �

�	��� � ����s��� The third test case� �TC��� is de�ned to be h� � ����m�


 � K � �	��� � ����s��� For the initial height pro�les see Figure ����

A feature of TC� and TC� is that the increase in the height from the

pole to the equator is around ���m whereas for TC
 the increase is nearer

to 
���m� This a�ects the Burger number as we enter the equatorial region�

In ���� there is a study of the Burger number for di�erent initial heights

for the Rossby	Haurwitz wave� The results show that if we consider �ows

where their height is similar to TC� then Bu � � throughout the interior

whereas for TC� Bu � � throughout the whole interior� Also for TC
� we

have Bu � � throughout the domain� The other values of h� considered in

���� show a mixture of both low and high Burger numbers�

Therefore TC� is a low Burger number regime where TC
 and TC� are

high Burger number regimes� An extra feature of TC
 is the speed of the

propagation of the Rossby wave� As pointed out in ����� the shallower waves

in the larger latitudes are moving slower that the waves in the smaller lati	

tudes�

���
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Figure ���� Contour Plots of the Initial Height Pro�les for Test Cases ��


and �� The unit for the scales on the right are metres�

��� Summary

In this chapter we have introduced the underlying theory that allows the

solution to both continuous and discrete elliptic pdes to exist� We have

de�ned the ellipticity condition that de�nes whether or not a di�erential

operator is elliptic� We have derived this condition for the four balance

��




equations�

In Section ��
 we gave a brief description of the shallow water equations

model that we use to generate the base state data� Also in this section we

gave a description of the numerical approximations that we use to solve the

balance equations ����� and ���
� and also a description of the approxima	

tions to calculate uc from h� at the u� v points in the C grid� We use these

approximations in the experiments in Chapter �� which are brie�y described

in Section ������

In the �nal section� ��� we gave a brief description of the Rossby	Haurwitz

wave that we use as the initial condition for the SWE model�

In Section� ������ we introduced three test cases� TC� 	 TC�� where

we have changed di�erent parameters to generate di�erent Burger number

regimes� In the next chapter we look at the e�ects that these di�erent regimes

have on the ellipticity condition�

���



Chapter �

Ellipticity Experiments

In this chapter we explain and present results from experiments on the ellip	

ticity conditions for the two equations ����� and ���
��

We describe the experiments that we perform on the ellipticity condition

in Section ���� The �rst set of experiments are concerned with the initial

heights for the three test cases� As we require the geostrophic winds� calcu	

lated from the height �elds� we have to calculate the derivatives of the height

�eld� In Section ��
 we describe how we calculate these derivatives for both

the initial height pro�le and the height at �
hrs� At the initial time we use

the continuous expression for the height and the derivatives are explained

in Section ��
��� For the experiments at �
hrs we only have the numerical

values for the height rather than the continuous expressions and as such we

describe the procedure to approximate the derivatives in Section ��
�
�

���



In Sections ��� and ��� we present the results for the experiments de	

scribed in Section ���� Finally in Section ��� we present conclusions from the

experiments�

��� Ellipticity Condition Experiments

The main aim of this research is to see if we gain any extra information

from these new balance relations compared to geostrophic balance� The

calculations involved in using these new balance equations are more complex

than those with geostrophic balance�

If we were using geostrophic balance we would be solving a spherical Pois	

son equation� This would only involve a �ve	point stencil and the resulting

matrix equation would have a more sparse structure and would be easier to

store on size alone� Therefore� one of the objectives is to identify possible �ow

regimes where we would expect the higher order correction to the geostrophic

balance to be of use� We tackle this objective by the following means�

The �rst experiment involves the Rossby	Haurwitz wave at t � �� For

this case we have the analytic height pro�le and as such we can calculate the

coe�cients of the ellipticity condition analytically� We show the derivation

of the derivatives in Section ��
���

For the second experiment we again form the same coe�cients but now at

���



�
hrs into the run of the SWE model with the three test cases� To calculate

the coe�cients for this experiment we use the numerical approximations

explained in Section ��
�
�

In both experiments we compare the ellipticity plots with the equivalent

condition for the case where � � �� geostrophic balance� For the RV method

this is simply a set of increasingly valued parallel lines as we enter the equa	

torial regions� This is not the case for the PV method and we present the

condition for the PV method in separate plots for all three test cases�

We also introduce a fourth test case that fails the ellipticity condition�

which shows that the ellipticity condition will not be satis�ed by unphysical

data�

We then repeat the plots for the three test cases at �
 hours into the

�
� hour run of the shallow water model� Here we see how the condition is

a�ected by the slanting in the waves and the movement of the height �eld�

Another objective of this research is to see whether or not we need to

calculate all the terms in the equation� To do this we perform a scale analysis

using values from each of the three test cases for the mid	latitudes� We apply

this to both the coe�cients in the ellipticity condition and the coe�cients

in the di�erential equations� ����� and ���
�� The reason for this is both

equations contain many lower order di�erential terms that may be very small�

���



��� Calculations of the Ellipticity Condition�s

Coe	cients

As we described in Section ���� we perform experiments on the coe�cients

of the ellipticity condition and the discrete and continuous elliptic di�eren	

tial equations that we derived in Chapters � and �� In this section we brie�y

explain how we evaluate the coe�cients� We start with the continuous coe�	

cients in Section ��
�� and then brie�y recall the expression for the derivatives

from Section ��
�
 in Section ��
�
�


���� Continuous Coe�cients Calculations

If we recall the expression that we gave in Section ����
 for the initial height

pro�le for a Rossby	Haurwitz wave� ������

h �
�

g

n
gh� � a�A ��� � a�B ��� cosR� � a�C ��� cos 
R�

o
�

where A�B and C are given by ������� ������ and ������ respectively� then to

calculate the geostrophic winds we require the �rst derivatives of ������ with

respect to both � and �� This is therefore


h


�
�

�

g

�
�Ra�B ��� sinR� � 
Ra�C ��� sin 
R�

�
� �����


h


�
�

�

g

�
a�

A ���


�
� a� cosR�


B ���


�
� a� cos 
R�


C ���


�

�
� ���
�

���



where the expressions for the � derivatives of A� B� and C are in Appendix

C� We also require the second derivatives of h and these are given by


�h


��
�

�

g

�
�Ra�B ��� cosR� � �R�a�C ��� cos 
R�

�
� �����


�h


�
�
�

�

g

�
�Ra� sinR�
B ���


�
� 
Ra� sin 
R�


C ���


�

�
� �����


�h


��
�

�

g

�
a�

�A ���


��
� a� cosR�


�B ���


��
� a� cos 
R�


�C ���


��

�
� �����

where the expressions for the second derivatives for A� B and C are in Ap	

pendix C�

To calculate the geostrophic winds we use the expressions ������� assum	

ing a constant f � Then the �rst derivatives of the geostrophic winds are


ug

�

� � g

af


�h


�
�
�


vg

�

�
g

af cos �


�h


��
�


ug

�

� � g

af


�h


��
	 �����

To evaluate the initial ellipticity conditions we take the analytical expres	

sion derived above and in Appendix C� and evaluate these at the � and �

values that make up the grid�


���� Discrete Coe�cient Calculations

In the process of solving the matrix equation that arises in the discrete ap	

proximations to the balance equations we output from the FORTRAN��

program the coe�cients of the second order �nite di�erence terms� These

are then the discrete equivalent values for the ellipticity condition�

���



We have used the central di�erences that were described in Section ��
�


to approximate the derivatives in the coe�cients� ����� 	 ����� and ������ 	

������� We therefore evaluate the coe�cients of the ellipticity condition at

the grid points�

��� Results I
 Ellipticity Plots

In this section we present discussion for the initial ellipticity condition that

has been calculated using the analytical expressions derived in Section ��
���

We present the ellipticity conditions in a series of �gures� Figures ��
 to

��� and ���� to ����� Each �gure contains four plots� These show� from top

left to bottom right� B�� �AC� B� � �AC and h� We compare the ellipticity

plots with the equivalent condition for the Laplacian� For the PV method we

present the ellipticity condition for � � � in Figure ��� for t � � and Figure

���� for t � �
� and then compare the relevant plot for each test case�

We also give a fourth test case that fails the ellipticity condition� This

problem is unphysical� but where the height is unphysical is near where the

condition fails�

���




���� Initial Ellipticity Conditions

As we have mentioned in the introduction to this section we are to compare

the ellipticity plots for each test case against the equivalent condition for the

Laplacian� We take each test case in order but we present the �gures for

both the RV and PV method together with observations that we make about

the structure that is visible in the plots� We start with Figure ��� which is

displaying the initial ellipticity for the PV method with � � ��
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Figure ���� The Initial Ellipticity Conditions for the PV Method for � � ��

where TC stands for test case

We start the observations with TC�� where Figure ��
 shows the results

for the RV method and Figure ��� shows results for the PV method�

�
�



0.5

1

1.5

2

2.5

x 10
−9

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5
B2 COEFFICIENT

0.5

1

1.5

2

2.5

3

3.5

x 10
−6

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5
4AC COEFFICIENT

−3.5

−3

−2.5

−2

−1.5

−1

−0.5
x 10

−6

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5

λ

θ

ELLIPTICITY CONDITION

100

150

200

250

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5

λ

θ

HEIGHT FIELD

Figure ��
� Plots Showing the Coe�cients of the Ellipticity Condition and

the Condition for the RV Method for TC�

1

2

3

4

5

6

7

x 10
−14

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5
B2 COEFFICIENT

2

4

6

8

10

12
x 10

−11

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5
4AC COEFFICIENT

−12

−10

−8

−6

−4

−2

x 10
−11

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5

λ

θ

ELLIPTICITY CONDITION

100

150

200

250

0 1 2 3 4 5 6
−1.5

−0.75

0

0.75

1.5

λ

θ

HEIGHT FIELD

Figure ���� Plots Showing the Coe�cients of the Ellipticity Condition and

the Condition for the PV Method for TC�

�
�



As we can see from the two �gures there is a signi�cant di�erence in the

structure in the two ellipticity conditions but both conditions are dominated

by the �AC term� We are not surprised by the di�erence between the two

methods� conditions as this is consistent with the �ndings from ����� We shall

see the consequences of this in Chapter ��

If we consider the results for the RV method �Figure ��
� then comparing

to a set of parallel lines there would appear a similar structure to this in the

mid	latitudes but as we enter the equatorial regions this is not the case� The

structure as we enter this region appears similar to that of the wave�

Another feature is the size of the dominance of the �AC term over the

B� term� For this test case this is ��� which is quite a substantial di�erence

but as we can see� the changes in the wave�s height pro�le with respect to

the two directions is larger in TC
 than TC��

A noticeable feature in the PV method�s ellipticity condition is the vor	

titices that are formed in the troughs of the Rossby	Haurwitz wave� In these

areas the ellipticity condition is at its most negative possible suggesting a

more balanced area of the �ow� Comparing the plot to the Laplacian equiva	

lent for this test case� �top left in Figure ����� then there appears to be some

similar structures between the two plots�

Figures ��� and ��� have the results for TC
� The �rst �gure is the results

for the RV method and the second for the PV method�

�
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The �rst feature that stands out from Figure ��� is that there is noth	

ing resembling the structure of a set of parallel lines� Comparing the PV

method�s ellipticity condition to its Laplacian equivalent� �top right in Fig	

ure ����� then this is also suggesting that for this type of �ow then the extra

terms from taking the higher order balance are essential�

Another striking di�erence between the results for TC� and TC
 is the

size of the di�erence between B� and �AC for this test case� This di�erence

is only �� compared to ��� for TC�� Therefore� �ows similar to that of TC


could violate the ellipticity condition� This is true for both the RV and PV

results�

A �nal comment about these �ndings is that the structure between the

two methods does not change substantially compared to the obvious di�er	

ence between the two methods for TC�� We are not surprised by this as

again this consistent with the �ndings in �����

The �nal test case�s results� TC�� are displayed in Figures ��� and ����

The condition for the RV method is the same as that for TC�� This is not

surprising as the change in the wave�s height across the domain is the same

for both test cases�

Comparing the conditions against that for the Laplacian then the obser	

vations for TC��s RV results apply here also� The signi�cant di�erence is in

the ellipticity condition for the PV method results�

�
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We do not have a change in the structure of the conditions between the

RV and PV methods as in TC�� This is again consistent with ����� we go

into more details about these �ndings when we calculate the solutions to the

equations in Chapter ��

As we mentioned in the introduction to this section we have a fourth

test case that has the ellipticity condition failing for both methods� For this

fourth test case� TC�� is de�ned by h� � ����m� 
 � K � �	��� � ���	s���

the height �eld is shown in Figure ���� The ellipticity plots are in Figure ����

As we can see this is an unphysical example as we can not have negative

values for the full height �eld� The e�ect this has on the coe�cients in the

ellipticity conditions is seen in Figure ����
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���� �� Hours Ellipticity Conditions

In Section ����� we used the analytical derivatives of the height to evaluate

the ellipticity condition at the grid points� In this section we investigate the

e�ects on the ellipticity condition at �
 hours into the model run� The �gures

are in the same format to those in Section ������

As with the analysis in Section ������ we require the Laplacian equivalent

for the three test cases at �
 hours� This is shown in Figure ����� We shall

use this to compare the structures in the ellipticity conditions to see if they

are dependent on the Laplacian�

A clear di�erence between the initial ellipticity condition for TC� using

�
�
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Figure ����� Ellipticity Condition for the Laplacian with the PV Method at

�
hrs

the RV method and �
 hour condition �Figure ����� is that the wave for	

mation that was present initially has been damped in some manner but the

remaining form of the wave has started to be distorted in a similar manner

to the full height �eld�

The �gure does suggest that there is a dependence on the Laplacian with

the RV method in the mid	latitudes but as we enter the equatorial regions

we see that this is not the case�

For the PV method �Figure ���
� we see that there is a similar structure

to the Laplacian equivalent �top left in Figure ����� but there is a formation

in the Laplacian condition that is not present in the full condition� There is

�
�
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also still a noticeable di�erence between the two methods�

An interesting feature in the plots is the distortion of the B� term for

both methods for TC�� In the initial plots �Figures ��
 and ���� then this

coe�cient has a circular structure to it which has been distorted by the time

we arrive at �
hrs�
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If we now consider TC
�s results� Figures ���� and ����� then we see

that there is still nothing representing a set of parallel lines to suggest that

the Laplacian is the dominant term in the ellipticity condition for the RV

method� For the PV method then there is again nothing at all similar to the

equivalent condition in Figure ����� �top right�� For this test case we can

���
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say that there is evidence to suggest that the inclusion of the extra terms is

necessary�

There is also a noticeable feature in the conditions for this test case for

the PV methods where we have a small vorticity forming in the trough of the

position of the wave� This same structure is present in the absolute vorticity

for this �ow� �����

However� for TC�� we see a structure similar to a set of parallel lines�

Figure ����� This may not be throughout the whole of the domain but it

is clearly noticeable in the mid	latitudes for the RV method� For the PV

method� Figure ����� then there appears to be a similar structure to the

���
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equivalent Laplacian condition�

An interesting di�erence between the B� coe�cients for TC� and TC� is

that there is no distorting of the circular forms for TC�� For TC� we would

be tempted to suggest that the Laplacian may be enough for these types of

�ows�

As we mentioned in Section ���� the new equations have many more

terms than if we were simply calculating the balanced height as a solution

to a Poisson equation� We have seen some evidence that for certain Burger

regimes the extra terms may have an e�ect on the solution� These are only

an indicator with the ellipticity condition as the condition is determined by

the factors of the second order di�erential terms� As we can see from �����

and ���
� we have many lower order terms� We now investigate the sizes of

these extra terms in the next section�

��� Results II
 Scale Analysis

We now perform an experiment to identify which are the larger coe�cients

in both the ellipticity conditions for ����� and ���
� and the coe�cients in

the di�erential equation� The purpose of this is to see if any of the lower

order terms could be dropped from the approximations�

We have taken averaged values for the following derivatives from the three

���



test cases at �
 hrs� These are in Table ���� where we have taken the value

for f at ���N of �	���
 � ����s�� and a � ����

�m

Test Case 
h 
ug 
vg


ug

�



vg

�



ug

�

� ������ ���� 
��� �	�
 � ���� �	�� � ���� �	��� ����


 �	�� � ��� 
���� 
���
 �	�� � ���� �	�� � ���� �	��� ����

� �	�� � ��� ���� 
�

 �	�� � ���� �	�� � ���� 
	��� ����

Table ���� Table of the Average Values for Scale Analysis� where h has units

m� 
ug� 
vg have ms�� and their derivatives have s��

We �rstly perform the scale analysis on the RV based method�s ellipticity

condition� The following tables� ���
 and ����� contain approximations to the

coe�cients in B� and �AC respectively for the three test cases�

Coe�cient �m�s��� TC� TC
 TC�

��g�
�


ug

�

��
�	�� � ����� �	
� � ���� �	�� � �����

��
g� sin �
a



ug

� 
vg ��	
� � ����� ��	�
� ���� ��	��� �����

��g� sin� �
a�


v�g �	�� � ����� �	�� � ���� �	�� � �����

B� �	�
 � ����� �	
� � ���� 
	�� � �����

Table ��
� Scale Analysis of the Coe�cients in B� for the RV Method

���



Coe�cient �m�s��� TC� TC
 TC�

�g�f� cos� � 
	�� � ���� 
	�� � ���� 
	��� ����

�g�f cos� �


ug

�

�	�� � ���� 
	�� � ���� �	��� ����

��g�f cos �


vg

�

��	�� � ���� ��	�
 � ���� ��	�� � ����

���g� cos �


ug

�



vg

� � �
	�� � ���� ��	�� � ���� ��	�� � �����

���g� sin � cos �
a



ug

�


ug ��	��� ����� ��	�� � ���� ��	
� � �����

��g�f sin � cos �
a 
ug �
	�� � ���� ��	�� � ���� ��	�� � ����

�AC� �	�� � ���� �	�� � ���� �	��� ����

Table ���� Scale analysis of the Coe�cients in �AC for the RV Method

As we can see from the two tables the largest term in magnitude in the

analysis is the coe�cient associated with the Laplacian� �rst row in Table

���� which is consistent with the plots in Section ����
 for TC� and TC��

The interesting feature is also the closeness of the averaged value of B� to

the average value of �AC for TC
 compared to the other two test cases�

The scale analysis for TC
 also shows that the Laplacian� ��rst row of

Table ����� is a�ected by the extra terms and that for this form of �ow the

extra terms is comparable to the Laplacian� If we consider the last line of

Table ��� we see that the averaged value has only altered slightly from the

Laplacian for TC� and TC�� However� we see that the value for TC
 is

���



altered substantially�

If we were to consider whether or not to remove terms we would have to

say that for TC
 we would have to consider not removing any of the terms

that make up �AC as these are comparable with the Laplacian term in the

mid	latitudes� We would also have to consider leaving all the terms in B� as

again these are comparable to �AC�

For the other two test cases the averaged value for B� is not comparable

with �AC and as such the removal of the cross derivative terms from the

point of view of the ellipticity condition would not a�ect the condition too

severely� For TC� we could possibly remove the term involving the 
�h�


��

as the coe�cient that comes from this term in the ellipticity condition is

involved with the two smallest� O ������ smaller�

For the third test case we would conclude that it would be possible to

remove all of the extra terms in the balance relation and the ellipticity con	

dition would not be a�ected to severely� We must remember here that this

scale analysis is only for the mid	latitudes and we have used averaged values

to perform the analysis with�

We now look at the magnitudes of the coe�cients in the discrete approx	

imation to ����� in Table ���� where we now have the coe�cients of the �rst

derivatives in the table for all three test cases�

The �rst three entries in Table ��� as the same for all three test cases�

���



Coe�cient �ms��� Term TC� TC
 TC�

gf h�� �	�� � ���� �	�� � ���� �	�� � ����

sin � cos �fg h� �	�� � ���� �	�� � ���� �	�� � ����

cos� �fg h�� �	�� � ���� �	�� � ���� �	�� � ����


g


ug

� h�� 
	�
 � ���	 
	
� � ���� 
	�� � ���	


g cos �


vg

�

h�� 
	�� � ���	 
	�� � ���	 �	�� � ���	


g


ug

� h�� 
	
� � ���	 �	�� � ���� �	�� � ����

�g sin �
a 
vg h�� �	�� � ���	 �	�� � ���� �	�� � ����


g sin � cos �
a 
ug h�� �	�� � ���� �	�� � ���	 �	�
 � ����

��g tan � sin � � 
g cos ��
a 
vg h� �	�� � ���	 �	�� � ���� �	�� � ���	


g cos� �
a 
ug h� �	�� � ���� �	�� � ���� �	�
 � ����

�g tan �


ug

� h� 
	�� � ���	 
	
� � ���� 
	�� � ���	


g sin � cos �


ug

�

h� �	�
 � ���	 �	
� � ���	 
	�� � ����

Table ���� Scale Analysis of the Coe�cients in the Di�erential Equation for

the RV Method

These are the coe�cients that make up the Laplacian operator� For TC� we

see that the extra terms are of a similar scale to the Laplacian� but O ������

smaller� The only terms that are ���� smaller are those that arise from T� in

������ and ������ and as such for this type of �ow we may consider dropping

���



these terms� One of these coe�cients does multiply a second derivative term

and as such would a�ect the ellipticity condition but this is a term that

would be removed if the 
�h�


��
term was dropped as well� However� when we

consider the size of this term in Table ��� we see that this is comparable with

some of the terms in the Laplacian�

For TC
 the scale analysis of the di�erential equations follows that of the

ellipticity condition and suggests that all the terms should be kept with the

exception of the same term that we noticed was small for TC��

The third test case�s results would suggest that nearly all the extra terms

could be considered to be removed as their magnitudes are almost all ����

smaller than the Laplacian term� This is consistent with the scale analysis

for the ellipticity condition and the noticeable conclusions from Figure �����

We now consider the same scale analysis for the PV method where we

have used the same values from Table ���� We start again with the results for

the ellipticity coe�cients� These are in Tables ��� and ���� If we consider

TC� �rst from both tables we see that there are coe�cients in Table ��� that

are now comparable with coe�cients for B� in Table ���� This is suggesting

that although the Laplacian is a large factor there are some e�ects from the

B� term in the mid	latitudes�

If we were to consider removing any terms from the point of view of the

ellipticity condition then we would have to consider the same two terms as

���



Coe�cient �s��� TC� TC
 TC�
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Table ���� Scale Analysis of the Coe�cients in B� for the PV Method

Coe�cient �s��� TC� TC
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Table ���� Scale Analysis of the Coe�cients in �AC for the PV Method
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for the RV method�

For TC
 we see that the Laplacian term is not dominating this condition

but again we have factors in the B� term that could not be dropped as for

the RV method� This is consistent with the results in Figure �����

The �nal test case�s results are consistent with the RV method�s results

with the Laplacian being the largest factor in the �AC term� We now con	

sider the whole di�erential equation to see what lower order terms could also

possibly be removed due to their size� The values for the terms are displayed

in Table ����

The �rst feature of the results in Table ��� is that the values for the

Laplacian are no longer the same for each of the three test cases� The �rst

striking feature for TC� is the scale of the factor of the Helmholtz part of

���
�� This is by far the largest component of the equation and is larger than

the terms for the Laplacian� For TC
 and TC� this factor is the same size

in magnitude as the Laplacian�

For the remainder of the terms in the equations for TC� we could consider

dropping the extra terms with respect to the Helmholtz component but if this

is done then there is the question of the calculation of 
�c in the Helmholtz

part of ���
�� To obtain the value that we have here we have evaluated 
�c

as ������ with � � � we then have to question consistency if we are not

calculating �c� the same way as 
�c�

���
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��g tan � sin � � 
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ucg
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�
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Table ���� Scale Analysis of the Coe�cients in the Di�erential Equation for

the PV Method
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For TC
 we see that the scale of most of the terms in Table ��� are

comparable with both the Helmholtz and the Laplacian part of the equations�

The exception is again the terms arising from T� in ������� We would then

have the same question of the e�ect that this has if the same term is removed

from 
�c�

The �nal test case would appear again to be dominated by the Laplacian

but there is an e�ect from the Helmholtz part� We would have to consider

the removal of all the extra terms arising from the higher order terms in

the balance relation in 
�c� For this �ow we have seen that there is a more

geostrophic structure to it than the other two and so the same approximation

in 
�c should not have too much of an a�ect�

��� Conclusions

The main aim of these experiments that we have shown in this chapter was

to try and identify types of �ows where we would gain extra information

from the new balance equations� We undertook this by considering the initial

ellipticity conditions for the three test cases and looked to see if this condition

was dominated by the ellipticity condition for the Laplace operator�

The results for the RV method would suggest that for �ows similar to

TC�� �low Burger number�� then the extra terms in the balance equation are

��




having some e�ect as the plots did not look similar to a latitudinal dependent

condition� For the PV method then there was some similarity between the

full condition and the Laplacian equivalent for TC��

With the PV method the ellipticity condition changes quite drastically�

�Figure ����� suggesting that there may be some bene�t from using the extra

terms in the calculation of �c� in the PV method� The same structure was

still present at �
 hours but had moved with the wave� �Figure ���
��

For TC
 we saw no structure resembling the ellipticity condition for the

Laplacian� �Figure ��
�� which was still true at �
 hours �Figure ����� for the

RV method� This suggests that the extra terms are needed here to model

�ows of this type� This was also true for the PV method�

In the plots of the initial ellipticity condition for both the RV and PV

methods for TC� �Figures ��� and ���� then there was a structure similar to

the condition for the Laplacians in the mid	latitudes but not so in the lower

latitudes� The same conclusions are still true at �
 hours for both methods

�Figures ���� and ������ Therefore for these types of �ows� slow high Burger

number regimes then we would have to conclude that the extra terms may

not be worth the extra information given the extra work to calculate the

extra terms�

The other set of experiments that we performed in this chapter involved

a scale analysis of the terms in the ellipticity conditions and the di�erential

���



equations� The main conclusion for the RV method was that for TC� types

of �ows then the e�ects coming from T� in ������ could possibly be removed

and the ellipticity condition would only be a�ected slightly� The same was

true for the scale analysis for the coe�cients in the di�erential equation�

For TC
 we saw that for the ellipticity condition the extra terms were

comparable with the Laplacian operator and should be kept in but also that

the B� coe�cients were the same magnitude as some of the coe�cients in

�AC� This would suggest that the higher order correction is needed here but

there was a question of the possibility that the ellipticity condition could be

violated for �ows that are much faster that the speed of the wave in TC


but also for heights much higher than those in TC
�

TC� analysis showed that for �ows of this type we should only consider

the Laplacian and that the extra terms are small in comparison�

In the PV method�s scale analysis for TC� we see that the Helmholtz

term was the dominant term even over the Laplacian and that the remaining

terms were nearly all of the same order as the Laplacian�

The second test case now had nearly all the terms of the same magnitude

and would suggest that we would need all the terms in the approximation to

the balance equation�

For TC� the Laplacian and the Helmholtz term were comparable in mag	

nitude but most of the extra terms were considerably smaller in the mid	

���



latitudes suggesting that the geostrophic approximation could be enough in

the mid	latitudes�

���



Chapter �

Balanced Variables

Experiments

In this chapter we present results from two sets of experiments involving the

numerical solutions to ����� and ���
�� The �rst set of experiments involve

the solution to ����� and ���
� with � � � and �� In these experiments we cal	

culate the solutions to the diagnostic equations considering both a constant

and a variable Coriolis parameter� The value that we use for the constant f

case is ���� as an approximation to the value of f in the mid	latitudes� The

shallow water equation model that we are using to propagate the Rossby	

Haurwitz wave uses a variable f for all time� In the diagnostic calculation

we do we do not include the extra terms arising from the variability of the

Coriolis parameter� ������� as we are using this experiment as a �rst stage of

���



testing the variable�

The second set of experiments involve the calculation of uc� to test the

hypothesis that this balanced wind �eld is divergent� However� we test this

statement with a constant Coriolis parameter to compare with the geostrophic

wind with a constant f � as this is divergence free�

In Section ��� we outline the objectives for the experiments to calculate

the balanced height �eld increment and the divergent wind components� In

Section ��
�
 we describe brie�y the base state that we have chosen as a �rst

test of the numerics and also how we introduce the increment�

We present results for the �rst experiment in Section ��� in the form of

plots of the height �eld but also norm plots in the mid	latitude to compare

the eight di�erent solutions that we produce depending on whether or not

we have used a constant or variable f �

The results from the second experiment� involving calculating the diver	

gence of the balanced wind �eld for a constant f � are presented in the form

of plots of the divergence of uc� for ������ � � �� � and ��
� with � � �� � in

Section ���� We display these for the three test cases� We give conclusions

for the experiments in Section ����

���



��� Description of Experiments

As we mention in the introduction to this chapter we perform experiments

to calculate the balanced height increment� We use the numerical approxi	

mations described in Section ��
�
 where the result is a sparse square matrix

that has to be inverted to �nd h��

For the RV method the left hand side of the discrete version of ����� is

approximated by ���
��� given u�� This is de�ned in Section ��
�
� For the

PV method we use the central di�erence approximations to all the terms in

the discrete version of ����� as this is the numerator of the �rst term on the

right hand side of ���
�� To calculate the numerical approximation to 
�c we

use the central di�erences described in Section ��
�
 for all the derivatives of


ug and 
vg in �������

For the constant f experiments we multiply throughout by a�f� cos� ��

This is to remove the errors involved with working with small numbers� The

term �
a�

� ����� which is small but also the derivatives of the geostrophic

winds are around ����� For variable f we multiply throughout by a�f� cos� ��

This is to avoid the singularity at the equator due to f � � there� We are not

including the extra terms that arise from the variable f derivatives for these

experiments as this is only a �rst test� This is also to model more physically

the underlying �ow� This is a Rossby wave and its propagation is dependent

���



on the Coriolis parameter� ����� �����

The objective of the �rst set of experiments is to see whether or not we

gain anything by using the extra terms in the balance relation� Therefore we

are seeing if the conclusions from Chapter � follow through to the calcula	

tions� Although the elliptic conditions are for a constant f we also compute

the global solutions with a variable f and compare these to the solution with

a constant f �

We display the results in the following way� the �rst set of plots are

the solutions for a constant f and variable f with � � � and � for the RV

method� The second plots have the same format as for the RV method but

now this is for the PV method� The third plot contains kh�f � h�k� �de�ned

in Section ��
�
� for each latitudinal ring between ���N � ���N �

The reason for this is to identify whether or not there is any reduction

in the norm� kh�f � h�k�� as de�ned in Chapter �� between the geostrophic

balance and the higher order balances as the underlying assumption about

the manifold �R� � ��� is most valid here� We also compare to see if using

the PV captures the balance any better� This is due to much discussion

about whether or not to use PV as a balance variable� �����

According to ����� for the low Burger number regimes� TC�� then we

should consider the PV� and so we shall also see if this is the case for our

test cases� We have seen a change in the ellipticity condition for TC� with

���



the PV method compared to the RV method� which is more noticeable than

in the other two test cases�

In the second experiment we only consider the constant f case as we are

testing the hypothesis that the balanced wind �eld� which also de�nes the

subspace in the phase space of the shallow water equations� is divergent for

constant f �

We calculate uc� through evaluating ���
�� and ���
�� where we calculate

the coe�cients through the expression that we derive in section ��
�
� We

then calculate the divergence by evaluating ���
�� with uc��

��� Incremental Fields

In this section we introduce the choice of base state and increment of h� u

and v �elds that are used in the experiments described in Section ����

����� Base State

To calculate our base states we run the shallow water model described in

Section ��
�� with the three choices for the Rossby	Haurwitz wave� TC� 	

TC�� out to �
� hours and use the output of the height� h and the two wind

components� u and v at �
 hours into the run�

As a �rst test we have chosen to use zonal averages as our base state�

���



This has the a�ect of removing certain terms in the equations� speci�cally


vg�


ug

� and



vg

� � This does simplify the problem by eliminating the cross

derivative terms in the equation but if we have problems with this simple

test case then there may be problems with more complicated base states�

We calculate the zonal averages by


hi �
�

M

MX
j��

hi�j� �����


ui �
�

M

MX
j��

ui�j� ���
�


vi �
�

M

MX
j��

vi�j� �����

where the i index represents the latitudinal ring and j the longitude�

Therefore to calculate these base states we have used the numerical values

outputted from the three di�erent runs of the shallow water model at �
 hours

at the grid points and calculated their averages along each latitudinal ring

using ����� 	 ������

From these values we can calculate the geostrophic winds and their deriva	

tives for the linearisation factors in ����� and ���
� as well as the approxima	

tion to the left hand sides of the two equations�

With this type of base state we have chosen to use a Dirichlet boundary

condition at the two poles for all of the experiments� This condition is h� � ��

The reason for this is that although we have a row of points for the pole in

the rectangular grid these are representing the same point� We are saying

���



that at these two points there is no balanced part to the height above the

zonal average here�

The other reason for this choice is when we try to implement the condi	

tion 
h�


� � � the resulting matrix for the discrete problem is singular� The

problem of modelling the pole in spherical coordinates is a tricky one� There

are many mathematical ideas to cope with the pole� �
� and ����� but we shall

use the simple Dirichlet condition as the theory for elliptic equations holds�

���� ���� and����� When we use the periodicity condition in the � direction to

calculate uc� at the poles� we use the approximation &�
� to cos � as described

in �
���

����� Increments

Given the base state described in Section ��
 we have the following increments

associated with ����� 	 �����

h�f � h� 
h� �����

u� � u� 
u� �����

v� � v � 
v	 �����

We create the increment to the base state left hand side for ����� through

�� � k � r � u� � k � r� �u� 
u� � � � 
�� �����

��




where u� � �u�� v��T and � is the full relative vorticity�

For equation ���
� we calculate the PV left hand side using the full height

increment ����� and evaluate ������ through using the central di�erences

approximations described in Section ��
�
 to the right hand side of ������

which equals the �rst term in ���
�� We use ����� for the denominators in

���
��

��� Results I
 Balanced Height Increments

We consider the results for each test case separately but we look at the results

for both the RV and PV methods with constant and variable f �

The �rst �gure� ���� displays the full height increments� h�f � for the three

test cases� The initial condition of the Rossby	Haurwitz wave is a balanced

�ow as the time scale associated with this wave is not that of the inertia

mode� Therefore we would expect most of the �ow to be balanced still� As a

result of this the balanced height increment� h�� should be similar to h�f �

���
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Figure ���� Contour Plots of the Three Full Height Increments� h�f

Figure ��
 shows the balanced height increment� h�� for TC� using con	

stant f for the left hand plots and variable f for the right� We use the

notation of LB to represent linear balance� � � � and CB for the Charney

balance� � � �� We use the RV and PV notation as introduced in Sections

����
 and ������

One clear feature is the e�ect the variable f has for ����� on � � � and ��

We are now able to pick up the structure in the mid	latitudes that is present

in the full height increment� �Top left plot in Figure �����

���
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Figure ��
� Contour Plots of the Numerical Solutions for h� found by the �

method with � � �� � also Constant and Variable f for TC�

What we have to remember is that the numerical problem that we are

solving is an elliptic pde and therefore the matrix equation associated with

the discretisation has the strongly connected property� ����� �
��� ��
�� �����

This means that each point in the grid feeds information through the matrix

back to all the other points� especially as we have Dirichlet conditions on the

poles� ����� Therefore if we are not correctly scaling the terms by the Coriolis

parameter in the equatorial region then the errors are fed throughout the

whole discretisation�

���
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Figure ���� Contour Plots of the Numerical Solutions for h� found by the PV

method with � � �� � also Constant and Variable f for TC�

There is also a meteorological explanation for this feature� As we are

modelling a Rossby wave there is a dependence on the Coriolis parameter for

the propagation� ���� and as such if we are not correctly using this parameter

we would expect discrepancies�

However� if we consider the plots for the PV method� �Figure ����� we see

that with a constant f we do capture a large part of the wave� for both � � �

and �� A reason for this� as pointed out in ����� is that for this type of �ow�

low Burger number� we see that the potential vorticity� for the full �eld� is

���
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Figure ���� Plots of kh�f � h�k� for TC� in the Mid	Latitudes� CF represents

constant f � VF represents variable f � LB stands for linear balance� � � ��

and CB stands for Charney balance� � � �

dominated by the height and not the absolute vorticity� In other words� for

this type of �ow we would expect the balance to be in the PV and as such if

trying to capture this balance �ow� then Q is better that � as we see here�

The introduction of the variable f does not appear to improve the approx	

imation when considering the PV method but when we look at Figure ���

we see that kh�f �h�k� is reduced for both methods� with the introduction of

the correct parameter in the equatorial regions� However� if we compare the

���



norm of the results for constant f from the PV method we see that the norm

for this approximation is smaller than the variable f from the RV method�

For TC
 �see Figure ����� we do not have a tilt in the increment that is

present in TC�� but the wave from test case two is travelling faster than the

wave from test case one also the full height �eld from test case two grows

substantially as we enter the lower latitudes� Although we have removed the


vg component from ���
� and ������ along with 
ug� and 
vg� there are still

large increases in the height �eld in the � direction which could cause an

e�ect on the ellipticity conditions� We do not see that here� as we have a

solution that appears to be sensible� but we do again see that with a constant

f there does appear to be an e�ect on the solutions with the under modelling

near the equator feeding back into the mid	latitudes� We can see this with

the left hand plots in Figure ��� where we have the circular formation in the

mid	latitudes� �Upper right plot in Figure ����� drawn into the equatorial

region�

An interesting feature of the constant f plots for the RV method with

� � � is that the circular formation for the full height increment� �top right

plot in Figure ����� appears to be being dragged further into the equatorial

region� When we allow f to vary we see that the motions become quite

di�erent� The feature of the mid	latitudes is in the correct place but we have

a signi�cant cut o� in the balanced height increment near to the equator

���
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Figure ���� Contour Plots of the Numerical Solutions for h� found by �

method with � � �� � also Constant and Variable f for TC


when � � ��

This balanced wind �eld� ����
�� can also be understood from a Rossby

number asymptotic expansion� ����� As we enter the equatorial region in

TC
 the Rossby numbers are quite large and so we would expect the approx	

imation to break down� For this method the break down appears at higher

latitudes than for TC�� �Figure ����� where we have the same type of full

increment� but the �ow is not as fast and also the height is not growing as

much� The Rossby number does grow� however� as we approach the equator�

���
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Figure ���� Contour Plots of the Numerical Solutions for h� found by PV

method� with � � �� � also Constant and Variable f for TC


When we consider the plots for the PV method we see that there is a

di�erence in the position of the heights but there is also a reduction in the

heights for the same contours� The balanced increment does appear to be

nearer to the full increment using a constant f with the PV methods but the

feature of the pulling to the equator is more pronounced in the PVCB plot

�Bottom left in Figure �����

When we introduce the variable f we see that the circular formation

does return to the mid	latitudes� but for the PV method with � � � plot�

���
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Figure ���� Plots of kh�f�h�k� for TC
 in the Mid	Latitudes� where CF stands

for constant f � VF stands for variable f � LB stands for linear balance� � � �

and CB stands for Charney balance� � � �

top right� we see that the curvature of the feature is not picked up by this

method� However� for the PVCB method we do get this motion but we have

the breakdown again as we come towards the equator�

If we now consider the norm plot for this test case� Figure ���� then we

see that there is a slight reduction in the di�erence� although the values on

the y axis may appear quite large compared to the values for TC�� Figure

���� we recall that the overall height increment is larger to start with than

���



for TC� and as such the di�erences are on a di�erent scale due to the speed

and growth in the wave�s height�

For the RV method we see that Figure ��� would indicate di�erently the

closeness of the solutions with a variable f in the mid	latitudes� With the

CB methods there is a smaller di�erence in the mid	latitude region for both

the RV and PV methods� This does also show quite a di�erence for the PV

method�

We now review the results for TC�� This �ow is not as fast as that of

TC
 but we start from the same mean height� h�� at the pole of ����m� We

see that the structure of the full height increment is quite similar to that of

TC
 but with a more uniform shape to the circular formation� �Middle plot

in Figure �����

As we saw in the scale analysis in Section ��� the coe�cients are not that

large� We also saw from the ellipticity condition �Figure ����� there did not

appear to be much variation of the condition from that of the Laplacian�

Therefore we would not expect much di�erence in the solutions between

� � � or � for constant f for both the RV and PV methods�

��
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Figure ���� Contour Plots of the Numerical Solutions for h� found by the �

method with � � �� �� for Constant and Variable f for TC�

We do see this feature in the four plots concerned� left hand side in Figures

��� and ���� where� as we expect� there is only a slight di�erence�

Recalling the ellipticity plots for this test case with the initial condition�

�Figure ����� showed variations in the ellipticity condition as we tend towards

the equator� Although for that plot we were using the full �elds� the zonal

average would reduce the condition more to suggest a use of the Laplacian

for this test case�

We do see this for the mid	latitudes when we look at the plot of kh�f�h�k�

���
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Figure ���� Contour Plots of the Numerical Solutions for h� found by the PV

method with � � �� � for Constant and Variable f for TC�

for this test case� �Figure ������ where in the two plots if we consider the four

constant cases� � and 
� we see that through most of the domain the two

shapes are on top of each other�

When we allow f to vary then the mid	latitude feature does appear to be

in the correct place but we have the cut o� again when � � � for both the

RV and PV� With the norm plot we see that the di�erence here is reduced by

the � � � based methods as we enter the equatorial region but as we reach

the higher latitudes we see that the two methods are becoming similar�

���
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��� Results II
 Divergent Balanced Wind

In this section we present results that show the linearised balanced wind �eld�

���
��� is divergent for constant Coriolis parameter� f � We have evaluated

the components of uc� through ���
�� and ���
�� using the numerical approx	

imations to evaluate the geostrophic winds at the relevant grid point given

in Section ��
�
�

���



We consider each test case in turn� As we have seen from the results in

Section ���� when we use a constant f then the consequences are quite severe

for certain test cases� This has an e�ect on the calculations of uc� due to u�g

being dependent on the derivatives of h�� ���

��

Before we show the results for the divergences of the wind �eld we make

some comments about the consequences of some of the choices that we make

in the numerical modelling� Where we have used a constant f we have

changed the sign of this at the equator� Therefore there is an e�ect on

the derivatives of the geostrophic winds with respect to �� As a result the

following plots are shown only between ���S 	 ���S and ���N 	 ���N � as the

e�ect of the equator over	shadows the results in the mid	latitudes using the

contour command in MATLAB�

The consequence of using a zonal average for the base state removes some

of the coe�cients in ���
�� and ���
��� The new form is

uc� � u�g �
�

f

�

ug

a cos �


v�g

�

�

 tan �

a
u�g
ug

�
� �����

vc� � v�g �
�

f

�

ug

a cos �


u�g

�

�
v�g
a


u�g

�

� tan �

a

ugv

�

g

�
	 �����

To calculate the divergences we use the expression given in Section ��
�
�

���
��� using uc� in place of u�

We �rstly show the plots of the divergences of the full height increment�u��

de�ned in Section ��
�
 �Figure ������ as an indicator of how the divergence

���



of the full increment looks� We have separated the plots in Figures ���
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Figure ����� Plots of the divergence of the full wind �eld increment for the

Three Test Cases at �
 Hours

���� into the Northern and Southern Hemispheres alternately for each test

case into RV and PV� The RV results for TC� are shown in Figure ���
 and

for the PV method in Figure �����

The �rst feature to notice is that the divergence for the geostrophic wind�

� � � in ���
��� is simply machine random noise� i�e� the scale on the scale

bar� This is same for both the RV method and PV method when ����� and

���
� have been solved with � � � and then h� is used to evaluate the �rst

���
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Figure ���
� Plots of r�uc� with � � �� � from RV Method for TC� at �
hrs
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Figure ����� Plots of r�uc� with � � �� � from PV Method for TC� at �
hrs

components in ���
�� and ���
���

Another feature is the di�erence in the divergences for the � � � solutions

���



for the RV and PV method� However� another feature is the fact that the

divergence of the balanced wind �eld is out of phase with the full divergence�

We would not expect the whole divergence to be balanced but we have to

recall that the heights for this test case when we use a constant f were

severely di�erent from the full height �eld even in the mid	latitudes� This

would a�ect the calculations of uc� as we mentioned earlier in this section�

This would cause some of the displacement of the divergence due to the

maximum heights being a lot larger than those of the full height increment�

If we now consider TC
 results� �Figures ���� and ����� then the plots

corresponding to the divergence of the geostrophic winds for TC
 are again

only showing random machine noise and are ����� smaller than the results

for the higher order balanced wind and have no structure�

Unlike for TC� the divergence is in phase with the full divergence but for

this test case we have the balanced increments divergence larger than that of

the full increments� If we recall the size of the height increment for this test

case when we use a constant f then we see that there were large di�erences

between the full height increment and the balanced increment even in the

mid	latitudes �Figure �����

Therefore� as we have mentioned in the summary of the results for the

divergence for TC�� the height �eld is used to calculate uc� and if this is

incorrect then the divergence will be a�ected as well�

���
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Figure ����� Plots of r�uc� with � � �� � from RV Method for TC
 at �
hrs
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Figure ����� Plots of r�uc� with � � �� � from PV Method for TC
 at �
hrs
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Another feature is the di�erence between the divergence when � � � for

the RV and PV method� There appears to be a slanting of the divergence

in the result for the RV method compared to the result for the equivalent in

the PV method� This slanting e�ect is in the higher latitudes in both the

Northern and Southern hemisphere�

If we now consider the �nal test case� TC�� then we again have the

geostrophic winds being divergence free for constant f �

−10

−5

0

5

x 10
−21

  0 90E 180 90W
10N

50N

90N

LONGITUDE λ

LA
TI

TU
DE

 θ

∇ ⋅ uc′, α=0, RV METHOD

−6

−4

−2

0

2

4

6

8
x 10

−8

  0 90E 180 90W
10N

50N

90N

LONGITUDE λ

LA
TI

TU
DE

 θ

∇ ⋅ uc′, α=1, RV METHOD

−1

−0.5

0

0.5

1

x 10
−20

  0 90E 180 90W
90S

50S

10S

LONGITUDE λ

LA
TI

TU
DE

 θ

∇ ⋅ uc′, α=0, RV METHOD

−6

−4

−2

0

2

4

6

8
x 10

−8

  0 90E 180 90W
90S

50S

10S

LONGITUDE λ

LA
TI

TU
DE

 θ

∇ ⋅ uc′, α=1, RV METHOD

Figure ����� Plots of r�uc� with � � �� � from RV Method for TC� at �
hrs

As with TC� the divergences are out of phase to the full divergence� This

test case has the least divergent �ow out of the three if we consider the

scales in Figure ����� This would be consistent with the analysis from the

ellipticity condition in Chapter �� In Chapter � we saw that the Laplacian

���
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Figure ����� Plots of r�uc� with � � �� � from PV Method for TC� at �
hrs

was the dominant term in the equation� which would imply that this �ow is

quite close to geostrophic balance�

A �nal comment about the divergence plots is that for TC� we see that

the results from the two equations that have � � � are the most similar

amongst all of the results for the test cases�

��� Conclusions

The �rst conclusion that can be made from these results is that there are

serious consequences if we use a constant f in a global solution� The problem

arises due to the pde being elliptic and hence all the points in the numerical

��




approximation are connected� Hence the incorrect modelling in the equatorial

regions is fed back to the mid	latitudes through the matrix inversion�

This then raises the problem of dealing with the �
f

term at the equator�

We must remember that the underlying theory for this balanced subspace of

the full phase space assumes that the Rossby number is small� ����� �����

When we did introduce a variable f there was a noticeable improvement in

the approximations� If we consider the results for TC� in the mid	latitudes

�Figure ����� then we see that the introduction of the PV instead of RV

reduces kh�f � h�k� consistent with �����

The surprising result for TC� is the test case�s divergence for the balanced

increment is the only one to be smaller than the full increment� This test

case also had the smallest norm of the di�erence between the full height

increment and the balanced increment�

For TC
 we had the variable f not improving the solution very much

and for the most part� in the mid	latitudes �Figure ���� the RV and PV

methods performed better with � � � than with � � �� TC
 is the most

extreme of the three and in the scale analysis we saw that the B� terms were

of similar magnitude to �AC� The choice of base state that we use for these

experiments makes the B� term zero� which may have a�ected the solution

more for this test case�

However� for TC� we saw in Section ����
 that the removal of the extra

���



terms would not a�ect the solution too much� especially in the mid	latitudes�

We also see this in Figure ���� where we have for most of the mid	latitudes�

the symbols representing the � � � and � � � almost always together�

In summary� We have to say that the PV method does improve the

approximations to the balanced �ow for low Burger number regimes� �TC���

We also see that the e�ect of constant and variable f is the most severe for

this type of �ow� For �ows similar to TC
 the use of a zonal average does not

appear an appropriate choice for the base state as this removes the B� term

from the ellipticity condition� This does not appear to be the case for TC��

Finally for �ows similar to TC� we would have to say that the inclusion of

the extra terms does not gain much extra information for this type of �ow

when using a zonal average base state�

���



Chapter �

Conclusions and Further Work

In this chapter we expand on the conclusion in Chapters � and � and then

suggest some extension to this work in Section ��
�

��� Conclusions

The main aim of this thesis is to see whether or not we could use the balanced

wind �eld derived by Salmon� ����� and extended by McIntyre and Roulstone

in ���� and ���� to de�ne a new control variable that de�ned a balanced wind

�eld that is not divergence free�

We linearised the non	linear version of the balanced wind �eld� �������

around a base state height �eld resulting in ���
��� From this expression we

derive the elliptic partial di�erential equations to solve for a balanced height�

���



given either an increment to the relative vorticity or the linearised potential

vorticity� If this new method is to be considered as a replacement for the

current balanced control variable then we have to see if there is any bene�t in

the calculation of the extra terms and the extra storage required to calculate

the numerical solutions to the elliptic equations ����� or ���
� with � � ��

In Section ��� we compare the ellipticity condition for the three test cases

at both the initial time and at �
 hrs for both the RV and PV method when

� � � to see if the Laplacian�s ellipticity condition was the dominant feature�

For TC� with the RV method then there appears to be some similarity to

the ellipticity condition for the Laplacian in the mid	latitudes� �Figure ��
��

The scale analysis in Section ��� for this method and test case suggested

that there were certain terms that could be removed from the ellipticity

condition� �Tables ��
 and ���� �rst column� and also in the analysis of the

coe�cients in the di�erential equation� �Table ���� �rst column��

For the PV method with this test case we saw that comparing the initial

Laplacian for the PV �Top left in Figure ���� with the condition for � � ��

�Figure ���� then the structure of the condition for � � � does appear to be

similar to that of the condition for � � �� �Figure ���� and the same appears

to be true for the results at �
 hrs although there is the extra ellipsoid

structure that is not present in the results for � � � initially and at �
 hrs

�Figure ���
��

���



The scale analysis for the ellipticity condition for this method would con	

clude that the extra terms are a small factor compared to the Laplacian�

�Tables ��� and ����� in the mid	latitudes with a global constant f � When

considering the terms in the di�erential equation� �Table ����� then we saw

that the Helmholtz part of the equation dominated the remaining terms and

therefore must be included� This would suggest that the PV method should

be used for this type of �ow� This is consistent with the �ndings in ���� but

with the PV de�ned in a di�erent manner�

From the numerical results to ����� and ���
� for TC�� �Figures ��
 and

���� then for a constant f the results were not too good with the RV method

with either � � � or � but with the PV method we saw major improvements

especially in the mid	latitudes� �Figure ���� even for constant f �

We saw a cut o� when we use a variable f with � � � in both the RV

and PV methods where the asymptotic expansion is no longer valid as the

Rossby number is tending to in�nity in the equatorial regions� The choice

of a zonal average with this test case does not seem to a�ect the results too

severely but the scale analysis suggested that the extra terms may only be a

small consequence at �
 hrs�

The balanced wind increment associated with this height increment was

divergent but out of phase with the full divergence� �Figures ���
 and ������

TC
 appears to be the type of �ow that requires the extra terms� This

���



is seen visually in Figures ��� and ��� at the initial time where there is no

structure resembling the ellipticity condition for the Laplacian operator even

in the mid	latitudes� This is still true at �
 hours� �Figures ���� and ������

The scale analysis in Section ��� also suggests that all the terms need to

be used in the modelling� although unlike the TC� case� the Helmholtz part

is not dominating the other terms in the mid	latitudes but is comparable

with most of the remaining terms�

The use of a zonal average with this type of �ow would be not be rec	

ommended as the results appeared to be the most a�ected by this choice�

�Figure ����� There does also appear not to be any gain by using the PV

over the RV� which requires fewer calculations�

The balanced wind �eld is not divergence free but the increment itself

is too large and is consistent with the size of the full height increment for

constant f � This is possibly being caused by the choice of zonal average

removing all of the cross derivative terms which the scale analysis in Section

��� suggested we should not do�

The �nal test case� representing a high Burger number regime� is the type

of �ow that would not bene�t from the extra terms� At �
 hours� �Figures

���� and ����� there was a clear similarity between the Laplacian for both

methods and the full equations� This was also shown in the scale analysis�

The height increment associated with both the RV and PV method would

���



suggest that with a constant f there are still problems with the bad modelling

of the �ow but also the removal of the zonal averaged relative vorticity could

be too severe for this �ow as well�

The balanced wind �eld with this test case using a constant f was diver	

gent but too big again� which is consistent with the height increment being

too large�

Therefore the �nal conclusions are that for �ows similar to TC�� at low

Burger number� the �ow should be modelled with the PV method rather

than with the RV and that a variable f should be used� There may be some

bene�t by using the extra terms in this model but more research is needed

to see the e�ects of the zonal average�

For �ows similar to TC
 then the extra terms should be included with a

variable f � but the linearisation base state should not be the zonal average

as this removes the B� terms from the ellipticity condition which de�es the

whole purpose for this �ow� It is di�cult to say whether or not to use the

RV or PV method as there was not much di�erence between the two� but

the choice of base state could be a�ecting this�

For �ows similar to TC�� at high Burger number� it may probably not

be worth the extra storage costs and matrix inversion to obtain quite similar

results to using � � �� There is not much di�erence between the results

using either the RV or PV method� and as such computationally it may be

���



economical to use the RV method�

Although these conclusions are for the Burger number we recall the de�	

nition given for the number

Bu �
p
gh

fL
� �����

we see that this is a ratio between the height and the horizontal length scale�

There are other factors that have to also be considered� The expansion for

the balance wind �eld is dependent on the Rossby number

R� � VH

�LH

� ���
�

being small� This number is dependent on the ratio of the horizontal wind

speed scale and the length scale� Therefore we also have to consider the scale

of the winds associated with the �ow regime�

We also have to be aware of large changes in the height pro�le over short

distances� This a�ect the geostrophic winds which are the gradients of the

height �eld with respect to the two horizontal coordinate directions �������

These are some of the coe�cients in the ellipticity condition but also their

gradients as well�

Therefore the Burger number is a good �rst stage test to see if the �ow

requires the extra terms but we must also consider the speed of the winds

associated with the �ow to con�rm that the Rossby number is small but also

the change in the height over short distances to ensure that the geostrophic

���



component is small enough to not violate the ellipticity condition�

��� Further Work

The choice of base state was a simple �rst choice to test the numerics that

we use to calculate the numerical solutions to the elliptic pde that arose from

the balanced subspace in the shallow water equation�s full phase space�

Therefore there are many other choices of base states that could be used

in the linearisation� One possible choice is to perturb the parameters that

de�ne TC� 	 TC� so that the �ow has a slightly di�erent Burger number�

We would then be linearising about a Burger number regime rather than a

zonal average�

This choice would have all the terms that we looked at in Sections ��� and

���� However� the size of the increments� �� and h�f � could be small� We do

not want to perturb the model too much or the theory for the linearisation

will not hold�

One way to generate these perturbations would be to increase h� at the

poles by ��'� That would make h� � ��m for TC� and h� � ����m for TC


and TC�� There would be more of an e�ect on TC
 with the new height

than for TC� as we have seen for the original data sets that we use for the

experiments in this thesis�

���



When we were deciding on the base state we considered perturbing the


 parameter by ��' for the two choices used� Due to the properties of the

Met O�ce�s shallow water code� �
��� when we implemented this to generate

a perturbed �eld there was no di�erence in the results�

Another choice for the base state is to take the initial conditions for the

three test cases and use the di�erences away from these at di�erent times as

the increments� This has the advantage of being a balanced �eld� which we

could linearise about� A twist on this could be to take the �elds at 
� hours

and linearise about these� There would now be some form of imbalance in

the base state� which is a more sensible approximation to how the method

could be used operationally� To see the e�ects of this may require us to take

the di�erences between the initial or 
� hour pro�les from the �elds at �� or

�
� hours�

Another test would be to use real global data� This could be possible with

the data sets available from the National Center of Atmospheric Research

�NCAR�� �����

We chose to discretise the equation by a �nite di�erence scheme but we

could have used a �nite element approach and this could be developed to see

what e�ects the choice of the discrete approximation has on the solutions to

equations ����� and ���
�� Other choices of boundary conditions could also

be investigated to observe if the choice we use is the most robust�

��




The main area of development for this work would be to introduce the

balanced wind �eld into a limited area model� �LAM�� There are plans to

introduce a LAM at the Met O�ce for the North Atlantic this autumn�

Constraining the balanced wind �eld to the mid	latitudes would be a logical

step as we assume that the Rossby number is small� ����� �����

We would then be able to calculate uc� from ���
�� and ���
��� where we

have f on the denominator and allow this to vary through the latitudes in

the model without becoming zero� The only real concern with this would

be boundary conditions for the balanced wind to enter the information from

the full model� The matrix inversion would still be that of the numerical

approximation to an elliptic boundary value problem and would be sensitive

to the boundary conditions imposed on it�

A possible way to overcome the global problem could be to use a stream	

function instead of a height� The �rst formulation of ����� that we consider�

not shown here in the thesis� was with a streamfunction� This then removed

explicitly the dependence on the Coriolis parameter in the geostrophic winds�

Numerical solutions to this problem showed errors as we entered the polar

regions� It was also commented whilst attending the �th Adjoint Workshop

in Pennslyvania in 
��
 that if this new control variable was to be considered

globally then the modelling of the Coriolis parameter should be explicit in

the equation� We have seen the consequences e�ectively when we considered

���



the constant Coriolis case where we possibly had errors from the equator

feeding back to the mid	latitudes� �Section �����

A further suggestion for more work would be to develop a diagnostic test

for the balanced height and the control variables described in Section ���� A

possible means to do this would be to calculate the divergence tendencies for

the variables using the technique described in �����

The bene�t of this test would be to see if the balanced and unbalanced

control variables are capturing the correct parts of the �ow� A balanced

control variable should have a divergence tendency that is small�

One �nal comment is about a technique that was used in a simple form

by Sasaki in his two papers in ���� and ����� ���� and ����� where he derives

a variational approach to a simple cost functional between the observations

of the meteorological elements at the grid points and the modi�ed model

variables�

He de�nes a sum of squares with arbitrary weights� ��i � to be decided�

given by

X
i

��i �f�t � fi�
�
� �����

where f�t represents the observations and fi the state variables� He then

de�nes a functional that has to be minimised over some domain with arbitrary

���



boundary conditions� This functional is given by

I �
Z
v

X
i

��i �f�t � fi�
� dV	 �����

Sasaki requires this functional to be minimised and so applies a variation to

obtain

�I � �
Z
v

X
i

��i �f�t � fi�
� dV	 �����

Sasaki then applies standard calculus of variation techniques� ���� to �nd

the minimum of the functional� ������ He introduces the following as the

model variables� u� v � and T � where � is the geopotential and T is the

absolute temperature�

Next Sasaki substitutes the geostrophic winds in place of the full wind

�elds and then forms the di�erence between the full �elds and the observa	

tions� This then gives the sum of squares as

�� � ���u
�� � ���v

�� � ����
�� � ���T

��� �����

where the increments are given by

u� � ��

f


��


y
� uo � �

f


�o

y

� �����

v� �
�

f


��


x
� vo �

�

f


�o

x

� �����

�� � �� ��� �����

T � �

��


p�
� To �


�o

p�

� ������

���



where p� represents the vertical coordinate system

The resulting Euler equation that minimises ����� given ����� is

r��� �
�
��
��
f
��

� f�� �r���� ������

where

�� � 
v�

x

� 
u�

y

	

Sasaki interprets the results of ������ as follows� if the right hand side

is zero then the modi�ed values are equal to the observed quantities� These

observed quantities could be used in numerical prediction routines that are

based on a quasi	geostrophic assumption� When the right hand side is not

zero solutions to ������ gives the deviation of the geopotential� The modi�ed

values may be obtained through evaluating ������ This again could be used

in a numerical weather model using the quasi	geostrophic assumption�

We could modify this procedure by using the equations for either the

non	linear version of uc� ������ or the linearised version ���
��� The result

should be some form of an equation to ensure that the observations that we

use with this new balance would be consistent with the �ow being modelled�

There have been signs in this thesis that the new balanced wind �eld

that we have researched could be a viable alternative to the current version

of the balanced wind �eld� As a passing remark we were not able to test

���



these variables with a data assimilation scheme yet but do see this as an

important part of the development of these variables�

���
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Appendix A
 Spherical Vector Operator

Spherical Unit Vectors

When transforming from Cartesian coordinates to spherical coordinates the

direction in which the unit vectors are pointing changes� In spherical coor	

dinates there is a local approximation through a tangential plane relative to

the spherical surface� �see �gure �����

x

y

z

�
r

Figure ���� Diagram of the tangential coordinates on a spherical surface

where r is the radius of the sphere� and the distance laid out from the radius

is ��

It is from this tangential plane approximation that the following nine

derivatives for the unit vectors in a �	D framework arise� ����
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The full derivation of these expression is found in ���� As we are using a 
	D

framework for the SWE then we have a constant radial distance and hence no

change along k� This then makes all the terms in the derivtives that contain

k zero� The remaining terms are


i


�
� sin �j�


j


�
� � sin �i	

Spherical Vector Derivative Operators

Here we will list the Cartesian de�nitions of the vector operators and next

to them their spherical co	ordinate counterpart� Let G � �Gx� Gy� Gz�
T

for Cartesian coordinates where the subscripts represent their component

position in the vector� For spherical coordinates G � �G�� G�� Gr�
T �

The de�nition of the gradient operator of a scalar function F is given by

rF � i

F


x
� j


F


y
� k


F


z
�

which in spherical coordinates is
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r cos �
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The next operator is the divergence� This is given for the vector �eld G by

r �G �

Gx


x
�

Gy


y
�

Gz


z
�

and in spherical coordinates is given by

r �G �
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The curl is de�ned as
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which in spherical coordinates is given by
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Finally the Laplacian of the scalar �eld F is given by

r�F �
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in spherical coordinates� The spherical Jacobian is given by
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A full explanation for all the operators can be found in �����
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Appendix B
 Geostrophic Wind Identities

In Chapter � we use three di�erent identities involving the � derivatives of

vg and here in this appendix we will show the derivation to these results� We

begin with
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We can see that T� is simply tan �vg� T� is � �
cos �


ug

� � the third term� T� is

almost vg but we are missing the f�� term so then this term is fvg"�� where

"� is as de�ned in Chapter �� We now consider the second order derivatives�
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Therefore T� becomes �
 tan� � � �� vg where we have used the trig iden	

tity� sec� � � tan� � � �� The second term� T� is �tan �
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Appendix C
 Rossby�Haurwitz Wave�s Deriva�

tives

In this appendix we list the derivatives for the A� B and C terms in the

de�nition of the Rossby	Haurwitz wave with respect to ��

We begin with the A term� This derivative is
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For the second derivatives of the A term we shall break this down into

smaller parts to make things easier� We denote the parts as
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We also break the B term into smaller parts as follows
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This then gives the derivatives as
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The �nal derivative is given for C as
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