Methods of targeting observations for the improvement of

weather forecast skill

Thomas H. A. Frame

Departments of Mathematics/Meteorology
University of Reading

December 2006



'Declaration

| confirm that this is my own work and the use of all materiahfrother sources has been properly

and fully acknowledged’

Thomas H. A. Frame




Abstract

This thesis is a contribution to the subjects of midlatit@dmospheric dynamics and targeting
observations for the improvement of weather forecasts. ti@ffirst time the full spectrum of
singular vectors of the Eady model are considered. The itapoe and implications of the un-
shielding and modal unmasking mechanisms to the computgdlar vectors are discussed. The
computed singular vectors are used to analyse the verticadtgre of the singular vector tar-
geting function commonly used in observation targetinga imertical cross-section. Through
comparison of this vertical cross-section to the dynamicimgular vectors, inferences about the
scale and qualitative behaviour of the perturbations tatwparticular regions are 'sensitive’ are
made. In the final section of the thesis, a new targeting ndehmtroduced. This new targeting
method utilises a set of evolved singular vectors to appnaie the background errors within the
region identified by a set of targeted singular vectors aaaycally connected to the verification
region. The two sets of singular vectors can then be used@wputationally inexpensive means
of predicting the reduction of forecast error variance thiéitbe obtained from a given deploy-
ment of observations. This method differs from previougdting methods as it makes no use of
stationary norms or Kalman filter theory. It allows for bothiynamically determined estimate
of the initial condition errors and allows for the operatibdata assimilation to be taken into ac-
count. Another major difference between the new targetiethod and existing methods, is that
it explicitly predicts the reduction in forecast error \aarce as the difference between the forecast
error variance with and without the targeted observatidrgs additional feature introduces the

potential for the prediction of instances where adding nlzmns is likely to lead to amcrease




in the forecast error variance in the verification region.
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CHAPTER 1

Introduction

Meteorology is the study of atmospheric phenomena, pdatiguas a means of forecasting future
weather events. Weather forecasts are produced by evalingstimated current atmospheric
state forward in time using large non-linear numerical ni@ag the physical and dynamical
processes in the atmosphere. The ability to create acaunaterical forecasts is reliant on both
the accuracy of these models and the accuracy of the iniadlitons. The initial conditions
used in weather forecasting are statistically based 'comfges’ between observational data and
a previous forecast, which are generated by a process knewata assimilation. Since Lorenz
(1963) brought chaos theory to the attention of meteorstegit has been understood that the
non-linear nature of evolutionary process in the atmospbauses errors (no matter how small)
in initial conditions supplied to the forecast models tordgually grow into large errors in the
forecast. This chaotic behaviour is referred to as seitgitie initial conditions and is often
summed up with the flippancy “if a butterfly flaps its wings inaBil a tornado is set off in
Texas”. As a direct result of the work of Lorenz (1963), metémgists began to speculate about
the existence of a theoretical upper limits to the timedescaver which an accurate forecast
can be made. Since the publication of Lorenz (1963), imprmrds in numerical models and
observation density have lead to large improvements ircémteaccuracy. With the continued
development of numerical forecasting methods and new wdiéen platforms, it is hoped that

there is still room for improvement before any theoretidalil of predictability is reached.
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Since the mid 1990s, there has been a move to make forecastien methods more specific
to the atmospheric flow on a particular day and the requirésnaithe end user. One part of this
move has been the development of methods by which the oltiserdsstribution resulting in the

most accurate forecast may bbjectivelydetermined. With the development of new 'movable’
observation platforms, the possibility of day to day vaoias in the observation network based on
the specific requirements of the forecast may present;iGpiainuel et al. (1995). Observations
obtained in this manner have come to be known as 'targete@ddaptive’ observations; Lorenz

and Emanuel (1998).

Several questions surround the use of an adaptive obsemattiategy. Most of these questions

are summed up in the words of Thompson (1957):

“What return in increased predictability can be expectednfiacreasing the overall density of
reporting stations, and how does this compare with the apoading outlay of funds? Where
is the point of rapidly diminishing return per outlay? Howositd the new stations be located in

effecting the increase of overall station density?

Thompson (1957), however, was writing about the developroka larger network ofixed ob-
servations, and so for 'targeted’ observations a furthestian exists: What methods can be used
to identify the best observation locations on a day to daisBa&ttempting to answer these ques-
tions several targeting methods have already been promosktested 'in the field’. This thesis
is a further contribution to the answers to two of these goiest namely,

Where should the additional observations be located?

and

What method should be applied to identifying these locaton
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Answers to a further 'sub-question’,

Why should the observations be placed in these locatjons?

are also sought. An outline of the findings of this thesis aafolind at the end of this introduc-
tory chapter. Prior to this, we shall give a more detailediaxation of the subject of adaptive
observations. To put the subject of adaptive observatioremtext, the following section dis-

cusses the properties of a 'generic’ weather forecastistesy. The available literature on the
subject of adaptive observations is then discussed in@ettR. The final section of this chapter

contains a summary of the main conclusions and chaptermsméthe thesis.

1.1 Forecast-Analysis Systems

This section serves as an illustration of the generic ptagseof weather forecasting systems. It
is not intended to give a full discussion of the specifics piddout rather to introduce concepts
and terminologies that will be relevant to subsequent disioms. The production of accurate
weather forecasts requires the ability to perform two tagksstly to propagate an estimate of
the current atmospheric state forward in time; Secondlyd&eraccurate estimates of the current
atmospheric state. The first of these tasks is performedj lsige numerical weather prediction
(NWP) models. The second is performed by combining obsensif the current state of the

atmosphere with an estimate of the atmospheric state frorevéopis forecast.

NWP models are a set of discrete non-linear equations tipabrimate the physical and dynam-
ical processes in the atmosphere. The integration of a NWéehmver a finite time interval

7 from an initial statex(0) to a forecast statg/(7) can be written as the non-linear operator
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equation
x! (1) = 4 [x*(0), 7] (1.1)

wherey is a vector containing the model state variables (pressemgerature, velocity at differ-

ent grid points for example) an@” is a non-linear operator containing the model equations.

The second task required for the successful production ofexést needs slightly more expla-
nation. Ideally the model would be initialised using a sehofogeneously distributed accurate
observations, at least equal in humber to the number ofhlagan the the model state vector
x. Unfortunately, due to the high dimension of the model staie the inaccessibility of many
required observation locations, the observations aréerelarge enough in number nor homo-
geneous enough in their distribution to specify entirely thodel state. In order to solve this
problem the observational data are combined with a previogzsast to produce the estimated
current atmospheric statg®, based on the estimated statistics of the error in both trexfst
and observations. This process is known as data assimilafibe forecast used in the data as-
similation process is known as the background. The estionstiE#e obtained through the data
assimilation process is known as the analysis. The variats assimilation methods in use in

weather forecasting centres derive from the minimisaticih® quadratic cost function

(x-x) B (x-x)+ 3w - AN B -, (2

N —

J(x) =

where the vectoy is the control vectdr, x? is a vector containing the backgroungis a vector

containing the observations?’ is the forward model (or observation operator) which trarmss

"Here we assume the control vector contains the same vasiablthe model state. In general any variables that

are uniquely related to the model state can be used for thteoterctor.
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the model variables to the observed variabless matrix containing an estimate of the covariance
between observational errors, aBds a matrix containing an estimate of the covariance between
the errors in the background. From this cost function théyaisax® can be defined as the vector
x for which ¢ (x) is minimised. In order to formulate the cost function, certassumptions
have to be made about the background and observation effbese assumptions are, that the
observation and background errors are statistically iaddent, and that individually the assumed
error statistics must lead to non-singular covariance ioegtr The assumption of non-singular
covariance matrices essentially implies that all posstdées must have a reasonable probability
of existing, even if in the current atmospheric flow they avauslikely that their probability of
existing is very close to zero. A useful property of the cosiction is that if the approximation to
the background and observation errors is 'good’ and thedaivmodel can be approximated by
the linear operatoff, the analysis error covariance matdxs equal to the inverse of the Hessian

(second derivative with respect f9 of the cost function; i.e.

A

[8;5} o (B'+H'R'H] . (1.3)
Ideally the covariance matrices in the cost function wouwddehd on the time of observation and
the observations would be used to correct the model statespmnding to the time of obser-
vation. To make the background error covariance time speaife could in theory evolve the
analysis error covariance matrix. In reality however thaetision of the model state vector is
typically greater thari0® so that the background error covariance cannot be storediipgnt

computers, let alone evolved or explicitly inverted. Du¢hie limitations in computational power
and concerns that evolving covariance matrices may becorgalar, many methods of solving

approximate cost functions have been developed. It is notndention to give a detailed dis-
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cussion of these methods but some of the more general piespeitl be highlighted. One such
approximation to the cost function is the (extended) Kalriléer. The essential components of
the (extended) Kalman filter are that the covariances arlveyaising a linear approximation
to Equation (1.1) and the observations are assimilatedesdiglly into the background field at
the 'correct’ time. The computational expense requiredripléement a Kalman Filter for NWP
models is presently too great for the computers used at modogical centres. 3D-Var and 4D-
Var data assimilation schemes are commonly used operHyionaneteorological centres. The
essential components of 3D-Var are: the background err@r@mnce matrix is assumed to be sta-
tionary in time; spatial correlations between errors intiaekground field are typically assumed
to be separable in the vertical and horizontal directiorgsigatropic in the horizontal direction;
the cost function is minimised (usually approximately) lyiterative algorithm. In 3D-Var the
observations are assimilated into the background at predeted discrete intervals (analysis cy-
cles) and the time point in the background field evolution laicl the observation are assimilated
does not necessarily correspond to the observation timeVatls an extension to 3D-Var in
which a linear dynamical model is incorporated into the famdvmodel (observation operator), so

that the distribution of the observations in time is takeo #ccount in the assimilation process.

Due to the sensitivity of non-linear models to errors in thigial conditions, there has been a
move by meteorological services in recent years towardseimble forecasting’. In ensemble
forecasting, rather then creating a single forecast, aemeble of forecasts is created by adding
small perturbationd; to the initial condition. The motivation behind ensembleefiasting is to

make a probabilistic forecast rather than a single detestigrforecast. The most likely forecast
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can then be given by the ensemble mean

N,

€ f Ne a
i X (1) s A [x(0) + 0x;, 7]
xi (1) = 2; N 2; N, , (1.4)

where N, is the number of ensemble members. One immediate questbarises from the en-
semble method is what form should the perturbations to titialiconditions take. Two methods
for generating initial perturbations exist. These are tre=bing method and the singular vector
method. The singular vector method is motivated by the apamthat the effect of the data
assimilation process is to randomise the initial condigorors; Palmer et al. (1998). Since the
initial condition errors are assumed to be random, it ismgslithat by perturbing the initial con-
ditions with the perturbations that grow the most over thredast integration, the most relevant
information about the forecast error is obtained; Palmeal.gt1998). It is the desire to get the
greatest spread in the ensemble that motivates the usegoillairvectors to define perturbations
for ensemble forecasting; Molteni et al. (1996). In metémyiwal applications, singular vectors
are used as estimates of the phase space directions whidlyating most over a finite time
period. Singular vectors will be discussed in more deptthérext section. Like the singular
vector method, the breeding method aims to maximise thexdpéthe ensemble, but with the
qualification that the growth be sustainable; Toth and Kal@i®97). In the breeding method a
small perturbation is added to the initial conditions. Butitial conditions are evolved with the
non-linear model over one analysis cycle. The resultarddiate then subtracted from each other
to obtain the evolved perturbation. This evolved pertudpais then reduced in amplitude, added
to the new initial conditions and the process is repeateds ddntinual evolution and amplitude
reduction is designed to replicate the evolutionary behavof the errors over multiple analysis

cycles; Toth and Kalnay (1997).
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1.2 Adaptive Observations

1.2.1 Summary of Adaptive Observations

The question as to the best deployment of observationalrese has long been of interest to
meteorologists; e.g. Thompson (1957). In recent years ¢hreldpment of practical methods
for identifying the best locations for additional obseiwas based on the day to day variations
of the atmosphere has become an active area of research.sulijst area has been referred
to variously as adaptive or targeted observations. One bliatee question which arises from
adaptive observations is how to define what is meant by thelbestion. Generally speaking,
adaptive observations can be motivated by the desire t@aetivo different, but interrelated,
goals. The first possible aim of targeting is to obtain the bealysis achievable with the limited
observational resources. Lorenz and Emanuel (1998) andgsMet al. (2001) have proposed
methods which utilise estimates of the initial conditioroes from ensemble forecasts to identify
regions where the initial condition errors are large. Bgéding observations to areas with large
initial condition errors it is hoped that the maximum impeavent in theanalysiscan be obtained.
Whilst maximally reducing the initial condition erronayreduce the subsequent forecast error,
this is not explicitly the aim of the targeting methods pregd by Lorenz and Emanuel (1998)
and Morss et al. (2001). The other possible goal of adaptdseiwations is that of reducing
forecast error. For the work in this thesis we are concermdyl with this second goal; i.e. that
of maximally reducing forecast error. For current targgtiechniques the aim of targeting is
usually defined as finding the observations that will maxiynehprove the forecast within a

geographically localised verification region at a speciédfication time.

Several targeting methods which seek to identify the olagienv locations that maximally reduce
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forecast error have been proposed. These targeting meltasgsbeen loosely classified into
two types: those which rely on non-linearly evolved ensemlbbd incorporate information about
small error dynamics, such as Ensemble Transform [BishdpTath (1999)] and the ensemble
transform Kalman filter [Bishop et al. (2001)]; and those etthiely on linear approximations to
inform the target selection about the error dynamics, sgcradient sensitivity [Bergot et al.
(1999), Pu etal. (1998)], quasi-inverse linear method [Pal. €1997)] and singular vector target-
ing methods [Buizza and Montani (1999), Montani (1998)].tkefse methods, two in particular
have come to the fore and were used in determining the oligeryacations during the ’Atlantic

Thorpex Regional Campaign’ (AtREC) field test of targetedesbations in 2003. These two
methods are the singular vector method [Buizza and Moni®89)] and the ensemble transform

Kalman filter method [Bishop et al. (2001)].

Berliner et al. (1999) set out a simplified but 'well poseditistical framework for the targeting
problem. This statistical framework may be summarised #swe: Given an estimate of the
atmospheric state at timg and the error statistics associated with that estimatentifgiethe
observations at a later timg that will optimise by some measure the expected errors in the
subsequent forecast it Berliner et al. (1999) suggest several measures which rmaséd to
define an optimality criterion. Of these measures,exgectedorecast error variance is of most
direct relevance to the targeting methods in the curremtditire. Berliner et al. (1999) refer to
criteria for observation selection that minimise the expddorecast error variance as A-optimal
criteria. We may summarise the essential components of aptial targeting method as: an
estimate of the error statistics @t an estimate of the effect of observations on those stAisti
and an estimate of the evolution of the statistics uptcAll the targeting methods discussed in

this section (with appropriate assumptions) can be viewgadwaghly falling into this description.
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Additionally, all the targeting methods discussed in tlgst®n rely on the assumption that the
evolution of the error statistics is linear. This is equdlye of methods which make explicit
use of linear operators and those that rely on non-linearblved ensembles. The accuracy
of the linear approximation is dependent on the amplitudéhefperturbation, since for small
perturbations the amplitude of non-linear terms in a sengmnsion of the dynamical equations
are smaller than the linear terms. However, since atmoipbgnamics leads to perturbation
amplification, it is expected that the accuracy of the lireggproximation deteriorates over time.
The time period over which the linear approximation is vadideferred to as 'the linear regime’.
Several investigations into the duration of the linearmegfor perturbations with initial amplitude
consistant with the estimated amplitude of initial corafifanalysis errors have determined the
maximum duration of the linear regime to be roughly two tethdays; see for example Errico
et al. (1993), Rabier and Courtier (1992) and Vukicevic ()99The validity of this linearity

assumption is questioned by Gilmour et al. (2001).

1.2.2 The singular vector method for observations targetig

The first of the two targeting methods that were used in theE&Reld experiment is the sin-

gular vector method. In simplistic terms the essential comepts of the singular vector method
can be summarised thus: A small set of perturbations (thgukin vectors) that maximise the
amplification of small perturbations to the initial condiis over the finite forecast integration pe-
riod are calculated; the observations are then targetezfjtons in which this set of perturbations
weighted by their amplification over the forecast periodehkrge amplitude. The finer details
of this method are somewhat more complex than this simpléstplanation so we shall break it

down into three sections. Firstly we shall describe the eratitical properties and computation

10
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of the singular vectors. Secondly we shall describe theemphtation of the targeting method
using the singular vectors. Finally we shall identify sorssuamptions that may be used to link

the method to the generic description of 'A-optimal’ taiggtmethods.

To compute the singular vectors, it must first be assumedhbatynamical behaviour of the per-
turbations (or errors) we are interested in is well appr@tad by a linearisation of the dynamical
equations about a time varying background state. For tamyapplications, this background state
is the portion of the forecast startedtgtwhich lies betweert; and¢,. This linearisation gives

rise to the linear operator

oM

M [x(t1),t2] = W [x(t1),t2] (1.5)

which approximates the evolution of perturbatiaig(¢;) to the statex(¢1) over the intervak,

to to. The evolution of perturbations over this finite time intris then described by
8x (t2) = M [x(t1),t2] 6x (t1) + O(6x?). (1.6)

The 0(6x?) terms are assumed to be much smaller thamy (¢1), 2] 5x (t1) and neglected,

yielding a linear evolution equation. The use of a linearagimation to the non-linear evolution
of perturbations to the state of atmospheric models is lyspatified on the grounds that the
amplitude of the perturbations are assumed to be initiaigls and the time periods over which
the approximation is applied does not exceed two to thres.ddgreaftetM [x (1), t2] will be

donated simply as/.

The singular vectors used in targeting are obtained by ctimpthe singular value decompo-

1 1 1 1
sition of the matrixik = E5ToME, * (Buizza and Montani (1999)); whet®, > and E; are

11
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matrices which normalise the initial and final perturbasiorspectively, ands is a local pro-

jection operator. Here we use the subscriptnd?2 to refer to the time at which each operator
is applied; e.g. those applied to the perturbation,adre subscripted. The local projection

operator is an operator that sets the amplitude of the foation to zero outside the verification
region and is usually defined as a symmetric matrix; e.g. Z2u{d994). Several definitions of
the terms singular value decomposition, singular vectdrsingular value appear in the meteo-
rological literature. For clarity we shall restrict our defion of these three terms to that given
in linear algebra texts such as Golub and Van Loan (1983) &ath¢&(1988). The singular value

decomposition (expansion) is defined

rank(K)
K = Z ol .7)
=1

whereo;, u; andv, are the singular values, left singular vectors and riglgudiar vectors respec-

tively. By convention the singular values are ordered sheh t

o1 > 02> .. - Orank(K) = 0. (1.8)

r L=
v; v = , (1.9)

0, i#j

r 1, 1=
ulu; = , (1.10)

0, i#j

12
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and the equations

and

Due to the high dimension of the numerical models used in spimeric modelling, the matrik’
is too large to allow for direct computation of the singulatue decomposition. In practice only
a few of the leading right singular vectors are computed léaltanczos algorithm; Golub and
Van Loan (1983). By the term 'leading’ singular vector weeretio those associated with large
singular values. From the indexing convention given in Eguna(1.8) the leadingV singular

vectors are those correspondingite 1to: = N.

The left and right singular vectors are related to modeegpatturbations at andt, via

N

and
_1
Tg(sxi(tg) = O'iEQ Q’Ui; (114)
where
Ox;(t2) = Mdox;(t1). (1.15)

Each right singular vector can be transformed to a corrafipgrperturbation of the state vari-

13
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ables at time;. Each left singular vector can be transformed to a localupestion of the state
variables at times. This local perturbation is the localisation of the peratibn evolved from
dx;(t1) over the finite time interval; to t5. From the orthogonality relationships given in Equa-
tions (1.9) and (1.10) it is evident thaj, (t1) andT>dx;(t2) are orthogonal with respect to the

inner products defined by the matricEs and E; respectively; i.e.

oxT(t1)E1dx;(t1) = , (1.16)
0, i#]
. 1, i=j
6Xi (tQ)TQEQTQ(SXi(tQ) = . (1.17)
0, i#]

The singular value decomposition of the matfiixcan therefore be used to define a set of dy-
namical perturbationgx;(¢1) which are orthonormal with respect to th&;’ inner product’.
These perturbations evolve over the finite time intervalhi® ¢orresponding evolved perturba-
tionsdx;(t2). These evolved perturbations are orthonormal within thellcegion defined by the

local projection operatdrs.

A very important aspect of the singular value decompositsotihat the singular vectors form a
complete set. This means that any state perturb@ypmay be written as a linear combination
of either the right or left singular vectors. K is not full rank then some of these singular vectors
will be associated with zero singular values. The real pawesingular vectors is seen when a

perturbation to the state &t is written as the linear combination

N L
ox;(t) = Y _nE; *v;, (1.18)
=1

14
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1
wherey; = v E? 6x;(t1) is the 'E;’ projection coefficient oBx;(t1) onto theit® singular vector
and Ny is the number of elements in the vectigg. When the perturbation &t is written in this
form then the amplitude within the verification region of twelved perturbation measured in the

norm defined by theFs’ inner product is given by
N
I T28x;(t2)l|%, = 0x] (t2) TaEaTodx;(t2) = > vioy. (1.19)
=1

Furthermore, if the initial condition errors &t are 'white’ with respect to thés; inner product
then the expected value ef is equal to a constant for all ¢; Palmer et al. (1998). If the
initial condition error is white with respect to thé, inner product and the approximation of the
error evolution byM is valid then the expected error variance in the verificatiEgion att, as

measured in thé’s norm is given by

N
£ [I1oxi(t)II3,] = 1= > ot (1.20)
5 =1

Due to the high dimension of the numerical models used in oneliegical centres exact calcu-
lation of Equation (1.20) is computationally expensive #éinte consuming. Since the Lanczos
algorithm allows the computation of the leading singulactaes without the expense of com-
puting all the singular vectors, Equation (1.20) can be exiprated using the firslv singular

vectors.

In singular vector targeting the observations are direttiagrds regions in which the amplitudes
of the right singular vectors weighted by their singulaiwes are ’large’; e.g. Buizza and Montani
(1999). The idea being that by reducing the errors in regigmare the singular vector amplitude
is large one reduces the amplitude of the projectjpof the error at time; onto the leading

right singular vectors. From Equation (1.19) it is eviddrgtireducing the magnitude ¢f for the
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leading right singular vectors will reduce the forecasberFurthermore if the initial condition
errors att; are 'white’ with respect to thds; inner product and thexpectedeffect of placing
observations in region defined by a local projectigris to uniformly reduce the amplitude of the
error in that region it can be shown that the reduction in etgobforecast error variance obtained

by observing irl7 is
Y
& [ITadx;(t2) 5, — I1Todx; (b2, T ||, ] = N > oiv! T, (1.21)
S =1

wheredx;(t2, T1) is written as a function of; to distinguish it from the forecast without addi-
tional observations. From this expression it is evident thea singular vector method is in some
ways A-optimal. Equation (1.21) will be discussed in moradén Chapter 4 however it is intro-
duced here to motivate singular vector targeting as an Angptargeting method. A significant
difference between the singular vector method and the Avrgpdesign of Berliner et al. (1999)

is that in the singular vector method the observations arexmicitly taken into account.

Whilst the use of singular vectors in targeting can be maivas an A-optimal targeting method,
several other interpretations of their use exist. The $ijgdaterpretation of the singular vectors
depends on the choice of the matridésand E5; Palmer et al. (1998). We have already noted
that the A-optimal interpretation of singular vector tangg requires that the matrik’; is chosen
as the covariance matrix of the initial condition errorg;atin theory, the matrixs, can be chosen
to measure the aspects of the forecast errors that are eoegichost vital to remove, however in
practice,E» is almost universally chosen such that the associated proeluct is a measure of
the total energy (kinetic energy plus potential energyhefiierturbation. 1#; is chosen to be the
same ad’,, then the singular vector calculation yields the pertudoatthat amplify the most over

the forecast interval; to t,. In this case the use of singular vector targeting can bevateti by
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the desire to prevent the errors from growing over the faticderval. Typically for this optimal
amplification motivation bothz; and F»> are chosen such that their associated inner products
give the total energy of the perturbation. Palmer et al. §.98st the consistency of the several
potential metrics with estimates of the analysis error dawae metric. The tested metrics are
total energy, streamfunction, kinetic energy and ensyyof the four metrics that Palmer et al.
(1998) test, it is found the total energy is the least incstesit with the analysis error covariance
metric. The use of total energy to define the metrics at batistiért and end of the forecast interval
can therefore be seen as an attempt to both target the grewing and to achieve the A-optimal
goal of minimising the expected forecast error varianceweler, since the total energy metric
takes neither the observation network nor the atmosphgniardics prior ta; into account, it can
be at best weakly related to the analysis error covariandgan€he use of total energy singular
vectors in targeting is therefore more easily justified andhounds of preventing error growth.
Barkmeijer et al. (1998) demonstrate the computation afidar vectors using the Hessian of the
3D-Var cost function to define the metric &t. These 'Hessian singular vectors’ are computed
using the total energy metric gtand the Hessian metric &t Since the metrics differ ag andt;

the Hessian singular vectors cannot be interpreted as albfigrowing perturbations. However
since the inverse of the Hessian matrix is in theory equéhécanalysis error covariance matrix
the use of Hessian singular vectors for targeting is moresistent with the A-optimal design
outlined by Berliner et al. (1999). However the backgrounarecovariance matrix used in
operational data assimilation systems are not (at predepgndent on the day to day variations
of the atmospheric flow. The background error covariancericest used in 3D-Var and 4D-
Var are modelled to reflect the climatological statisticshaf analysis errors so that they can be

applicable to multiple forecast analysis cycles. Thes&dpatind error covariance matrices often

’more recently the Hessian of the (incremental) 4D-Var amsttion has been used; Leutbecher (2003)
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contain many simplifications designed to reduce computatiexpense. The Hessian metric does

however take explicit account of the location and estimatsmliracy of routine observations.

In summary, singular vector targeting identifies a regiowmch it is determined that observa-
tions are expected to be most beneficial. This type of targaetan be motivated to a certain
extent by the A-optimal design of Berliner et al. (1999) anddy the desire to prevent error
growth betweent; andt,. The exact interpretation of the method depends on thefapeboices
of the matrices; and E», which define the metrics at and¢- respectively. In the case where
E, and E5 are identical, the computed singular vectors can be irgeggdras the perturbations
which amplify the most with respect to the inner product agged with £, and E» over the fi-
nite time intervalt; to ¢5. In the case of the identicdl; and F, therefore targeting with singular
vectors can be thought of as an attempt to prevent the anapilific of errors. Preventing errors
from amplifying however is not necessarily consistent wétucing the forecast error since for
example non-amplifying errors which have large amplitutle, anay have a significant impact
on the forecast error ag. If however the metric at; is chosen to represent the statistics of the
analysis errors af; then the singular vector targeting method can be relateldet@\toptimality
motivation of Berliner etal. (1999). Since the singularteetargeting method does not explicitly
take into account the character and deployment of the agapltiservations it can arguably only
be A-optimal ’in spirit’ rather than in actuality. Singulaector targeting is more easily thought
of as means of identifying 'sensitive regions’; i.e. regan which small variations in the initial

conditions are likely to lead to large variations in the fast.
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1.2.3 The ensemble transform Kalman filter method of observ#on targeting

The second of the two targeting methods which have were useagdthe AtREC experiments
is the ensemble transform Kalman filter; Bishop et al. (200he ensemble transform Kalman
Filter has its root in the Ensemble transform techniquesiel/by Bishop and Toth (1999). Both
Ensemble transform and ensemble transform Kalman filtecsrfitfortably within the A-optimal
framework of Berliner et al. (1999). The essential aim ofltbese methods is to predict the fore-
cast error variance &t associated with a particular deployment of observations. & ensemble
transformation, the analysis error covariance matrix @aged with a particular deployment of
observations at; is estimated, using linear transformation ensemble fatdndialised aty. The

approximate analysis error covariance matrix is defined
Ay ~ D,cCcTDT (1.22)

where the columns of the matrix; are given by the normalised departueg&; ) of the ensemble
membersy/ att, from the ensemble mean agtis a linear transformation to be determined. The

normalise departures are defined

/ o
dy(1y) = Xl =X (), (1.23)

(Ne - 1)

=

Wherexlf(tl) is theit” ensemble member &, x{(tl) is the ensemble mean@tand .V, is the
number of ensemble members. The method for determifiimgll be discussed a little later. We
shall first concentrate on ho®w is used to estimate the forecast error for a given deployment

observations. Once the transformation maffimssociated with a particular observation deploy-

ment has been determined, the resultant forecast/bacigjemwior covariance matrix & is then
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approximated by
By = D,CTDT (1.24)

where D5 is the matrix of normalised departurdg(t,) atts. The essential assumption in deter-
mining the relationship betweed; and B, is that the forecast errors evolve linearly about the

forecast trajectory defined by the ensemble mean. Thisrlessumption implies that
By =M [Xf(tl)at2:| AMT [Xf(tl)ab] (1.25)
and
Dy= M [xf (tl),tg] Dy (1.26)

Combining Equations (1.22), (1.25) and (1.26) one readikaios Equation (1.24).

In the ensemble transform technique, the transformatiomixn@ is computed by specifying the
form of A; associated with a given observational deployment and replEquation (1.22) for
C. The ensemble transform Kalman filter is an extension to tisemble transform technique,
in which the matrixA4, is (theoretically) determined by substituting the appmade background

error covariance
By ~ D, DT (1.27)

at ¢t; into the Hessian of the cost function (Equation (1.3)) angkiiting. The transformation
matrix, C', associated with this estimated analysis error covariamateix is then obtainable as

before from Equation (1.22). The actual calculations usethé ensemble transform Kalman
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filter are significantly more efficient than these describeceh For a full discussion on these

calculations, see Bishop et al. (2001).

To implement the ensemble transform Kalman filter for adeptibservations, the method can
be applied to multiple possible deployments of observatamd the most favourable deployment
selected. The favourability of the targeted observatisrquiantified from the ’signal variance’ at

t2
1 1
s(ty) = trace {E22 TyDy(I — C1CTYDTTLE> }, (1.28)

whereFE; andT> are the “inner product defining” and local projection masicespectively used

in singular vector targeting; Bishop et al. (2001). As withgsilar vector targeting total energy
is usually used to defin®,. If the assumption of linear error evolution is valid and #pprox-
imated covariance matricd$;, A; and R are accurate and consistent with the data assimilation
system used in the weather forecasting centre, then thalsigriance is equivalent to the ex-
pected reduction in forecast error variance induced by tisevations; Bishop et al. (2001).
This equivalency is also reliant on the accuracy with whihforecast model can evolve a given
initial condition. In practice the matrice8; and A, are not consistent with those used in opera-
tional data assimilation systems and the ensemble trandf@aman filter has a tendency to over

estimate the effects of observations on the forecast; Magunet al. (2001).

Unlike singular vector targeting, the Ensemble Transforainkan Filter explicitly takes the as-

similation process into account, although this assinufagprocess does not correspond to the
actuality of operational assimilation systems. Also, tingslar vector method makes no attempt
to identify the optimal observational deployment, and otifines a region to be observed. It

must be noted however that the Ensemble Transform Kalméar Kloften used only to generate
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'summary maps’ of the signal variance, which are then usadedntify target regions, and not
specific observation locations; Majumdar et al. (2002). ¢osel difference between the Ensem-
ble Transform Kalman Filter and singular vector targetimithat, for the singular vector method,
the covariance matrix of the initial condition errors is rethed by the flow-independent matrix
FE1, whereas for the ensemble transform Kalman filter the initedition covariance matrix is

modelled by the flow dependent ensemble perturbations.

1.2.4 \Variations of the singular vector and Ensemble Trangfrm Kalman filter ob-

servation targeting methods

Several variants’ of the singular vector and ensemblesfiam Kalman filter targeting meth-
ods have been proposed. Leutbecher (2003) applies the doftigy of the ensemble transform
Kalman filter to the Hessian singular vectors used in sirgudggtor targeting. This method ar-
guably has several advantages over both singular vecigetiag and the ensemble transform
Kalman filter. In the former case the Hessian reduced rantheamethod of Leutbecher (2003)
has come to be known, has advantages over the 'regular’lainggector targeting method in that
it explicitly takes the assimilation process into accomdétermining the target region. The Hes-
sian reduced rank has two advantages over the ensemblétrartsalman filter method. The
first of these two advantages is that the assimilation sclzmsigmed by the Hessian reduced rank
is consistent with the operational data assimilation sehdreutbecher (2003). A second less ob-
vious advantage is that the use of the local projection apETa in the singular vector calculation
means that by design the Hessian singular vectors used itebsian reduced rank contain only
information relevant to the verification region. By contrédse ensemble members used in the

ensemble transform Kalman filter are designed to maximsethount of information about the
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‘global’ error statistics. It may be inferred thereforetthagreater number of ensemble members
than Hessian singular vectors are required to accuratssaghe effects of observations on the
forecast error in the verification region. However the endenused in the ensemble transform
Kalman filter is available 'for free’ from the ensemble foast Majumdar et al. (2001) whereas
the computationally expensive targeting Hessian singidators are an added expense to the rou-
tine forecasting system. A very significant difference lesw the ensemble transform Kalman
filter and the Hessian reduced rank is that while the formerg@nto account the dynamical evo-
lution of the errors betweety andt; the latter does not since the Hessian of the 3D/incremental
4D VAR cost function is not flow dependent. Kim et al. (2004pmose targeting observations
to locations where non-linearly evolved singular vectaseilarge amplitude. In the method of
Kim et al. (2004) the singular vectors are computed for therual ¢, to ¢; and the target lo-
cations specified using the right singular vector non-lityeavolved tot;. Hamill and Snyder
(2002a) consider the use of background error covariantmatsts obtained from an ensemble
Kalman filter to specify the location of observations regdito optimally improve the analysis at
t1. This method uses the flow dependent background errors tiffiee error statistics &t but
takes into account that these error statistics may not gjporel to the error statistics assumed by
the operational data assimilation system. Although, ittrbesstressed that the method of Hamill
and Snyder (2002a) is designed to improve the analysis atd not the forecast a§. Hamill
and Snyder (2002ajo define a method for determining the forecast improvemeny, diut this

additional method is only applicable if an ensemble Kalmierfis used operationally.

23




Chapter 1 Introduction

1.3 Thesis Summary

This thesis covers topics in two areas. In the first half ofttiesis, the dynamics of singular
vectors in the Eady model are discussed. In the second h#diedhesis, this discussion is then
extended to adaptive observations. In this thesis the fadgrmamically evolved background er-
rors on the efficacy of targeted observations is examinegaiticular the effect of using evolved
singular vectors to specify the dynamically organised comemt of the background error is in-
vestigated. In the first half of the thesis the dynamics ofsliar vectors in the Eady model are
investigated. In the second half the use of singular vediotargeting is investigated. Firstly
the effect of singular vector dynamics on the location oféss identified using singular vectors
is investigated, by considering the singular vector tangetunction (e.g. Buizza and Montani
(21999)), which is usually a vertical integral, in the heigbhal plane. Following this a new
targeting method, that utilises these evolved singulatovedo approximate the leading eigen-
vectors of the flow dependent background errors, is intredudhe evolved singular vectors are
combined with the singular vectors used in current singedator targeting schemes (e.g. Buizza
and Montani (1999)) to estimate the reduction in forecasirarariance which will be obtained
from a given deployment of observations. Although thiseéirgg method uses a flow dependent
background error covariance model, it does not rely on tearaption that the operational data
assimilation system is a Kalman filter, as is the case of tlserable transform Kalman filter

(ETKF) method; Bishop and Toth (1999).
The thesis is divided into chapters as follows:
Chapter 2 contains a description of the Eady model usedsrthbsis.

Chapter 3 contains an analysis of the singular vectors dE#uty model.
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Chapter 4 contains a examination of the sensitivity bassgu$ar vector targeting, in the context

of the Eady model singular vectors.

Chapter 5 contains the description of a new singular veciset targeting method, and the anal-

ysis of the method in the context of the Eady model singulators.

Chapter 6 contains a summary of the main conclusions oflteisig.
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CHAPTER 2

The Eady model

2.1 Introduction

This chapter contains a summary of dynamical propertieBeofivo dimensional Eady Equations.

Discrete versions of the two-dimensional Eady equatioasuaed to define the numerical model
used for experiments in this thesis. The present chaptaséscon the properties of the continuous
equations. The properties of the discrete equations atastied briefly in the next chapter and in

detail in Appendix A.

The purpose of the present chapter is three-fold. Firdily,physical motivations of the quasi-
geostrophic equations, upon which the Eady Equations aedpare explained in Section 2.2.
The aim of the discussion of the quasi-geostrophic equai®io motivate the Eady model as a
model of the 'dynamic atmosphere’, and set it in the contéx@ onore complete’ model of the

atmosphere. The second purpose for the present chaptedafine the Eady Equations. Section
2.3 contains the formulation of the Eady Equations. Thedtpurpose of the present chapter
is to introduce the properties of the solutions and dynahgoawth mechanisms of the Eady
model which will prove relevant to later discussions. Thesetions and growth mechanisms are

described in Section 2.4.
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2.2 The Inviscid, Adiabatic, quasi-geostrophic equationgor incom-

pressible flow on a Mid-latitude f-plane.

The quasi-geostrophic equations approximate the dynash&goptic scale (horizontal scales of
~ 103km) depressions in the mid-latitude regid0 (to 70 degrees north/south of the Equator).
It is from these equations that the Eady model is obtainedthigisection, we will introduce
the quasi-geostrophic equations. The intention here isgiolight the underlying physics and
dynamics that motivate the equations, rather than to givellp fledged derivation. A more
detailed treatment of this topic can be found in many fluidadyits texts such as Pedlosky

(1979) or Holton (1992).

We shall define the quasi-geostrophic equations in Cantesiardinates and neglect the effects
of the curvature of the Earth. Thecoordinate shall point eastwards, theoordinate northwards
and thez coordinate upwards. Due to the assumed orientation we isfal to thex, i, andz
coordinates as the zonal, meridional and vertical cootdfmeespectively. We will usg j, k to
denote unit vectors in the, y andz directions respectively. All parameters will be chosendo b

consistent with the Mid-latitudes.

Many assumptions about, and approximations of, the nafuigid flow in the atmosphere have
to be made, to obtain the Quasi-geostrophic equations. draigion, we shall list some of the

more basic ones here. Firstly, the atmosphere is assuméeyatoe ideal gas law

P
= — 2.1

wherep, p andT are the air density, pressure and temperature respectin€el is the gas con-
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stant. Secondly, the effects of internal and externalifmal forces on the atmosphere have been
neglected. Without these viscous effects, deceleratidheoWinds, by the conversion of kinetic
energy associated with air flow, to thermal energy does natrowithin the equations. Thirdly,
diabatic effects due to the presence of water vapour in thegthere have been neglected. This
third assumption means that the transfer of thermal eneygyvaporation and condensation does
not occur within the Quasi-Geostrophic equations. Foyrtilie to the rotation of the Earth all
fluid elements experience a centripetal acceleration ipgjiribwards the axis of rotation. The
effects of this centripetal acceleration are small and argted from the equations. Also due to
the fact that the coordinates are defined in a rotating fralhmeference all fluid elements expe-
rience an 'apparent’ acceleration known as the Corioli®kecation. For the Quasi-geostrophic
equations only the vector component of the Coriolis aceaétam pointing in the vertical direction

is retained. The horizontal vector components of the Cisraddceleration are assumed to be neg-
ligible away from the Equator. A further simplification toetiCoriolis acceleration can be made
by assuming the magnitude of vector component pointingarvértical direction has the constant
value f; at all latitudes. Assuming a constant Coriolis accelenaioreferred to as thg-plane
approximatioh. The '3 effect’ accounts for accelerations due to increased (dsed planetary
vorticity, when moving in a northwards (southwards) dir@ct and is important in defining the
planetary scale wave (Rossby wave) motion. Making fhglane approximation removes the
' effect’ and therefore planetary scale motion is poorly espnted in the equations of motion.

Finally, the gravitational acceleration is assumed to thkeconstant valug at all locations.

We have already made several general simplifying assungtdout the properties of atmo-

spheric motion in the Mid-latitudes. A large number of fntlsimplifying assumptions can be

1The f-plane approximation is an extension to the 'standard’ @Ga®mstrophic Equations
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made based on observations of the weather systems theysagaetbto describe. As Eady (1949)
puts it, the dynamical equations can be simplified by 'thession of all those terms which do

not make a major contribution to the particular type andescdlmotion envisaged'. For the

quasi-geostrophic equations the type of motions envisagednid-latitude depressions. Obser-
vations of these cyclonic disturbances reveal that: theycanvectively stable; they have typical
length and height? =~ 103km and # =~ 10km respectively; and they have typical ve-
locities 7 =~ 10ms~!. With these properties in mind we shall now demonstrate tinéaér

simplifications that lead to the quasi-geostrophic equatio

Firstly for convectively stable systems we may (in almobktases) neglect vertical accelerations
and use hydrostatic balance to describe the vertical steicf the atmosphere; Eady (1949).
Hydrostatic balance is a balance between the force due tiralepressure gradients and the

gravitational force; i.e.

9p _ . 2.2
9, PY; (2.2)

wherep is the pressure anglis the density. The mid-latitude cyclones we wish to descappear
as small time dependent eddies in a largely hydrostatic sghere; the thermodynamic state of
the atmosphere can be expressed as a sum of the stationgrgroemh depending on height alone

and an eddy component depending on all spatial coordinattsrae thus

p(z,y,2,t) = ps(2) + pe(z,y, 2, 1), (2.3)
p(,y, 2, t) = ps(2) + pe(z,y, 2, 1), (2.4)
0(1.? y? Z? t) = 95(2) +96(:C? y? Z? t)? (2'5)
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where the subscriptsande denote the stationary and eddy components respectively enthe
potential temperature. The potential temperature iseélai the actual temperature by

=7 <@> “ (2.6)
p

whereC,, is the specific heat at constant pressure @ni$ a constant reference pressure, com-
monly chosen to be mean sea-level pressure. It is worthgnbiéme that by definition the wind
velocity makes no contribution to the stationary state arabsociated solely with the eddy com-
ponents of the atmosphere. With the cancellation of smatigeand the approximation of the
stationary state density and potential temperature by malaes, we can 'subtract out’ the sta-
tionary state and define the quasi-geostrophic hydrosgtiation

oY

fog, =0 (2.7)

where

Oe

b=g—
990

(2.8)

is a buoyancy parameter, the stream-functior- p/ fopo is a scaled pressure perturbation and
po andf are the mean values of the stationary state density and boyy@he quasi-geostrophic

hydrostatic equation, describes the balance of gravitatiand vertical pressure gradient forces
for the eddy components of the atmospheric state. Takingnvedaes of the stationary state den-
sity and potential temperature is justifiable in this equatin the grounds that observations of the
atmosphere indicate that the magnitude of variations isetligiantities are small by comparison

to the absolute magnitude.
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Whilst deviations in the magnitude of the stationary stagesity and potential temperature are
dynamically unimportant, the gradient of these deviatidossplay an important role in the dy-
namical evolution of the eddy components of the state. legtature of the vertical stratification
of the stationary state that defines the restoring forcerequeed by air masses displaced in the
vertical direction; i.e. prevents the appearance of cdiweemnstability by enforcing the condition
that density is a decreasing function of height. For the iggegstrophic equations this stability

property is contained in the static stability parameter

N?=Z2 (2.9)

which we shall take to have the constant vaNjg

The observed propagation speed of the mid-latitude cyslame wish to represent are much
smaller than the speed of sound $30ms—!). Since we do not require to represent disturbances
which travel close to the speed of sound we may neglect thardigal effects of density gra-
dients and assume that the atmosphere is incompressiblethe density is constant in space
and time. It should be pointed out here that in the quasitgg@isic equations the effect of the
vertical stratification of the stationary state densityeamed implicitly in the static stability pa-
rameter and the effect of the vertical density gradienthéndddy components of the state are
retained implicitly in the definition of the Quasi-Geosthiphydrostatic equation. Since mass is
conserved in the atmosphere, incompressibility enfordecesondition that the net flow of mass
into a volume must be zero and therefore the wind must be ivamggnt. Zero divergence can

be expressed mathematically as

Vi v+ — =0, (2.10)

31




Chapter 2 The Eady model

wherev = wui + vj is the horizontal wind velocityw is the magnitude of the vertical wind
velocity and

o . 0.
Vh—a—x71+@

is the horizontal gradient operator.

In the atmosphere, the acceleration of air masses due tontad pressure gradients is balanced
by two accelerations. Firstly, by the Lagrangian accelenati.e. the change in wind velocity.

Secondly, by the Coriolis acceleration which occurs dubéaise of a rotating frame of reference
in the equations. The flow is said to be in geostrophic bal#rbe pressure gradient acceleration
is equal and opposite to the Coriolis acceleration. Thezbatal wind can be separated into a
geostrophically balanced component, the geostrophic wipdand an unbalanced component,

the ageostrophic wind,,,. The geostrophic wind is purely horizontal and is defined by
v, =k x V1. (2.11)

The geostrophic wind is non-divergent. Since the total wiettl is non-divergent (Equation

(2.10)) the sum of the ageostrophic and vertical wind musgi fdrm a non-divergent circulation.

For geostrophically and hydrostatically balanced flowsrdtexists a thermal wind balance rela-

tionship

8vg_i

5. = 7.k X Vb, (2.12)

which relates horizontal gradients of potential tempeggtub, to vertical gradients of the

2N.B. the buoyancy parameter is a scaled potential temperatu
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geostrophic wind. For example a negative meridional gradaé potential temperature induces
a positive vertical variation in the zonal geostrophic wirdgs we shall see the flow in the mid-
latitudes is dominated by the geostrophic wind. Due to thgelaneridional temperature gradient
(warm at the equator, cold at the poles) the flow in mid-ldeét is dominated by a zonal wind

component which increases in magnitude with height.

The Rossby number

Ry=—— (2.13)

gives an estimate of the typical ratio of the magnitude ofL.thgrangian acceleration to the Cori-
olis acceleration. When the Rossby number is small the floglase to geostrophic balance.
For the mid-latitudes the Coriolis parameter has a vglye= 10~%s~!. The typical velocity
and length scales of the cyclones we wish to depictZare- 10ms~—! and.Z ~ 103km. With
these valuesio ~ 0.1 and the flow is nearly in geostrophic balance and the gedstrapind
dominates. Since the flow is dominated by the geostrophid wia@ can ignore advection of the
eddy components of the state by the ageostrophic and vexiiods; therefore the application of
the Lagrangian time derivative to the eddy components ofthte can be approximated by the
geostrophic Lagrangian time derivative

5 Y V. (2.14)
For adiabatic motion, the internal energy of the system nesneonstant, and entropy is con-

served. For the atmosphere, this is equivalent to assurnaigotential temperature is conserved

following the flow. Using the approximation of the Lagrangiime derivative by the quasi-

33




Chapter 2 The Eady model

geostrophic Lagrangian time derivative, potential enesgynly approximately conserved. This

approximate conservation is enforced by the thermodynaqpition
Dyb+ Niw = 0. (2.15)

The second termNZw) of this conservation law stems from the advection of théwmtary state
potential temperature by the vertical wind. It is assumed the magnitude of this vertical ad-

vection is too small to significantly alter the propertieghsd stationary state.

On anf — plane the quasi-geostrophic horizontal momentum Equation ismdédfi
Dyv, + fok x v,, = 0. (2.16)

Several terms have been neglected in this equation, moablgothe time derivative of the

ageostrophic wind. The 'neglect’ of these terms is onlydrdlihe Rossby number is small.

Applying V;, x to the quasi-geostrophic horizontal momentum Equatioh6j2and taking the
vertical derivative of the Thermodynamic Equation (2.38& can combine these two equations

to form

1 9b
<f0vh X v, + N 82) —V - (v, + wk). (2.17)

Since the divergence of the combined ageostrophic andcakwtiind is zero we may define a

quasi-geostrophic potential vorticity

ob
q=VpXxuv, —1—%§ (2.18)

which is conserved following the geostrophic flow. The fiestt on the right hand side of Equa-
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tion (2.18) is the vertical component of the vorticity of theostrophic wind. The second term
on the right is the vertical gradient of the potential tenapere,b. The conservation of potential
vorticity expresses the fact that positive tendencies dficity (i.e. deepening of low pressure
systems) are associated with negative tendencies in paterhperature gradient (i.e. warming
at upper levels and cooling at the surface). For negativdetaries in vorticity the opposite is true
so that the development of high pressure systems is asseidth cooling above and heating at
the surface. From a physical point of view this heating amaling is induced by the transport
of warm air from the surface (for low pressure systems) amd aio from upper levels (for high

pressure systems) via the circulation of combined agegustz@nd vertical winds.

From a mathematical point of view the ageostrophic-verigaulation plays only a diagnostic
role in the quasi-geostrophic equations and the evoluticgheoflow is determined by the conser-

vative advection of Quasi-Geostrophic potential voryidiy the geostrophic wind. i.e.

Dyq = 0. (2.19)

The quasi-geostrophic potential vorticity can be writtenaalaplacian function of the quasi-
geostrophic stream-function

fi 0%y

_ 72 JO ¥ ¥
Q—V}ﬂ/}‘f‘Ng 022"

(2.20)

With suitable boundary conditions, the potential vorjiagian be inverted to obtain the stream-
function field; Hoskins et al. (1985). Once the stream-fiomcis known, every aspect of the
flow can be determined. The quasi-geostrophic equatiomsftite comprise a simple prognostic
Equation (2.19) which along with suitable (usually time lgimy) boundary conditions and the

Laplacian Equation (2.20) can be used to integrate a cheostal icondition forward in time.
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Despite the apparent simplicity of the equations non-litiea associated with the advection of
potential vorticity by the geostrophic wind (which deperaitsthe potential vorticity) have so

far prevented the discovery of an analytical solution. T&entlhe Quasi-Geostrophic Equations
solvable by analysis requires further simplifications. YEd®49) defined a linearised formulation
of the Quasi-Geostrophic equations which allowed bothydical solutions and the retention of
the essential dynamics of cyclogenesis. In the next seatéoshall introduce the two dimensional

formulation of Eady’s original equations.

2.3 The Two-dimensional Eady Model

In this section, the formulation of the "Two-DimensionaldyeEquations’ will be described. The
2D Eady Equations are based on a linearisation of the quasitgphic equations about the
time-invariant background state first proposed by Eady4L9%he background state consists of

constant (in space and time) meridional potential tempesajradient

90 _ o, (2.21)
dy

whereA is a constant. The over-bar is used to denote a time-intdyankground state variable. It

must be stressed that this time-invariant background statmnnected with the eddy components
of the quasi-geostrophic equations and is not part of th@stary hydrostatic state discussed in
the previous section. This time invariant temperature igrads an approximation to the sus-
tained differential solar heating which supplies the atohese with its thermal energy. Through

the thermal wind balance relationship (Equation (2.12)kdically sheared zonally orientated
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geostrophic flow

iy = Az, (2.22)

is induced. Since the constaftdefines the vertical wind-shear it is referred to as the veandar

parameter. This background state is shown schematicalfigisme 2.1.

z
A _
u(z) = Az
_;.’ Y
e e
e
_______ N

Figure 2.1 The Eady background state

To obtain the 2D-Eady Equations the following boundary dtows are applied. Rigid surfaces
are assumed to exist on the upper and lower boundaries,”Z andz = 0 respectively. The
assumption of rigid upper and lower surfaces implies thatwértical velocityw vanishes at
z = 0andz = Z. Periodic boundary conditions are assumed in the zonattdire such that

x =0 =z = X. The meridional coordinate is effectively removed fromdyeamical equations
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by assuming that the meridional wavelength of perturbattorthe background flow is zero; i.e.

x € [0, X]
o _y VS (=00, 00) , (2.23)
y

z€(0,2)

t €[0,00)

where the dash denotes a perturbation to the backgrourd Btaking this assumption is roughly
equivalent to assuming the zonal scale of perturbatiortsstbackground flow is much larger than
the meridional scale and means that solutions to the 2D Eadiehare 'technically’ solutions to

the full non-linear Quasi-Geostrophic Equations (Gre€96Q)). One effect of this assumption
is that flow of wind associated with perturbations to the Ebdgkground state exists only in the

meridional direction.

With the above boundary conditions the evolution via Equat.19) of potential vorticity per-

turbations to the background flow can be written as

z € [0, X]

LAY VUL GV Y & (~00,00) 2.24
a—i_ Z% q =V, ) ( )
z€(0,2)

t €10, 00)

where the dash denotes a perturbation perturbation to ttie lEzckground state. The definition
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of potential vorticity given in Equation (2.20) becomes

x € [0, X]

;L aQw/ fg aQw/ Yy < (—OO, OO)

= 29 2.25
4 ox2  NZ 022 ( )

z€(0,2)

{ t € [0,00)

Once the potential vorticity can be inverted to obtain tlieasnh-function the model state can be

fully determined.

With the vanishing of vertical velocity atz = 0 andz = Z the thermodynamic Equation (2.15)

becomes
z € [0, X]
9 o\ oy oY y € (—00,0)
{EJFAZ%} 5 _Aaa: =0 , (2.26)
z2=0,z2=2
t €10, 00)

on the upper and lower boundaries. This new thermodynamiatem defines the evolution of
normal derivative upper and lower boundary conditions iregufor the inversion of potential

vorticity.

To ensure that the inversion of potential vorticity subjexiperiodic and derivative boundary
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conditions is unique, a further integral constraint

x € [0, X]

X y € (—o0,00)
/ Wdr =0, , (2.27)
0

z€(0,2)

t €10, 00)

is used. This constraint is equivalent to imposing the domdithat all non-zero solutions must

be composed of zonal waves.

Equations (2.23) to (2.27) form a complete set which can lee ts determine the evolution of
‘quasi-two-dimensional’ perturbations to the Eady baockapd state. In all that follows primes
will be dropped from perturbation quantities and all 'urrded’ variables will be assumed pertur-
bations to the Eady background state. The subsgnitl be dropped from the geostrophic wind,
since the ageostrophic wind makes no explicit appearantteeikady Equations. Also since the
solutions to Equations (2.23) to (2.27) are identical anadiridional locations, the meridional
coordinatey will be removed from the domain of dependence and solutiolisbe treated as

two-dimensional.

2.4 Dynamical behaviour of solutions to the 2D Eady Equatios

2.4.1 Form of the general solution to the Eady Equations

The 2D Eady Equations outlined form an initial boundary eghwoblem to which the solution is
fully determined if the initial stream-function field is kwo at every point in space. As was noted

in the previous section solutions to the equations are Wkeen the zonal direction. We shall
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usek, = 2nm/X to denote the zonal wavenumber of solutions wh€ris the zonal extent of the
domain andh > 0 is an integer which we shall call the wave index. Since at ¢éaoh point the
stream-function field must be a solution to the inversionaiéptial vorticity the total solution to

the equations comprises a particular (non-zero potentigicity) solution of the form

Yp(x, 2,t) = F(z,t)eFn® (2.28)

where.% is a function of height and time, and a homogeneous (zermpake&orticity) solution

of the form

Y (x, 2,t) = { (t)cosh(kpz) + B(t)sinh(k,z)} e (2.29)

wheres/ and% are functions of time only.

The original solutions of Eady (1949) consisted of only teeozpotential vorticity component of
the solution, which depends only on the potential tempesastructure on the upper and lower
boundaries. The zero potential vorticity solutions formiscete set of normal modes (two for
each wavenumber) the behaviour of which shall be discussedie detail later. Pedlosky (1964)
noted that the normal modes did not form a full set and theeetwe contribution from the 'con-
tinuum of modes’ associated with a non-zero potential givytifield must be taken into account,
in order to fully describe the behaviour of an arbitraryialitisturbance. A full general solution
to the Eady Equations can be found in Pedlosky (1964), bstribi our intention to give any
formal mathematical discussion of this solution other thating its dependence on both normal
modes and 'continuum modes’. In the following sections wallstiscuss the structure and be-
haviour of the normal modes; then give a a brief explanatiothe structure and behaviour of

the continuum modes; we shall then discuss the behaviodreditilting plane-wave particular

41




Chapter 2 The Eady model

solution found in Farrell (1984); and finally we will discuttge effect of resonance between the

normal modes and the interior potential vorticity struetur

2.4.2 The Normal Modes of the 2D Eady Equations

The original solutions of Eady (1949) to the Eady Equationstained only the homogeneous
zero potential vorticity component of the solution defingdHmuation (2.29). The solutions of

Eady (1949) are of the form

_ i (No _ Mo No ik (z—ct)
Up(z, 2,t) = {smh ( 7o l{:nz> fOAknccosh < 7o knz> } e (2.30)

where thecomplexphase speed is given by

_ZA | foA NZ NZ NZ NZ
c= - + NE. \/{2—fokn — coth <2—fok‘n>} {2—fok‘n — tanh (2—fol~cn> } (2.31)

The real component of solutions of this type are the normalea®f the Eady model. Since the

second term of Equation (2.31) can be positive or negateeethre two normal modes for each
zonal wavenumber. The vertical structure of the normal nuEgeends on the zonal wavenumber
but is independent of time. The phase speed of the normalsisde/en by the real componeft

of ¢ and an exponential amplification factor is giveni&y:; wherec; is the imaginary component

of c.

The real and imaginary parts of the phase speed (normaliséd’b are shown in Figures 2.2A
and 2.2B respectively. For wavenumbers greater than thieatrshort-wave cutoff’ valuek. =
2.4fy/NoZ, c is entirely real and there are two distinct real phase spf@d=ach wavenumber

and the normal modes are non-amplifying. Since their aog#itdoes not change with time
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Figure 2.2 A: Real Normal mode phase speed. B: Imaginary Normal modsepfigeed.
these short-wave normal modes are referred to as the nendidés of the Eady model. For
wavenumbers smaller than the 'short-wave cuteit complex and both normal modes have real
phase speed. = HA/2 and are exponential growing or decaying in time dependinthersign
of the imaginary phase speed. Since the background zondlwaires in height as(z) = Az,
the real phase speed of the normal modes corresponds todkgrtvand zonal wind-speed at the
heighte,. /A. The height at which the background zonal wind-speed isléqube normal mode
phase speed is called the 'steering level’ of the normal médem Equation (2.31) it can easily
be verified that the phase speed tends to background zondlspi#ed on the upper and lower

boundaries a%,, tends to infinity; hence the steering levels tend te 0 andz = Z.

Figures 2.3A and 2.3B show the height variation of the mealausgl stream-function amplitude

_ X Z X
k) = [0 (o / [ ooz (2.32)

of the normal modes as a function of wavenumber; the dashédalid lines show the normal
mode steering level. For the neutral modes, the amplituderisentrated on the boundary nearest

to the steering level height; Therefore the neutral modeg loeathought of as being either the
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Figure 2.3 Normal mode mean squared amplitude (Equation (2.32)) asetifan of height and
zonal wavenumber. A: Decaying mode/lower boundary neuatae. B: Growing mode/upper

boundary neutral mode. Figures are plotted from verticdlilscretised continuous normal modes.

upper or the lower boundary neutral mode. One noticeabtareaf the neutral modes is that the
amplitude resides predominantly between the steering #athe boundary. As the wavenum-
ber increases the steering level moves closer to the boyadalrthe normal mode amplitude is

contained in an increasingly shallow region at the boundary

Unlike the neutral modes, the unstable/stable mode’s &mdglis evenly distributed between both
boundaries. Rather than referring to the upper or lower darynmode, the two components of
the phase speed refer to the growing and decaying modeseféoemce examples of the stream-
function structure of the growingkf = wNZ/2fy), decaying k, = nNZ/2f,) and lower
boundary neutrali(, = 7w NZ/8 fy) modes are shown in Figures 2.4A, 2.4B, 2.4C respectively.
The upper boundary neutral mode is not shown as this is mareffection of the lower boundary
neutral mode about the line= Z/2. The growing neutral modes have a westward phase tilt with
height and the decaying modes have a eastward tilt with heijie magnitude of these phase

tilts decreases with increasing wavenumber.
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Figure 2.4 The streamfunction fields associated with A: Growing modeDdtaying mode. C:

Neutral mode. The figures are generated by discretising ¢éindrcuous normal mode.

2.4.3 The 'Continuum Modes’ of the Eady Equations

The normal modes of the Eady model form a discrete set of qiiations associated with the
potential temperature structure on the upper and lower demigs. Pedlosky (1964) noted that
since there are only two normal modes for each zonal waveagntiie normal modes do not
form a full set and therefore cannot be used to representigtneay initial disturbance. In order
to be able to represent an arbitrary initial disturbancectivéribution from the potential vorticity
structure in the interior must be taken into account. Usierior potential vorticity perturbations

of the form

q(x, 2,t) = 20(z — zp)etFn(z=Az00) (2.33)

where2 is a constant wave-amplitude,

0, z# =z,
d(z — 29) = 750 (2.34)

1, 2=z,
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is the Dirac delta function aney € (0, 7) is a constant, Pedlosky (1964) solved the 2D Eady
equations in generality. The solution given by Pedloskyf)9s an unwieldy equation and is not

repeated here; however we shall discuss the some of theajalifeatures.

Equation (2.33) defines a zonally orientated potentialigityttravelling wave residing solely at
heightzy. The phase speed of the potential vorticity wave is equdieédoackground zonal wind
speedu(zy) = Azp at the height. The stream-function field associated with the potential vo
ticity wave must satisfy the boundary conditions. For a lemptential vorticity wave Pedlosky
(1964) found that he could write the solution as a summatiothree separate time dependent
components. The first two of these components are constdtiplasi of the Eady normal modes
defined by Equations (2.30) and (2.31); where the constattfised by the projection of the
initial condition onto the respective normal mode. Thedftérm is the particular solution associ-
ated with the potential vorticity wave. This particularwidn comprises a vertically distributed
stream-function field travelling with the phase speed ofgbeential vorticity wave. The full so-
lution to the problem is formed from an infinite sum of the i@ vorticity wave solutions. The
stream-function fields associated with potential vorfigitaves of the form of Equation (2.33)
are collectively known as the continuum modes of the Eadyahadthe phase of the continuum
modes is constant in height. The phase speed of each comiimade is equal to the phase speed

of the potential vorticity wave with which it is associated.

A notable feature of the continuum modes is the differencstincture of the low and high
wavenumber modes. To demonstrate this difference Figutes &nd 2.5B show the variation
of mean squared stream-function amplitude (Equation J2.8&h height (y-axis) as a func-
tion of zonal wavenumber (x-axis) for single potential i@ty waves located at, = Z/2 and

29 = 3Z/4 respectively. For reference the dashed and solid black Bhew the steering level
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height and the dotted black line shows the location of themta! vorticity wave. When the
potential vorticity wave is located in the centre of the dom(&igure 2.5A) the low wavenumber
continuum modes have equal amplitude maxima on the uppdoard boundaries, whereas the
high wavenumber modes have a single amplitude maxima ab¢latidn of the potential vorticity
wave. The ’intermediate’ wavenumbers have three maximdawated in the centre and one on
each boundary. When the location of the potential vortigiywe is moved ta, = 3Z/4 (Figure
2.5B) those wavenumbers for which the potential vorticigve remains sufficiently below the
steering level still have amplitude maxima located at th&itfum of the potential vorticity wave;
whereas those wavenumbers for which the potential vortieéive is close to or above the upper

boundary steering level have maximum amplitude on the uippendary.

It is interesting to note that at the high wavenumber end efabnal spectrum the continuum
modes associated with a potential vorticity wave locateat tige centre of the domain have neg-
ligible amplitude above (below) the upper (lower) boundsigering level, whereas the ampli-
tude of normal modes (Figure 2.3) resides almost exclusiabbve (below) the upper (lower)

boundary steering level. The result of this disparity ofisture is that for high wavenumbers the
potential vorticity waves located near the centre of the @ionare 'dynamically isolated’ from

the normal modes. By contrast at the low wavenumber end afdhal spectrum the amplitude
of both the normal modes and the continuum modes is contedtom the boundaries. This is a

point that we shall return to in our analysis of the singulecter structure of the Eady model.

With the inclusion of the continuum modes in the solutionite 2D Eady Equations there exist
several growth mechanisms additional to the exponentlilr associated with the unstable nor-
mal modes. These mechanisms are growth by unshieldinitugtdf potential vorticity, growth

by the unmasking of normal modes which are initially maskeaddntinuum modes and growth
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Figure 2.5 Continuum mode streamfunction-squared amplitude as atibmof height and
wavenumber. A: For a potential vorticity wave residing:@Z = 0.5. B: For a potential vorticity
wave residing at /Z = 0.75. Figures are plotted using discretised continuous continunodes

taken from the solution given in Pedlosky (1964).

by the resonance of the normal modes with the continuum num@gdd close to the steering level.
Starting with potential vorticity untilting/unshieldinthe properties of these three amplification

mechanisms will be outlined in the subsequent three sextibthis chapter.

2.4.4 Potential Vorticity Untilting/Unshielding

Streamfunction amplification via untilting/unshieldinglies on the principle of constructive and
destructive superposition of streamfunction waves. Fangte two superposed streamfunction
waves with the same wavenumber will sum to give a larger aogwdiwave if they are in phase.
By contrast the two waves will cancel to give a lower amplgwdave if they are out of phase.
As we have seen in our analysis of the continuum modes of thg Badel, a potential vorticity
wave located at a particular height induces a stream-fomdield throughout the domain. The

phase speed of this stream-function field is equal to thalh@fpbtential vorticity wave. Since
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the phase speed of the potential vorticity waves varies gtght, the phase speed of superposed
streamfunction fields associated with potential vorticitstves on different levels differs. Due
to this difference in phase speed, initially out of phaseastrfunction fields can be brought into
phase by the advection of the potential vorticity. As theatnfunction fields are brought into
phase they become increasingly constructively superpdsading to amplification. This growth

by superposition is encapsulated in the untilting solutdRarrell (1984).

Farrell (1984) solved the Eady equations for the particiigial conditior?

w(szjo) — ei(k:chmoz) — eikz(:chaoz)’ (235)

wherek is the zonal wavenumbery is the initial vertical wavenumber andy = m/k. The
initial condition given in Equation (2.35) describes unifoamplitude wave-field in which the
phase of the zonal waves is constant along planes whichitiitam anglepy = — tan—! ag to
the vertical. Since the parameter = m/k defines the initial tilt angle of the planes of constant
phase we shall call this thaitial tilt. Following Orr (1907), Farrell (1984) found a particular

solution to the interior potential vorticity equation oftform

(U +a3/S) ikrlao-nge) (L a3/S)  ikarae)
Wl t) = e T Ane] n+a2t)/5)° » o (236)

whereS = NZ/f3 anda(t) = ap — At. We shall calla(t) thetilt. For a positive initial tilt the
evolution described by Equation (2.36) may be summarisddlasvs: The initial plane wave

structure has a westward tilt with height; over time thergiiuces due to differential advection

3since we are dealing with the 2D Eady model the meridionatdinate has been omitted from Farrell (1984)'s

solution.
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by the shear flow; along with this reduction in tilt the amyudié increases as per

_ (1+a2/S) _ (14a2/5)
= [1+ (ao —OAt)Q/S] S+ aQE)t)/S]’ (2.37)

the amplitude reaches a maximum value efa?/S attimet = agS/A; att = aoS/A the planes
of constant phase are parallel to the vertical; beyord a(S/A the plane waves begin to tilt

eastwards and the amplitude decays with time.

The reason for the amplification of the untilting plane-waam be interpreted by considering
the associated potential vorticity field. The particulalugon (2.36) is associated with a tilted

potential vorticity plane-wave field of the form
a2 ;
gp(z, 2,t) = —k*(1 + go)em(“'a(t)z). (2.38)

This potential vorticity field can be viewed as the infinitarsof potential vorticity waves of
the form Equation (2.33). Each of these potential vortieigves induces a vertically distributed
streamfunction field with uniform phase. When the potentaticity waves on different levels
are out of phase (i.e. the plane-waves are tilted) the sfrewtion fields associated with these
potential vorticity waves are also out of phase leading tstrdetive superposition. As the po-
tential vorticity waves are brought into phase by the slilear-the streamfunction function fields
are also brought into phase leading to constructive supiimo. On a domain of infinite vertical
extent the amplitude of a streamfunction field associatetl wipotential vorticity wave would
decay with vertical distance from the potential vorticispurce’; Bishop and Thorpe (1994). In
this infinite domain case the behaviour of the solution ireticould be entirely characterised by
the untilting potential vorticity plane-waves and the loicderactions between the streamfunc-

tion fields associated with the potential vorticity struetwn adjacent vertical levels. However
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the structure of the continuum modes is not in general ctargisvith that of potential vorticity
waves on an infinite domain and the effect of the upper andriba@endaries on the behaviour of
the solution must be taken into account. In order to satlefybioundary conditions a contribution

from the homogeneous component of the solution is requiFld.full solution takes the form

(w2, t) = Pp(x, 2,t) + (o (t)cosh(k/z) + B(t)sinh(kz)) (2.39)

wheres/ (t) and % (t) are chosen to satisfy the particular initial condition;rEr(1984). As we
shall see in the following chapter, the presence of this lggneous solution plays an important
role in determining the structure of the singular vectorshef Eady model. It is worth noting
that unlike the continuum mode solutions of Pedlosky (198¥ behaviour of the homogeneous
component of the plane-wave streamfunction solution istraglly related to that of Eady’s

normal mode solutions.

2.4.5 Modal Unmasking

Modal unmasking (Morgan and Chen (2002)) is similar to ptiérorticity unshielding in that

it relies on the constructive and destructive superpasitibthe streamfunction fields associated
with different modes. In modal masking the streamfunctiefdfassociated with a normal mode
is 'masked’ by the superposed streamfunction fields agsatiaith the continuum modes. Due
to the difference in phase speed between the continuum nasdkesormal modes, the normal
mode is revealed’. This revealing can be caused eitherusecthe net streamfunction field of
the continuum modes decays away due to potential vorticitiiting or because the difference
in phase speed of the normal and continuum modes means ¢hatittally out of phase, normal

and continuum modes are brought into phase.
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2.4.6 Neutral Mode Resonance

Neutral mode resonance is somewhat akin to the expongrdialplifying resonance of the long-
wave normal modes. Neutral mode resonance occurs, howevevavenumbers greater than
the short-wave cutoff. The essential component of neut@enresonance is that a potential
vorticity wave resides at the steering level of the neut@hmal mode. When this occurs the
interaction between the continuum and normal mode leadsdarl amplification of the potential
temperature wave which is sustained indefinitely; Thorfd@od Hoskins (1990). For discrete
numerical models exact neutral mode resonance can only ddbe steering level height for a
particular wavenumber is co-located with one of the modelsical levels and in practice only
approximate resonances are likely; Chang (1992). Unlikeptitential vorticity unshielding and
modal unmasking mechanisms, neutral mode resonance (anthinmode resonance) lead to

indefinite growth.
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The Singular Vectors of The 2D Eady model

3.1 Introduction

The use of singular vector decompositions of linearisedadyinal models has become common
in meteorological centres; for example in the generatiopesturbations for ensemble forecasts
Molteni et al. (1996). Singular vectors have come to be aasmt with the notion of ‘opti-
mal growth’ over finite time intervals; e.g. Buizza et al. 98). The use of singular vectors to
obtain optimally amplifying perturbations, rather thamsering normal modes/eigenvectors,
lies in the fact that since the linear operator associated svnall perturbation dynamics in the
atmosphere are not symmetric, their eigenvectors are tlutgmwnal and therefore a linear com-
bination of eigenvectors may achieve finite time amplifmatgreater than that implied by the
largest eigenvalue; Farrell and loannou (1996). The rdpitfransient amplification of singular
vectors has lead them to be associated with rapidly growongchst errors [e.g. Farrell (1990),

Lorenz (1965)] and the initial stages of rapid cyclogengsig. Farrell (1989)].

In this chapter the singular vector structure of the 2D Eadylehwill be described. The work
presented in this chapter follows on from that found in Fragtal. (2005). The singular vectors
of the Eady model with rigid upper and lower boundaries hasenbpresented previously by
Mukougawa and lkeda (1994), Morgan (2001), Morgan and CBeA2) and Kim and Morgan

(2002). Several further related studies on the subject timap perturbations/singular vectors
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exist. Fischer (1998) discusses the optimally growimgdal structures of the Eady model with
uniform potential vorticity. De Vries and Opsteegh (20089cdss the singular vectors of the
Eady model without rigid upper boundaries. The motivatiehibd the present discussion of this
subject is twofold. Firstly this chapter serves to illusgraroperties of the Eady singular vectors
which will prove relevant to later discussions of adaptimservations. Secondly all previous
published discussions have approached the problem fromedypaptimal growth perspective,
limiting their discussions to the growth mechanism of thstfsingular vector. In our treatment
of the subject we take a predictability standpoint, analyshe effect of the dynamical growth

mechanisms on the structure of the full spectrum of singtéators.

To be concise, we shall focus our discussions on the singelators computed for a short and
intermediate integration length. For the short integratiantegration length of = 1.73Ny/ foA

is used. This integration length is approximat&dh with the parameters assumed in the model.
For the intermediate integration a time-scale= 6.91Ny/ foA, corresponding to an integration
of approximately48h, is used. The choice to focus on these two particular integrdengths is
made as they are characterised by distinct dynamical eseg-or the short forecast untilting
is the dominant amplification mechanism and explains mucthefstructure and behaviour of
the singular vectors. For the intermediate integratiogtlemodal masking is significant and the
singular structure deviates from that expected from thétiumgt mechanism although untilting is
still important to the singular vector. In a sense we cantifietwo amplification regimes: the
untilting/unshielding regime which exists for short intagion times; and the modal unmasking

regime which exists at longer integration times.

The concept of two dynamical regimes for leading singul&taegrowth in the European Centre

for Medium-Range Weather Forecasting model has been pedpgmeviously by Hoskins et al.

54




Chapter 3 The Singular Vectors of The 2D Eady model

(2000). Hoskins et al. (2000) attribute the second regimertg term normal mode-like growth
due to coupling of potential vorticity with the surface,fvat than to transient growth, which can
be interpreted as a modal unmasking effect. Hoskins et @QRpropose the transition point
between the two regimes be defined using ‘the two dimensiuresi-geostrophic expression for
the vertical group velocity of Rossby waves’, with the setoggime occuring when the singular
vector energy has propagated to the upper boundary. Fobxtiady model, in which the merid-
ional potential vorticity gradient is zero, there is no Rgswave motion and such a definition is
not applicable. In contrast to Hoskins et al. (2000) we firat the transition from the unshield-
ing regime occurs roughly when the integration length i$icieht for a potential vorticity wave
located near the steering level to achieve ghase transition relative to the normal mode. As we
shall see, a further implication of this requirement thairskvavelength perturbations will enter
the modal unmasking regime at shorter integration lendias tong wavelength perturbations.
Whilst it would be interesting to investigate further thakis/contradictions between these two in-
terpretations of the ‘regimes of singular vector growthiGis an investigation will not be included

in this thesis.

The chapter is divided into three sections. In the first saective outline the singular vector
computation. In the second section we examine the impticatiof plane-wave untilting and
modal unmasking growth mechanisms for singular vector grpty considering the properties
of continuous solutions to the Eady model. In the third segtive examine the singular vectors of

the Eady model themselves and seek to relate these to therfiespdiscussed in the first section.

By examining the functional form of the plane-wave solutadri-arrell (1984), several properties
of the untilting mechanism related to singular vectors demiified. Firstly, the optimal initial

tilt for streamfunction amplification over a given finite #nmterval is identified. It is noted that,
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for short time intervals, this optimal tilt is larger tharathwhich would render the plane waves
completely vertical within that time interval. By deternmg the necessary condition for orthogo-
nality between plane-waves, it is found that the differeinct between orthogonal plane waves
is smaller for high wavenumbers than for low wavenumberse Similarity of the initial tilts of
orthogonal planes at high wavenumbers implies that theefiitile amplification of orthogonal
plane waves is more similar at high wavenumbers than low mawbers. This means that, when
the amplification of singular vectors other than the firsaken into account, the high wavenum-
bers will be dominant. Although they are not of exact plaremvform it is found that thé2h
singular vectors share the properties of the plane-wavtisi@di above. It is found that the prop-
erties of the singular vectors are more similar to that oh@laaves at high wavenumbers. This
increased similarity is attributed to the fact that the narmodes have shallower structure at high
wavenumbers and therefore do not 'interfere’ as much in ttergial vorticity dynamics at high

wavenumbers.

By extending the concept of an optimal height for modal urkimasof a potential vorticity wave,
that was proposed by De Vries and Opsteegh (2005), the esgeirt for modal unmasking to lead
to large amplification is inferred. This requirement is ttiet optimal unmasking height coincide
with the region just above (below) the lower (upper) boupddeering level, where the projection
of the continuum modes onto the normal mode is potentialigela Through this connection it
is implied that the transition from the untilting to modal shing regime will occur at shorter
integrations for small zonal scales, than for large zonalesc Furthermore it is hypothesised that
unlike untilting, modal unmasking cannot characterisegrmvth of large numbers of singular
vectors. This is because modal masking requires the camtinmodes to conceal two specific

normal modes, whereas untilting requires that a multigiiof continuum modes conceal each

56




Chapter 3 The Singular Vectors of The 2D Eady model

other.

3.2 Definition and Computation of the Eady Model Singular Vetors

3.2.1 Definition of the singular vectors

The singular value decomposition was introduced in ChapteFor convenience we shall re-
iterate the basic points again here. We shall also make tiefigiof the matrices used in the
singular vector computation which are specific to Eady medejular vectors computed in this
thesis. We shall use the matrix € RYs*Ns to denote an integration of a numerical version of
the Eady model over a finite time interval The operation of the matrik is summarised by the

matrix vector equation

Y(7) = Lyp(0) (3.1)

wherey € R is vector of grid-point streamfunction values aNglis the number of grid-points.
It is worth noting here that the matrik will be used only for the Eady model. For discussions of

general linearised dynamical models the maddbxwill be used.

As was discussed in the previous chapter, the quasi-gpbstrapproximations from which the
Eady model is derived are only applicable to scales of ot@ékm. However for reasons of
numerical accuracy, which will be discussed in the nextisecthe numerical model resolves
zonal wavelengths much smaller thed?¥ km. To filter these smaller zonal wavelengths from the
initial conditions we define a reduced rank discrete Fodrarsform matrixt’ € R?Ve*Ns, The

matrix F' transforms the grid-point streamfunction vectpr € R™s to the lower dimensional
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vector of streamfunction Fourier coefficient% e R2Nk, where N}, is the number of resolved
wavelengths greater than a chosen truncation. For the iexgretis presented in this thesis the
wave-spectrum is truncated@8 Ny Z/ f, which corresponds t800km with the parameters used
in the Eady model. The reverse Fourier transformation ifopaed by the matrix¥”. Since
the rows of F' are orthonormal [Golub and Van Loan (1983)]” is the pseudo-inverse [Golub
and Van Loan (1983)] of’. For grid-point streamfunction vectots which do not contain zonal

wavelengths shorter thdn8Ny Z/ fy, the following relationships are satisfied:

[hll2 = [[F% |2, (3.2)

FTFep = 4p; (3.3)

however these relationships are not satisfiegh i€ontains wavelengths smaller than the cutoff
wavelength. For grid-point streamfunction vectors whichadntain wavelengths shorter than
0.8NyZ/ fo multiplication by the matrix#” F' removes these smaller wavelengths, leaving the

wavelengths longer thah8 Ny Z/ f, unchanged. The matrik? F is a discrete Fourier filter.

The Eady model singular vectors are computed from the matfix F € RYs*Ns, The use of
an initial time Fourier filter is consistent with the singulector computation methods employed
using more complex models in meteorological centres; e.gizZa (1997), LI et al. (2005).
The mathematical properties of the singular vectors aramansed thus. The singular vectors
consist of two complete orthonormal bases. One basis isddritom the right singular vectors

v, € RNs, and the other from the left singular vectars € RVs. Since they form orthonormal

58




Chapter 3 The Singular Vectors of The 2D Eady model

bases the singular vectors satisfy the relationships

1, 1=
v;-rvj = , (3.4)
0, i#j
and
1, i=j
’U,ZTUJ' = . (35)
0, i#J
The left and right singular vectors are linked by the equmtio
LFTFv, = oqu;, i €[1,2,... N (3.6)

whereo; € R is the corresponding singular value. By convention theidargvalues and vectors

are ordered such that

oy >092>...0n, > 0. (3.7)

The right singular vectors can be interpreted as a set obgatimal initial states. Each of these
initial states evolves over the finite time interval to theresponding left singular vector mul-
tiplied by the singular value. Since the left singular vestare orthogonal to each-other, each
of the final states are also orthogonal to each-other. Thisinvectors can be viewed as a set
dynamical perturbations for which each perturbation ib@gbnal to every other perturbation in
the set at the beginning and at the end of a finite integratiois.this orthogonality property in
combination with the ordering of the singular vectors thaamgntees that a linear combination
of singular vectors cannot amplify more than the first singwkector over the integration period

[Farrell and loannou (1996)].
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An important aspect of singular vectors is that, since tloegnfa complete basis for the model
phase space, there are the same number of singular vecttirerasare degrees of freedom in
the model. It is worth noting here that, due to the presencefFourier filter matrix” F,
degrees of freedom corresponding to zonal wavelengthseshtban0.8 Ny Z/ f, are associated
with zero singular values. The set of the fimstright singular vectors contains the maximum
information containable im vectors about the effect of initial random perturbationgtanfinal
state. Here the term 'random perturbations’ refers to pleations which are random with respect
to the initial inner product and 'the effect on the final statemeasured in terms of the norm
deriving from the final inner product. For the Eady model gsiagvectors computed in this thesis
the 2-norm of the streamfunction field is used as both th&irdnd final norm. The choice of

norm will be discussed more thoroughly in Section 3.2.3.

3.2.2 Computation of the singular vectors

The singular vectors are computed from the mafriix” ' corresponding to a finite integration
of a numerical version of the Eady model. The details of tleerdite equations can be found
in Appendix A but we shall note some of the basic points herbe model is formulated on
a numerical grid withV,, = 120 grid points zonally andV, = 51 grid points vertically. The
discrete streamfunction field is defined on all grid-pointhe potential vorticity is defined on
all grid-points except the upper-most and lower-most gattlevels. The boundary potential
temperature is defined on the upper-most and lower-mosit [&he streamfunction is related to
potential vorticity using &—point approximation to the Laplacian operator and to thecujgmd
lower boundary potential temperature using a one-sidddrdifice approximation to the vertical

derivative. The use of one-sided approximations to theiloarterivative is motivated by the
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fact it allows the numerical model state to be determined mywkedge of the streamfunction
at all grid-points. The zonal derivative is approximatethgghe 'leapfrog’ scheme. The zonal

advection equations are solved using a centred-time ckrprace scheme.

All calculations are performed on a physical domain of disien X = 8 x 103km andZ =
10km corresponding to spatial ste@ds, = 66.6km and A, = 0.2km respectively. A time-
stepA; = 11.0min is used. Parameter valugs = 10~4s~ !, Ny = 1072571 andA = 4 x
10~3s~! are used. For numerical accuracy, the time, zonal and skxdmordinates are non-

dimensionalised by facto¥,/ foA, NoZ/ fo andZ respectively.

Due to the use of the centred time centred-space advectimnmss the advection speed of the
background zonal wind is under-estimated by a factor whegedds upon the wavenumber. As
long as the Courant number is kept below a certain threshalltey this factor is the same for a
given wavenumber on every vertical level. It is importaratttine factorial phase error for a given
wavenumber is the same on every level, as it guaranteesatttadugh each zonal wavenumber
experiences a slightly different zonal wind-field, the wield experienced by each wavenum-
ber increases linearly with height. Ensuring that the zeviat-field experienced by each zonal
wavenumber is linearly increasing is important for corsisy between the numerical and con-
tinuous Eady equations and facilitates the comparison ofemical and continuous solutions to
the Eady model. From a physical point of view the phase eamgsequivalent to an underesti-
mation of the wind-shear parameter. The numerical windusparameter can be written as the
wind-shear parameter assumed in the continuous equatioltiplied by a constant. Table 3.1
gives the numerical phase speed as a fraction of the connpioase speed for the first ten zonal
wavenumbersk(, = 2nr/X, n = 1,2,...10) supported by the domain. The values in Table 3.1

were computed via Equation A.25 given in Appendix A. For cgssof numerical accuracy, and
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n 1123 4 5 6 7 8 9 10

Apum/A | 1.0 2.0 1.0 0.99| 0.99| 0.98| 0.98| 0.97| 0.96 | 0.95

Table 3.1 Fractional phase errors.

because the Quasi-Geostrophic approximation appliestortigrizontal scales of 103km and
above, we shall restrict the computed singular vectors éadigion of phase space spanned by
the first ten zonal wavenumbers. The Fourier transform matiis therefore defined to compute
only the Fourier coefficients of first ten zonal wavenumbétsr the advection of the potential
vorticity field, the numerical phase speed is characteligethe values in Table 3.1. The normal
modes, however, do not travel with the advection speed ob#ukground flow, therefore the
numerical normal mode phase speed is not obtained dirgcthy the values given in Table 3.1.
The numerical phase speed of the hormal modes is estimatgidaatty, by evolving discretised
continuous normal modes using the numerical model. Forxperentially unstable long-wave
normal modes, the real phase speed is found to be equal th#ise gpeed in the centre of the
domain. For the neutral short-wave normal modes, the pheesigs found to correspond to the
numerical phase speeds of potential vorticity waves latalightly below the theoretical steer-
ing level height. For reference, Figure 3.1 shows the thmalesteering level (continuous black

dashed line) and the empirically determined discrete nizalesteering level (blue dashed line).

The singular value decomposition is computed from matrigrafpr LF? € RNo*2Nk | corre-
sponding to an integration of the numerical model over aditihe interval. This matrix operator
is obtained by systematically evolving and storing columithe identity matrix/ € R2Ve*2Nk |
The singular value decomposition is then performed on thredtmatrix. It should be noted here

that, although the right singular vectors are computed irieo space, the Fourier space singular
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Figure 3.1 Continuous (black line) and discrete numerical (blue lisering levels

vectorsd, are trivially related to the grid-point singular vectorsiof” F viav; = F19,.

3.2.3 On the choice of norm

The singular value decomposition of atmospheric modeldban found to be highly sensitive to
the particular choice of inner product used in the compogatPalmer et al. (1998). For the sin-
gular vectors to be able to completely span the model phass=gpe norm must be defined using
a non-singular transformation of the model state variableguasi-geostrophic theory the entire
state of a model is uniquely determined by knowledge of tresast-function field at all points in
the model domain; Pedlosky (1979). Therefore the requintroka norm in the Eady model is
that it be uniquely related to the stream-function field. éehsuch uniquely determinable norms
have been used to compute singular vectors in the Eady mbldese three norms are the stream-
function norm, the quasi-geostrophic total energy normrg¢atiorfer (2000)] and the potential
enstrophy norm. The potential enstrophy norm is2h@orm of the boundary potential temper-
ature perturbations and interior potential vorticity peogation. Since the perturbation potential

vorticity is conserved in the Eady model, the potential ety norm measures the amplification
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of the boundary potential temperature perturbations wedjhy a constant contribution from the
potential vorticity. The use of potential temperature tigioout the domain as a norm is prohibited
because the transformation from stream-function to piatieleimperature is singular. Ehrendorfer
(2000) showed that by adding the transformation matricepdtential temperature and velocity,
a non-singular transformation could be defined that alldvesuse of total energy as a norm in

quasi-geostrophic models.

The norm dependence is of particular importance to prdalittaproblems, because, in singu-
lar vector based targeting, it is the choice of initial tim@m that reflects what is known about
the initial condition errors. For predictability problentstal energy has commonly been used to
define the norm. The choice of total energy stems from testermpeed by Palmer et al. (1998)
which indicate that for total energy singular vectors th&riiution of energy in wave-space is
most similar to estimates of the distribution of analysi®eenergy in wave-space. Interestingly
Palmer et al. (1998) find that diagnostics of singular vexctmmputed using the kinetic energy
norm yield results which are 'qualitatively similar’ to the of total energy singular vectors. The
similarity of kinetic and total energy singular vectors iiep that the kinetic energy plays a sig-
nificantly greater role in determining the structure of k@aergy singular vectors than potential

energy.

For perturbations in the Eady model consisting of a singileakwavelength, stream-function and
velocity amplification are equivalent. Kinetic energy aifightion is trivially found from velocity
amplification squared. Since the singular vectors of theyEaodel are found to be single zonal
wavelength perturbations the structure of the singularevdecomposition is identical whether the
initial and final norms are stream-function or the initiabdmal norms are kinetic energy; Kim

and Morgan (2002). The qualitative similarity between kimenergy and total energy singular
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vectors highlighted by Palmer et al. (1998) has been notdwikady model by Kim and Morgan
(2002). Also, Kim and Morgan (2002) note that in contrasthte potential enstrophy singular
vectors, the leading stream-function (a proxy for kinetiergy) and total energy singular vectors
both rely heavily on the untilting of initially up-sheartéd potential vorticity anomalies. Further
evidence for the similarity between kinetic and total eyeagnplification in the Eady model
comes from Badger and Hoskins (2001), who demonstrate fimathe untilting mechanism,
the variation of amplitude and growth rates measured by ithetik and total energy norms are

qualitatively very similar.

For simplicity in the work presented here we will consiskgnise the stream-function norm at
both initial and final time for all singular value calculat® It can be fairly well assumed that
in the Eady model at least the singular vectors computedgusie stream-function norm are
consistent with those computed using the total energy noitgerefore consistent with the type

of singular vectors commonly used in singular vector tangemethods.

3.3 Implications of the dynamical mechanism of the Eady moddor

singular vectors

3.3.1 Comparison of continuous and discrete perturbations

Since the Lanczos algorithm allows accurate computatidheofeading singular vectors without
the expense of computing the full spectrum [Golub and VannL{d®83)], the singular value
decomposition has become a useful tool in analysing thdistgiroperties of high dimensional

(linearised) non-linear numerical models. The leadindptrigingular vectors are interpreted as
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the most unstable initial phase space directions for a fiimte integration; Palmer et al. (1998).
In this context instability is defined as instability of thevll to perturbations which are random
with respect to the initial time norm used in the singularteecomputation. The orthogonality
properties of the singular vectors guarantee that theyagothhe maximum possible information
about the instability of the linearised model over a finitediinterval within a limited number
of vectors. However, since the singular vectors are contpfrten numerical models they do
not possess a continuous functional form and generaligatbout the relationship between the

background flow and the singular vectors are not easily made.

For simple models such as the Eady model the existence oftaalsolutions to the contin-
uous equations facilitates the comparison of singularoredio continuous functions. Several
publications exist in this area: Mukougawa and Ikeda (199#ypret the properties of the first
singular vector in terms of the untilting mechanism of Fiu(E84); Morgan and Chen (2002)
diagnose the first singular vector structure in terms ofioonim and normal modes to investigate
the effect of modal masking; De Vries and Opsteegh (200®stigate the effect of neutral mode
resonance on the first singular vector of the Eady model withigid upper boundary. All these
studies concentrate on the dynamical properties of thesfirgular vector and do not consider its
relationship to the other 'lower order’ singular vectors. IBwer order singular vectors we mean

the second, third, fourth, etc singular vectors.

In this section we consider the implications of the growttchanisms described in Chapter 2 to
the properties of singular vectors. The aim here is not toatterise and explain the structure
of particular singular vectors, but rather to make infee=nabout more general properties of the
singular vector structure as a whole. Properties such asptwmal growth of the first singular

vector, the orthogonality between the vectors and the nuofl@thogonal phase space directions
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which can be characterised by a certain behaviour will besicened. We present this material
prior to discussion of the computed singular vectors, bseamhilst it will prove relevant to

our discussion of the singular vectors, it does not derieenfanalysis of the singular vectors
themselves. This section is divided into two subsectionghé first subsection we consider the
plane-wave solution of Farrell (1984) and in the second wesicter the modal masking and to a

lesser extent resonance growth mechanisms.

3.3.2 Plane-Wave untilting

Mukougawa and Ikeda (1994) draw an analogy between Fair@i4)’s plane-wave particular
solution to the Eady equations and the dynamical growth ar@sm of the first singular of the
Eady model. Here we shall extend this analogy and consig@eintplications of untilting to the

plane-waves orthogonal to the optimally growing plane-svakirstly it must be noted that the
plane-wave particular solution in itself cannot be usedpec#y every phase space direction,
because the upper and lower boundary conditions give riaérion-plane-wave’ homogeneous
solution. However, for the moment we shall ignore the eftddhe homogeneous solution and
discuss the plane-waves in isolation. Ignoring the homeges solution may be considered
equivalent to applying the upper boundary condition from\D&s and Opsteegh (2005) (for
example) to both boundaries; i.e. the streamfunction Wasisatz = +oo and we are only

interested in the behaviour of the solution within a finitgioa [z, z2] which lies far from the

upper and lower boundaries.

The continuous equivalent of the streamfunction norm iséefby the square-root of the integral
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of the streamfunction-squared amplitude over the domadn; i

e = ( / / ) wd:zdz)%, (3.8)

where the subscriptdenotes the continuous norm. The continuous streamfumiedan amplifi-
cation over a finite time intervat,, is then defined as the rati@ (7)||./||:(0)||.. By substituting
the plane-wave Equation (2.36) into this ratio, we definedbm,tinuous streamfunction norm
amplification over a finite time interval of a plane with initial tiltay as

1+ ad f3/Ng
1 + (CLQ — AT)Qfg/Ng

[P/l (O)]le = (3.9)

From this expression it is noted that the amplitude depentisam the initial tilt and the integra-
tion length. Since it depends on initial tilt and not zonavemumber the amplification achieved
over a finite time interval by plane-waves with the sameahtiit but different zonal wavenum-
bers is the same. For a fixed finite integration lengthihe plane-wave initial condition that gives
rise to maximum amplification will be the one whose initidl thaximises Equation (3.9). We
shall call the tilt which maximises the amplification overrit time period the optimal tilsJ"".
By equating the differential of Equation (3.9) with respci to zero and rearranging we obtain

AT+ [A272 4 4%
= . (3.10)

ay = 5

The optimal tilt is obtained when the square-root term isitpes i.e. aJ* = af. When the
square-root term is negative the tiff is that which maximises decay over the finite time interval.
The optimal initial tilt is plotted in Figure 3.2 (black dast line) as a function of integration
length 7. For reference the dotted line shows the initial &t = A+ for which the potential

vorticity is rendered vertical at the end of the integrat@miod and the untilting plane-wave has
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Figure 3.2 The variation of optimal initial tilt (dashed) and Orr titidtted).

reached its maximum amplitude. Following the naming cotigenof Mukougawa and lkeda
(1994) we calla§"™" = At the Orr initial tilt. From Figure 3.2 it is evident that theitial tilt
that maximises growth over a finite time interval is alwaysager than the Orr tilt, but that as
the integration length increases these two values convefde fact the optimal tilt is larger
than the Orr tilt is a correction to the plane-wave singulectgr analogy of Mukougawa and
Ikeda (1994) who model singular vector growth using the @rrdther than the optimal tilt.
By substitutingagpt into Equation (3.9) an upper bound on the amplification actiike by the

untilting mechanism is obtained.

Having identified the maximally amplifying plane-wave weanoonsider the condition for or-
thogonality between two plane-waves. For two plane wavés tlve same zonal wavenumbgr
but differing tiltsa(t) anda(t) + da the criteria for orthogonality can be shown to be

2¢m

o= 40"
kn (22 — 21)

(3.11)
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where¢ # 0 is an integer. Proof of this relationship is given in AppenBi Perturbations of
differing zonal wavenumbers are orthogonal to each-otlertd the periodicity of the domain
in the zonal direction. Since the evolution of the tilt beémdwo time-pointg; andt, is given

by a(te) = a(t;) — A(ta — t1), it can easily be verified that two plane-waves that satiséy t
condition for orthogonality given in Equation (3.11) at aagi time pointt;, will still satisfy
the orthogonality condition at a subsequent time pojntTo see this one simply need consider
two tilts atty, a andd’(t1) = a(t1) + da respectively. Over the time interval to ¢, both
tilts change by—A(ty — t1), therefore attos we may writea(ts) = a(t;) — A(ta — t1) and
a'(t1) = a(t1) £ da — A(ta — t1) = a(t2) + da; i.e. the difference between the two tilts remains

fixed at+da.

Several points may be inferred from the orthogonality antihegd growth/decay conditions de-
fined by Equations (3.10) and (3.11) respectively. Firdtig,noted that, as is the case for singular
vectors, a set of orthogonal plane-waves will be orthogaddoth the beginning and end of a
finite time interval. Secondly we are free to choose one plaane in the set to be that which
maximises growth over the finite time interval, and using &aun (3.11) we may chose all sub-
sequent plane-waves to be orthogonal to it. In this way, wededine a discrete set of continuous
functions which share some of the properties of the singidatrors of a discrete set of equations.
From Equation (3.10) we can deduce that the difference tirb¢itween the optimally growing
and decaying plane-wave is given by — a, = \JA2T2 + 4];—(5. If the difference in the tilt of
optimally amplifying and decaying plane-waves satisfiesdtthogonality criteria given in Equa-
tion (3.11), then both the optimally amplifying and decaypiane-waves will be contained in the
discrete set of orthogonal plane-waves. This conditionardy be satisfied for a discrete set of

values ofr, since the orthogonality criteria yields a discrete setilts.t It is worth noting that
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for this discrete set of finite time intervals the orthogoplane-waves (if normalised) appear to
share several of the mathematical properties of the singalzors of a discrete matrix; however
it must be stressed that we are not attempting to suggesthibatet of orthogonal plane-waves
is analogous to singular vectors; we are rather motivatiggcontrived question: ’if the singu-
lar vectors structure and evolution were described egtliglthe plane-wave untilting Equation
(2.36), what would we expect the properties of the singubsntar spectrum to be?’. As we shall
see in Section 3.4, and as is evident in the work of other asitfMorgan (2001) for example),
the singular vectors are not of purely plane-wave. In anisgehis question we shall however

shed some light on the properties of singular vectors.

We have identified the optimal tilts for amplification and agdout we have not yet considered the
amplification of the plane-waves orthogonal to the maxiyathplifying/decaying plane-wave.
To shed some light on this topic Figure 3.3 (after Badger aoskiths (2001)) shows the variation
of the stream-function amplification rate (y-axis) with {k-axis). From Figure 3.3 it can be
seen that the maximum amplification and decay rates occuranea0 and that aga| tends to
infinity the amplification rate tends to zero. Since the afigaltion rate tends to zero as the filt
tends to infinity the amplification over a finite time intert@hds to unity as thaitial tilt tends

to infinity; Therefore for a finite time interval all the gromg and decaying plane-waves will have
tilts 'near’ toag = 0. Mukougawa and Ikeda (1994) make the point that for diseretdels when
the integration length increases beyond a certain leveDitanitial tilt will require a vertical
wavelength smaller than the discrete model’s resolutioe. ey also make the point that for a
fixed integration if the vertical resolution is increaseeldtive to a fixed zonal resolution) beyond
a certain value then the newly resolved perturbations veitlbe able to grow via the untilting

mechanism. From a singular vector perspective this imghes if untilting accounts for the
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Figure 3.3 Untilting streamfunction/kinetic energy amplificationteaafter Badger and Hoskins

(2001)

growth of singular vectors, then increasing vertical regoh will eventually lead only to the
addition of a large number of arbitrary (except in their ogbnality to the growing/decaying

singular vectors), 'essentially’ neutral singular vestor

An important implication of Equation (3.11) for the ampldteon of plane-waves orthogonal to
the optimally amplifying plane-wave is that, sinée depends orl/k,, the difference in tilt

between two orthogonal plane-waves is smaller for high ae@enumbers. Since the differ-
ence between the tilts of orthogonal plane-waves is smialidrigh zonal wavenumbers than for
low zonal wavenumbers, the difference in growth rates betwathogonal plane-waves is also
smaller for high zonal wavenumbers than for low zonal wawelners. The increasing similarity
in the finite time amplification of orthogonal plane-waveshnincreasing wavenumber implies
that the amplification of the nearest (in terms of initial) tdrthogonal plane-waves to the opti-
mally growing plane-wave will tend to the amplification o&tbptimally growing plane-wave, as
the zonal wavenumber tends to infinity. From a singular vgmospective one might expect that,

if plane-wave untilting explains much of singular vectoowth, then the singular values associ-
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ated with singular vectors (other than the optimal vectbgmoall zonal scale will be larger. For
orthogonal plane-waves, it has been seen that, whilst tipdifesation of the optimal plane-wave
is the same for all zonal scales, the amplification of the gdaaves orthogonal to the optimal is
larger for smaller zonal scales. In fact as the zonal scaldstéo infinity, the finite time ampli-
fication of plane-waves orthogonal to the optimally ampdificn plane-wave tends to that of the
optimally growing plane-wave, and hence a set of orthogpleaie-waves ordered by amplifica-
tion will be dominated by the smallest scales. However, th@sggeostrophic equations which
define the Eady model only apply to small Rossby number flows.rieed of small Rossby num-
ber limits the applicability of the Eady equations, for tygi mid-latitude stability and Coriolis

parameters, to zonal scales greater thar03km.

In our discussion so far, we have ignored the effect of thedgeneous component of the plane-
wave solution of Farrell (1984). Ignoring the homogenealgt®n is essentially equivalent to
changing the boundary conditions. We shall now considerdtagionship between the untilting
plane-waves and the homogeneous solution; i.e. we shadtnaguce the rigid upper and lower
boundaries. Firstly, it is noted that plane-waves are nittogional (with respect to streamfunc-
tion) to their corresponding homogeneous solution; Fla(l€li84). This lack of orthogonality
means that, even if the homogeneous component of the golatiero at the start of a finite time
interval, it will not be by the end of the time interval. Sinitee homogeneous solution does not
remain zero, the orthogonality condition for plane-wave®igin Equation (3.11) cannot be ap-
plied to a set of perturbations in the region= 0 andz,; = Z at both the start and end of a finite
time interval. However, it is still possible that, for aregd < z; < 29 < Z, the plane-waves are
orthogonal to the homogeneous solution, and the orthoijprigduation (3.11) may be applied

to a set of perturbations at initial and final time.
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By considering the vertical structure of the normal modes, 0can gain some insight into the
relationship between plane-waves and the correspondingpfjeneous solution. First, we shall
remind the reader that the homogeneous component of the-plave solution of Farrell (1984)
has the same vertical structure as the normal modes, batiddftemporal behaviour. It is rea-
sonable to assume that the effect of the homogeneous sobrtithe untilting mechanism will be
weak at heights where the normal modes have small ampliAsieias seen in Figures 2.3A and
2.3B, the amplitude of normal modes associated with wagghsnbelow the short-wave cutoff
resides primarily above (below) the upper (lower) bounddegring level, with some amplitude
extending into a region just below (above) the upper (lovendary steering level. Since the
amplitude of the normal modes is small between the upperamerlboundary steering levels, we
can infer that the effect of the homogeneous solution wiltddatively weak in this region. Since
the steering levels are further apart for the smallest zeceales, we can further infer that the size
of the region in which the homogeneous solution has only vediict is larger for smaller scales.
We may therefore expect the behaviour of small zonal scalles tloser to that of the plane-wave
particular solution given in Equation (2.36), than the ¢éasgales. For the longer wavelengths, the
normal modes have significant amplitude throughout the dtorsa it would be expected that the

homogeneous component of the solution has large effeaighiout the domain.

3.3.3 Modal unmasking

We have so far considered the implications of the plane-wantdting to singular vectors. In
this section we shall consider the implications of modal asking. A significant difference be-
tween potential vorticity unshielding and modal maskiegitnal mode resonance is that whilst

the former depends on the relative positions of an infiniteloer of potential vorticity waves
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to one-anothetthe later depends on the relative position of the potentaiicity waves to two
specific normal modes. The limitation to dependency on tte garticular modes means that
perturbations which amplify via the neutral mode resonarw modal masking growth mecha-
nisms can only account for a small fraction of the model plsasee. The same can be said of the
exponentially growing normal modes which account for omg phase-space direction for every

zonal wavenumber.

Morgan and Chen (2002) consider the effects of modal maskiniie first singular vector for a
representative wavelength above the short-wave cutofbaegresentative wavelength below the
short-wave cutoff. For the leading singular vectors pressbioy Morgan and Chen (2002), the
effect of modal masking is found to be very significant. In tase of the singular vector below
the short-wave cutoff, Morgan and Chen (2002) point out thatamplitude of the normal mode
is masked by a relatively small number of the continuum modes this short-wave singular
vector, the potential vorticity associated with these itmtm modes is a found to be plane-
wave perturbation located in a small region either side efdteering level. In the unmasking
mechanism described by Morgan and Chen (2002) the normaé msogvealed because of the
net cancellation of the continuum mode boundary potergraperature anomalies associated with
the potential vorticity anomalies above and below the stgdevel. Interestingly, despite the fact
that the largest amplitude potential vorticity waves resid nearest discrete vertical levels to the
steering level, no linear amplification due to resonancemeent, when the singular vector is

evolved far beyond the integration length used in the senguctor computation.
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De Vries and Opsteegh (2005) note that, for a single polerdiéicity wave, the modal masking

effect is maximised if the potential vorticity wave residgsa distance

™

ko, AT

5z = (3.12)

below (above) the upper (lower) boundary steering levele Triotivation for the definition of
this expression lies in the fact that, if the potential \@tyi resides at this height, the difference
in phase speeds between the normal mode and the continuum withdead to a change in
the relative phase of the continuum and normal mode of madmit. We shall call this the
optimal (modal) masking height. De Vries and Opsteegh (R0@wever, do not consider the
implications for different zonal scales of this expressibnom Equation (3.12) it is evident that
the distance of the optimal masking height from the stedewel is inversely proportional to the
integration lengtrand to the wavenumber. The results of this inverse proportignate three-
fold; firstly the distance from the steering level is smalier higher wavenumbers; secondly
the optimal masking height tends to the steering level hegtthe integration length increases;
thirdly the optimal masking height approaches the stedgngl with increasingr at a faster
rate at small zonal scales than large zonal scales. De Vingasteegh (2005) find that the
optimal location of the single potential vorticity wave idess nearer to the steering level than
this optimal height for all integration lengths and con@utiat resonance plays a greater role
than modal masking in the perturbation amplification. Hogvethe findings of De Vries and
Opsteegh (2005) must be qualified by the fact that the pextianpis limited to initially have zero

potential temperature at the boundary.

Another point that is not discussed by De Vries and Opste2gfY) is that the amplification

achievable via modal masking by a potential vorticity waagiding at the optimal masking height
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will only lead to large amplification if the optimal maskingight coincides with a height at which
the continuum mode can have large projection onto the nommoale. We can gain some insight
into the locations at which this may occur by consideringahalysis of Morgan and Chen (2002).
Morgan and Chen (2002) find that for small zonal scales 'orllyndged number of (continuum)
modes (located near the steering level) are needed to madhrte amplitude of the neutral
edge modes’; whereas for large scales a 'broad distribaficontinuum modes and the decaying
normal mode are required to mask the initially large amgétof the growing normal mode. This
statement does not however preclude the possibility thiateat spectrum of continuum modes’

may also be used to mask an initially large amplitude nornaden

Further insight can be gained by considering the structfirdaed continuum modes. Figures
3.4A to 3.4C show, for three representative wavelengths, vdrtical profile (y-axis) of the
streamfunction-squared amplitude [Equation (2.32)] aaretfon of the height of the associ-
ated potential vorticity wave (x-axis). These figures wdptaimed from vertically discretising
the continuous continuum modes defined in Pedlosky (1964y). Idw wavenumbers (Figure
3.4A) the continuum modes always have large amplitude ompiper and/or lower boundaries
so modal masking can potentially occur if the optimal magkaeight is located anywhere in
the domain. For small scales (Figure 3.4C) the amplitudargel on the boundaries only if the
potential vorticity wave is located close to or above (bgltve upper (lower) boundary steering
level. For intermediate scales (Figure 3.4B) the behaViesrsomewhere between that of large
and small scales. From this we may infer that modal maskingeaan effective streamfunction
amplification mechanism for small zonal scales only wheroiténal masking height lies in this
region near the steering level. As we shall see later, in nalyais of the singular vectors, the

requirement that the optimal masking height coincides thithnear steering level region defines
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Figure 3.4 Vertical profile (y-axis) of the streamfunction-squaredpditnde [Equation (2.32)] of

continuum modes, as a function of the height of the assakcadential vorticity wave (x-axis).

A: For wavenumben = 2. B: For wavenumbern = 4. C: For wavenumben = 7.
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the finite time integrations over which the modal masking Ina@tsm is significant. Furthermore
we shall see that due to the inverse proportionality of thinggd masking height to the zonal
wavenumber, the modal masking mechanism becomes signiitamorter integration lengths
for small zonal scales whereas the integration length meigobtger for the same effects to be

seen at large zonal scales.

3.3.4 Summary

In this section we have considered the implications of th@@lwave untilting solution of Farrell

(1984), and the modal unmasking growth mechanism to singelztors.

The main points of the discussion of the plane-wave solufdrarrell (1984) can be summarised
thus. As in Mukougawa and Ikeda (1994) we consider the pleaees in the absence of the
homogeneous boundary wave component of the solution; nsidering only Equation (2.36).
Many things can be inferred from the functional form of than@-wave solution. Firstly, consid-
ering the optimally amplifying plane-wave, it is noted thia¢ maximum amplification depends
only on the initial tilt of the plane-wave and is independehthe zonal wavenumber. This in-
terpretation is contrary to that of Mukougawa and lkeda £)98ho attribute the variation of
the amplification of singular vectors in tt3e-dimensional Eady model to a zonal wavenumber
dependence inherent in the plane-wave untilting mechanisia shall see later, in our investi-
gation of the singular vectors themselves, that variatioriee amplification of plane-wave-like
perturbations with zonal wavenumber are more likely causedifferences in the interaction
between the homogeneous boundary waves and plane-wavifer@ind zonal scales. A second
point that is brought out by examination of the plane-wawi@aar solution given in Equation

(2.36) is that the initial tilt of the optimally amplifyinglgne-wave is always greater than the 'Orr
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initial tilt’. The fact that the optimal initial tilt is gret@r than the Orr tilt means that the optimally
amplifying plane-wave will continue to grow via untiltingtfa longer period of time than the in-
tegration length. The difference between the optimalahtilt and Orr tilt is found to be greater

for short integrations than for long integrations.

The plane-wave particular solution of Farrell (1984) canubed to define a set of orthogonal
perturbations which remain orthogonal when evolved in timieor high zonal wavenumbers
the difference in tilt between orthogonal plane-waves iglinthan is the case for low zonal
wavenumbers. The similarity of the tilt of orthogonal highwenumber plane-waves means that
the difference in finite time amplification between orthogoplane waves is smaller for high
wavenumbers than small wavenumbers. However the planessanlike singular vectors) do
not form a complete set as the contribution to the phase dpamethe homogeneous component
of the solution of Farrell (1984) must be taken into accotat: high wavenumbers the structure
of the continuum modes associated with potential vortisifyves in the region of the domain be-
tween the upper and lower boundary steering levels is sitailthat which would be expected on
an infinite domain and it is inferred that plane-wave umtgtcan be used to entirely characterise

the stability properties of this region.

Whilst plane waves can account for a large humber of phassegtieections, perturbations that
lead to growth by modal unmasking are constrained to poiht ionphase space directions for
which the streamfunction field associated with the continumiodes can mask the streamfunction
field associated with the normal modes. It might be expethedefore that modal unmasking will

be present in only as small number of the singular vectors.

It is hypothesised, that for the modal unmasking mechanistead to significant amplification,
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the optimal masking height [De Vries and Opsteegh (2005)tmeside in the region near to
the steering level. It is further hypothesised that, simig dptimal masking height is inversely
proportional to the zonal wavenumber, modal unmasking ledltl to significant growth in small

zonal scales at shorter integration lengths than is thefoas&rge zonal scales.

3.4 The singular vectors of the Eady model

3.4.1 A note on the indexing convention of the singular vecte

In the previous section, we examined the potential impbeet of different amplification mech-
anisms to the singular vectors of the Eady model. In this@eete shall apply the information
outlined in the previous section to the singular vectorshef Eady model. We shall focus our

attention on the singular vectors computed faRa and a48h integration.

Before this, to avoid confusion, we shall outline the simgulector indexing conventions that
we shall adopt throughout this section. In our discussidriileosingular vectors, we shall adopt
the following conventions: we shall index the singular westof different zonal wavelengths
separately; each zonal wavelength/wavenumber shall lediddbby the wavenumber index,
where the wavenumber is given by = 2n7/X; we shall label the singular vectors withwith

i = 1 referring to the singular vector associated with largestjdiar value;; = 2 the second
largest; as an example, the first= 7 singular vector is the singular vector with wavenumber

indexn = 7 that is associated with the largest singular value.
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3.4.2 12h integration

Figures 3.5A to 3.5F show the right and left singular vectorghe first three wavenumber-index
seven singular vectors; i.e. the three largest amplifyingudar vectors with zonal wavelength
X/7. These singular vectors form a regular structural patterhe first singular vector is a
tilted plane wave structure with amplitude concentratethecentre of the domain. The second
comprises two tilted structures one on top of each-otherapmtoximatelyr/2 out of phase.
The third has three tilted structures one on top of the ottier;top and bottom structures are
anti-phased and the central structure-ig/4 out of phase. All the leading right singular vectors
have amplitude minima at the upper and lower boundaries.fdin¢h, fifth etc singular vectors
(not shown) continue this pattern; the fourth having fouangl wave structures, the fifth five
plane-wave structures etc. The corresponding left singidetors follow this pattern but the tilt
is reduced and the amplitude on the upper and lower boursdaaie increased relative to the rest
of the domain. This pattern qualitatively describes thacttre of the leading singular vectors
at all wavelengths. There are, however, quantitative miffees between the tilts and the vertical
structures. In what follows we shall outline these diffeermand how they are reflected in the

growth rates of the singular vectors.

Firstly, we consider the tilt of the potential vorticity fiehssociated with the singular vectors. Fig-
ure 3.6A (blue line) shows the tilt of the leading singulactee for each zonal wavenumber. For
reference the black dotted line shows the Orr initial tiltl dine black dashed line shows the opti-
mal initial tilt. The slight reduction in the optimal and Cat high wavenumbers occurs because
the numerical phase speed (see Section 3.2.2) was usedutatalthese tilts. At low wavenum-
bers, the initial tilt of the singular vectors is much largiean the optimal tilt, but asymptotes to

the optimal tilt as the wavenumber increases. To underdtameffect of the initial tilt on the
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Figure 3.5 The leading three right and let2/ singular vectors, for wavenumber index= 7.

A and B first right and left singular vector respectively. Gldb second right and left singular

vector respectively. E and F third right and left singularcte respectively.
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amplification, Figure 3.6B shows the amplification of thegsilar vectors (singular values, black
line) and the theoretical amplification of a plane-wave (@eting the effect of the homogeneous
solution, blue line) with the same initial tilt as the singulector. For reference the black dashed
and dotted lines show the theoretical plane-wave ampiificdor the optimal and Orr initial tilts
respectively. Several things are noticeable from in Figu6B. Firstly, the amplification of all
the singular vectors (solid black line) is less than the mmaxh amplification implied by the op-
timal initial tilt (dashed black line). Since the singulagctor amplification is less than that of
the optimal plane-wave it may be inferred that untilting ikess effective growth mechanism in
the presence of rigid upper and lower boundaries than infaritendomain. Furthermore, since
the discrepancy is greater for small wavenumbers than hagremumbers, it is possible that the
reduction in plane-wave amplification due to the homogesanlution gets smaller as the space
between the steering level increases and the interactittveba the interior potential vorticity
and the homogeneous components of the solution decredsiehypothesis is partially born out
by the fact that the initial tilt of the singular vectors terd that of the optimal plane-wave as the

wavenumber increases, suggesting that untilting is majiof in the amplification.

Further evidence can be gained by considering the disiibbaif streamfunction amplitude in the
vertical at initial (right singular vector) and final (lefogular vector) time. Figures 3.7A and 3.7B
show the vertical distribution of streamfunction meanasgd amplitude (y-axis) for the leading
singular vectors of wave-indices one to ten (x-axis). Naldy, at initial time, the amplitude is
largest in the central region of the domain for all wavenurabdt final time, however, the long
wave singular vectors have amplitude distributed fairlgrdy throughout the domain, whereas
for the shortest wavelengths the final time amplitude i$ stihcentrated in the centre of the

domain. Figure 3.7C shows the potential vorticity squaregbldude for the leading singular
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A B
Figure 3.6 A: blue line shows the initial tilt (y-axis) of the potentiarticity field associated with

the first singular vectors against zonal wavenumber indexx{%). B: black solid line shows the
leading singular values (y-axis) as a function of zonal wendex (x-axis); the blue solid line
shows the values obtained by substituting the singulaoveaitial tilt into the plane-wave am-
plification Equation (3.9). In both A and B, the dashed andatblines indicate values associated

with the optimal and Orr initial tilts, respectively.
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vector as a function of height and zonal wavenumber. Foreate the blue dashed and solid lines
show the optimal masking height for the upper and lower batied respectively. The optimal
masking height is calculated using Equation (3.12). As whthinitial streamfunction field, the
potential vorticity field has maximum amplitude in the cendf the domain. For all wavenumbers
the optimal masking height does not lie in regions where @dgected that the masking of the
normal modes by continuum modes will be large; in fact forltdveest wavenumbers the optimal
masking height lies outside of the domain. Since the optimasking height does not lie in
regions associated with potentially large masking of thenad modes by the continuum modes,
it may be inferred that modal masking is not the dominant #moation mechanism; that is not to
say that modal masking does not occur, but merely that ik elfas not reached its full potential.
The fact that for small wavelengths the initial and final aitodle are both concentrated in the
centre in the domain indicates that the amplification is a@t@d by untilting of plane-waves
with high zonal wavenumbers; i.e. the amplification occuarthe locality of the of the potential

vorticity waves rather than on the boundaries.

We have already seen that for 'pure’ untilting plane-waxvhs, condition for orthogonality im-
plies that the plane-waves orthogonal to the optimally &yipy plane-wave will achieve larger
amplification for small zonal wavelengths than for large.sée if this property is also reflected
in the singular vectors we shall now consider the tilt of theyslar vectors other than the first
singular vector. Figure 3.8A shows the initial tilts (y gxid the first ten (right) singular vectors
(x axis) for different zonal wavenumbers. For ease of vignnly wave-indices: = 1,3,5,7,9
(purple, light blue, red, green, dark blue respectively stnown. As would be expected from
the orthogonality condition for plane-waves the tilt of thiegular vectors varies more rapidly

with singular vector index for low wavenumbers than for higvenumbers. Figure 3.8B (blue
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Figure 3.7 A: Streamfunction squared amplitude as a function of hefglaixis), for the first right
singular vectors of differing wavenumbers (x-axis showgamamber index); The black solid and
dashed lines show the lower and upper boundary steeringslegspectively. B: Same as A, but
for left singular vectors. C: Same as A, but for potentialtiity, blue solid and dashed lines

show the optimal masking height for the lower and upper baondteering levels respectively.
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line) shows the mean rate of increase in the initial tilt wsthgular vector index as a function
of wavenumber. For reference the black line in Figure 3.8@8\shthe difference in tilt between

orthogonal plane-waves implied by Equation (3.11). It isceable in Figure 3.8B that these two
lines are closer together for high wavenumbers than for tmicating again that the behaviour of
singular vectors appears to be much closer to that of plamesvat high wavenumbers than low
wavenumbers. Since the initial tilt of the singular vecteaisies less rapidly with singular vector
index for high zonal wavenumbers, it would be expected thag, to the link between initial tilt

and amplification, the singular values also vary less rgpidb see if this is the case, we con-
sidered the normalised ‘additive’ amplification of the sifeg vectors. The normalised additive

amplification is defined

[Lvil| = [loill _ os =1
[Loi]| = [Joa]] o1 =1

(3.13)

, and can be used to indicate the rapidity of descent of tligiEnvalue spectrum from the largest
singular valug(o; — 1)/(o1 — 1) = 1 to neutrality(o; — 1)/(o1 — 1) = 0. Figure 3.9A shows
‘additive’ amplification of thel2h singular vectors, as a function of singular vector index, fo
each zonal wavenumber (for reference Figure 3.10 showsthelaingular values). From Figure
3.9A it is clear that the magnitude singular values decayfiagidly at higher wavenumbers than
at lower wavenumbers. As an example the blue line of Figu®& 3hows the singular values
for n = 7 and the black line shows amplification inferred by substituthe initial tilts of the
singular vectors into the plane-wave amplification Equa(®.9). There is a striking similarity
in the shape of the black and blue lines in Figure 3.9B indigathat the reduction in singular

values with increasing” is due to the increasing initial tilt.

88




Chapter 3 The Singular Vectors of The 2D Eady model

— singular vector

60r | — n=1
— n=3 — plane wave

50[| — n=5

— n=7

Zo 407 | — n=9

[=)

o 301

-

f

a

Figure 3.8 A: Variation of initial tilt (y-axis) of thel2h singular vectors, with singular vector
index (x-axis); each line corresponds to a different zonal@number. B: The blue line show
the variation of the rate of change with respect to singulacter index (y-axis), with varying

wavenumber (a-axis); i.e. the blue line shows the gradiehtse lines in A; the black line shows

the value inferred from the condition for orthogonality fdane-waves Equation (3.11).
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Figure 3.9 A: The normalised additive amplification of the singular tees, as a function of
singular value index, for d2h integration. Each line represents a different zonal waveber.
B: Black line shows the singular values for the firsttes: 7 singular vectors; blue line shows the
amplification inferred by substituting the initial tilts ¢ie singular vectors into the plane-wave

amplification Equation (3.9).
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Figure 3.10 The singular values for th&2h singular vectors; each line corresponds to a different

wavenumber. For ease of viewing only the- 1, 3, 5, 7 and9 wavenumbers are shown.

3.4.3 48h Singular Vectors

Figures 3.11A to 3.11F show the first three initial (rightgddmal (left) » = 7 singular vectors

for the 48h integration. The structural pattern is somewhat similathit of thel12h singular
vectors. The first singular vector having one plane-wawvectire, the second two plane-wave
structures etc. Despite their similarities there are tiffiee in the vertical structures of the two
sets of singular vectors. From an untilting perspectiventn difference lies in the increased tilt
of the singular vectors. For th&h singular vectors, modal masking has a much more significant

effect on the structure of the singular vectors.

Unlike the 12h singular vectors, for thé8h singular vectors modal masking has become an
important growth mechanism, causing significant diffeesnisetween the vertical structure of the
12h and48h singular vectors. Although the singular vectors still halked structure, tilting alone
cannot be used to explain the amplification. To see this Eg)8r12A and 3.12B show the initial

tilt and amplification of the leading singular vectors of leaonal wavenumber. As in Figures
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Figure 3.11 The leading three right and lefi8/ singular vectors, for wavenumber index= 7.

A and B first right and left singular vector respectively. Gldb second right and left singular

vector respectively. E and F third right and left singularcte respectively.
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3.6A and 3.6B the black dashed and dotted lines give theatdiit and amplification values for
the optimal initial tilt and the Orr initial tilt respectil)e Since for the high wavenumbers the
first singular vectors have two distinct tilted regions wdliffering tilts there are two blue lines
plotted: the sold blue line refers to the tilt of the potehtiarticity in the centre of the domain
and the dash-dot line refers to the tilt of the maxima neaimggtmasking height. Looking first
at Figure 3.12A it is noticeable that the initial tilts of teimgular vectors both in the centre and at
the optimal masking height (blue lines) are significantlyalier than that implied by the optimal
and Orr initial tilts. In Figure 3.12B the blue lines dendbe theoretical amplification obtained
by plane waves with same initial tilts as the singular vextomhe black solid line of Figure
3.12B gives the actual amplification achieved by the simguégtors; i.e. the black solid line
shows singular values. It is immediately apparent that thplification of the singular vectors
far exceeds that suggested by their initial tilts. Howetvenust be emphasised that this does not
imply that untilting makes no contribution to the overall@ification of the first singular vectors.
After-all there is still a relatively large amplitude tittestructure in the centre of the domain which
can have little impact on the evolution at the boundaries.atan be said however is that the
untilting mechanism no longer has as significant an impathefeading singular vector structure

as was the case for tHeh singular vectors.

Figure 3.13 shows the vertical distribution of potentiattigity squared amplitude as a function
of wavenumber for the leading singular vectors. The blue $hows the optimal masking height
for upper and lower steering levels. In contrast to bk integration the optimal masking height
for wavenumbers below the short-wave cutoff lies in theargvhich may lead to a large masking
effect. For the first singular vectors below the short-waweit the potential vorticity has maxima

just below the upper boundary optimal masking height. Feldlwer boundary the potential vor-
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Figure 3.12 As in Figure 3.6, but for thé8hsingular vectors. A: blue line shows the initial tilt
(y-axis) of the potential vorticity field associated wittetfirst singular vectors against zonal
wavenumber index (x-axis); the solid blue line shows thdrtithe centre of the domain, the
dashed blue line shows the tilt at the height the potentiaicity is maximised. B: black solid
line shows the leading singular values (y-axis) as a fumctid zonal wave-index (x-axis); the
blue solid line shows the values obtained by substitutimgsihgular vector initial tilt into the

plane-wave amplification Equation (3.9). In both A and B, dashed and doted lines indicate

values associated with the optimal and Orr initial tiltsspectively.
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ticity maxima lies just above the optimal masking heighteTihk between modal masking and
concentrations of Eady model singular vector potentiatieity near the steering level has been
discussed previously by Morgan and Chen (2002). By conbasYries and Opsteegh (2005)
stress the importance of neutral mode resonance since titethfit the singular vector potential
vorticity is always maximised nearer the steering levehttiee optimal masking height. What is
evident from the work presented here is that the importaficecnlal masking is dependent on
the relative sizes of the spatial scales and integratiogtfesnconsidered. For example the poten-
tial vorticity structure of the leading2h singular vectors (Figure 3.7C) does not have maxima
near the optimal masking height. This lack of maxima is lattable to the fact that the optimal
masking height lies too far from the steering level for thiexdoe significant projection of the
continuum modes associated with potential vorticity at tieight onto the normal modes. The
lack of such potential vorticity maxima does not mean thatlaianasking does not occur, only
that its effects are not large enough to cause significarititien of the leading singular vector’s
structure from that of untilting plane-waves concentratetthe centre of the domain. By contrast,
the 48h integration is long enough that the optimal masking heigdg $ufficiently close to the
steering level for the effects of modal masking on the legdingular vectors to be large. It must
be pointed out that the optimal masking height is dependefitoth time and wavenumber. The
fact that strong effects of modal masking on leading singudator structure are not seen for the
12h integration is in part attributable to the fact that onlylssdarger tha®00km are contained

in the spectrum. For smaller scales the optimal maskinghheigll be (theoretically) closer to

the steering level and modal masking may be significant emeshort integration lengths.

Figures 3.14A and 3.14B show the normalised additive amptifin of the leading ten singular

vectors and the first twenty-five singular values for #8& integration, respectively. For ease
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Figure 3.13 The vertical distribution of potential vorticity squareshplitude of the first singular
48h singular vectors. The y-axis shows height, the x-axis stmmmal wavenumber index. The

black and blue lines show the steering level and optimal mgdkeights respectively.

of viewing only then = 1, n = 3, n = 5, n = 7 andn = 9 singular values are shown in
Figure 3.14B. Several things are evident from these figufesstly, it can be seen in Figure
3.14A that the magnitude of the singular values descendsdgidly at high wavenumbers than
low wavenumbers, as was the case for @k singular values (although the behaviour is slightly
more complex for wavenumbers smaller than the short-wata#fatalue). However, from Figure
3.14B it can be seen that, unlike thh integration, the magnitude of the leading singular value
is not largest in the smallest scales. There are two possitgianations for this change in the
dependence of optimal amplification on zonal scale. Fithilymay be attributable to the limited
vertical resolution of the model. Essentially since the gldths limited vertical resolution the
resolvable tilts are also limited and for small zonal wavabars the limitations on tilt are more
severe; Mukougawa and lkeda (1994). The fact that the optimgplification is lower at the
smallest scales may be attributable to a reduction in thdificagion attributable to the untilting
mechanism. A second explanation for this difference betvwaggimal amplification over a2ha

and 48h integration is the variation in the structure of the contimuand normal modes with
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—n=1
—n=3
—n=5
—n=7| |
—n=9

20 25

A B

Figure 3.14 A: The normalised additive amplification of the singular tees, as a function of

singular value index, for d2h integration. Each line represents a different zonal waveber.

B: The48h singular values. Each line corresponds to a different zavavenumber.

zonal wavenumber. For high wavenumbers the normal andrntanti modes are more confined
in the vertical and therefore interact in a smaller regiop.cBntrast at lower wavenumbers there
structure is more 'spread out’ in the vertical so interactroa larger part of the model domain.
The limitation of the interaction at smaller scales to a $enaegion of the domain may also lead
to a limitation in the maximum amplification. Which, if eithef these explanations is correct
will not be answered in the present work. What can be said hemis that the difference in
optimal amplification between the different wavenumbepa(afrom the lowest) is small relative
the magnitude of the amplification. Furthermore it shallé&ersin the next chapter, that due to the
less rapid decent of the singular values associated with soade singular vectors the cumulative

effect of all the singular vectors is still greater at snradieales.

To gain further insight into thé8Ah growing singular vectors as a whole we shall look more closel

at then = 7 singular vectors. Figures 3.15A and 3.15B show the streaeiiftn squared ampli-
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tude of the first ten initial (right) and final (left) singulaectors respectively. In Figure 3.15B the
singular vectors have been weighted by the singular valSeseral things are noticeable from
Figures 3.15A and 3.15B. Firstly the leading few singulactues are associated with a transfer
of amplitude from below the steering level to the upper amgeloboundaries. By contrast the
streamfunction amplitude of the lower order singular vesie similarly distributed throughout

the domain at both initial and final time. Whilst the leadimgvfsingular vectors have large am-
plitude maxima in the region just below the steering level ltwer order singular vectors show
a slight weakening of amplitude in this region relative te tlest of the domain. For reference
Figure 3.15C shows the potential vorticity squared amgéitun Figure 3.15C it can also be seen
that whilst the leading few singular vectors have large i€ vorticity amplitude in the region

associated with unmasking effects the lower order singidators have a weakening of potential
vorticity in the 'unmasking region’. This difference sttupe in the unmasking region of the lead-
ing few and lower order singular suggests that the modal mg&lkmasking mechanism leads

to amplification in only the few leading singular vectors.

Figure 3.16A shows the initial tilts of the first ten = 7 singular vectors. The 'behaviour’ of
the tilts differs from that of thé2h singular vectors in that the tilts do not increase linearithw
the initial tilt of the first singular vector being close taetbptimal initial tilt. The tilts of the first
two singular vectors are similar and significantly smallert the optimal initial tilt. After the
first two singular vectors the initial tilt increases linawith at a rate similar £ 0.8 fo/Np) to
the 12h, untilting dominated, singular vectors. Figure 3.16B shdhe singular values and the
value obtained from substituting the associated initi tif the singular vectors into the untilting
amplification equation. For the leading few singular vestitre singular values differ radically

from the amplification inferred from the untilting mechanisFor the lower order singular vectors
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Figure 3.15 A: The streamfunction squared-amplitude as a function @ftidy-axis) for the first
tenn = 7 right singular vectors. B: The streamfunction squared-hbimge as a function of height
(y-axis) for the first tem = 7 left singular vectors, weighted by singular value squar€dThe
potential vorticity squared-amplitude as a function ofdiei(y-axis) for the first tem = 7 right
singular vectors; blue and black lines show the locationthefoptimal masking height and the

steering level respectively.
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Figure 3.16 A: The initial tilts (y-axis) of thel8h n = 7 singular vectors; x-axis shows the singular
vector index; the dotted and dashed black lines show the faragtimal initial tilts respectively.
B: The black line shows thé8h n = 7 singular values, the blue line shows the amplification
implied by substituting the initial tilts of the singularaters into the plane-wave amplification

Equation (3.9).

the behaviour is qualitatively more similar to that suggddby the untilting mechanism. The
fact that the lower order singular vectors do not lead tordgprtionately large amplification
on the boundaries and that aside from the leading few singeletors the initial tilt follows a
similar pattern to that of th&2h singular vectors suggests that modal unmasking does noapla

significant role in any but the leading few singular vectors.

3.5 Summary

In this chapter we have examined the singular vectors of thE&dy model. Roughly speaking
we can infer the existence of two dynamical regimes for dargwectors. For short integration

lengths the untilting mechanism dominates the amplificatior the intermediate integration
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lengths, the modal unmasking mechanism is the dominanecaiuamplification. In the next
chapter we shall discuss the implications of these two dycelmegimes to singular vector tar-

geting, but first we shall summarise the main charactesisti¢he two regimes.

In the untilting regime, the properties of the singular vestmay be summarised thus. The max-
imum amplification occurs at the shortest wavelengths. #atthlly, the rate with which the
amplification decreases with increasing singular vectdexnis slower at smaller zonal wave-
lengths. The net result of this is that the ‘average’ amglifan of smaller zonal scales is greater
than longer scales. For the untilting mechanism both th&lrand final amplitudes tend to con-

centrated in the central vertical levels of the domain.

During the modal unmasking regime, the maximum amplificaitonot necessarily achieved by
the smallest zonal wavenumber. For singular vectors whgblify via modal unmasking the ini-
tial amplitude is concentrated near the steering level aadinal amplitude is concentrated on the
boundaries. The transition from an untilting to a modal magkegime occurs when the integra-
tion length is sufficient for a phase change to occur in the relative phases of the normatsnod
and the continuum modes near the steering level. This rmeint implies that modal unmasking
will become significant more rapidly at small zonal scalemntht large zonal scales. However,
since the modal masking regime relies on the normal modeanitot explain the growth of more
than a few singular vectors. Consequently even though maatalasking is significant in de-
termining the structure of the leading singular vectorsjraduthe modal unmasking regime the

untilting mechanism is still important to the singular v@camplification as a whole.
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CHAPTER 4

Identification of the location of greatest sensitivity usimg Singular

\Vectors

4.1 Introduction

In the last chapter we discussed the dynamics of the singatzors in the Eady model. In this

chapter we shall examine the relationship between thegelainvectors and the singular vector
targeting method of Buizza and Montani (1999). The methdBwizza and Montani (1999) uses
the singular vectors to identify regions which are deemedsgive’ to small changes in the at-
mospheric state. Essentially, these ’'sensitive regiorestlzose in which small perturbations in
the model state at an observation timg, are likely to grow into large perturbations within a
local 'verification region’ at a later 'verification timet,. In singular vector targeting, sensitivity

maps are produced. These sensitivity maps attribute narsemsitivity values to each geographic
location, and the observations are targeted to regions inhwhese numeric sensitivity values
are large. The sensitivity maps are produced in 'plan viewirbegrating the sensitivity in the

vertical, to attribute a sensitivity value to each latittddegitude location. In the present chapter,
as well as looking at the vertically integrated sensitjvitye shall look at the zonally integrated
sensitivity and sensitivity maps produced for the zonadieand spectral-height planes; i.e. at-
tributing each longitude-height location and each zonalemamber-height location a sensitivity

value. Whilst singular vectors themselves have been ceresidin vertical cross-section [e.g.
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Hoskins et al. (2000), Montani and Thorpe (2002)], the libksveen these singular vectors and
the calculation of sensitive regions have not been exjylicinsidered. By considering the sensi-
tivity in these different phase-planes we shall infer salvpoints about the relationship between

the singular vector dynamics and the sensitivity in diffédecations.

Here it is worth re-iterating that the streamfunction norsedito compute the singular vectors
yields singular vectors identical to those that would reBoim a kinetic energy norm; Kim and
Morgan (2002). Since the streamfunction and kinetic enamgyns give rise to identical singular
vectors all results in this chapter are consistent witregithhoice of norm; essentially by replacing
the word streamfunction with the word velocity throughdwe thapter one can read the equivalent
analysis for kinetic energy. Since the structure of totalrgy and kinetic energy singular vectors
are found to be very similar in both the Eady model [Kim and §&or (2002)] and more complex
models [Palmer et al. (1998)], it can be inferred that theastrfunction based sensitivity maps
considered in this chapter are consistent (in terms of thenhwvith the total energy singular

vectors commonly employed in singular vector targeting.

As in the previous chapter, we shall constrain our discassio only al2h and 48h integra-
tion. We shall consider first sensitivity calculated for tien-locally projected singular vectors
discussed in the previous chapter. We shall then turn oentidn to sensitivity calculated for a
local ‘verification region’, using locally projected singu vectors. We shall see that the differ-
ence in the dominant dynamical mechanisms of these tworatiegs leads to differences in the
distribution of ‘sensitivity’ at the initial time. For theam-locally projected singular vectors, these
difference manifest themselves in the vertical distrimutof sensitivity. For the 2h integration
which is dominated by untilting, the sensitivity is maximdsin the central vertical levels of the

domain. By contrast, for the modal unmasking dominai®dintegration, the sensitivity is max-
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imised in two peaks close to the upper and lower boundaryistelevels. In both cases however
the sensitivity remains greatest at shorter wavelengtbsthe locally projected singular vectors
we shall see that the transition from the untilting regiméntat modal unmasking regime is also

associated with changes in the zonal distribution of seitgit

4.2 Sensitivity based targeting function

The use of singular vectors in targeting has usually beeivated from the perspective of sensi-
tivity or instability of the dynamical model in a particuleegion. The motivation being that, by
correcting the initial conditions in the region in which thgbsequent forecast is most sensitive to
random excitation, it is expected that the forecast errdirbvei maximally reduced. To be more
explicit the observations are deployed in regions whers @dpected that randomly perturbing
the initial conditions will cause the greatest differenegvieen the 'perturbed’ and 'unperturbed’
forecasts. For clarity, the term random perturbation is ttintext refers to a vector who's ele-
ments are drawn from a symmetric statistical distributiothwero mean, and varianee In this
section, we shall introduce a useful version of the 'typicaplementation of singular vector tar-
geting which will be applied to the Eady singular vectors poted in the previous chapter. Here
we use the word 'typical’ since the implementation of 'silagwector targeting’ varies somewhat

between publications.

Given a localised random perturbatidh,dx;, to the model state &, we define the evolved

perturbation to be
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dx; is a random vector whose elements are drawn from a zero meanesyic statistical distri-
bution with variancey. The vectorI}dx; has random elements in the region defined by the local
projection7; and is zero outside this region. The evolved perturbadign(77) is defined as a
function of the local projectiod since it varies withl; althoughdx,; does not vary with’ .
With the above definitions the expected norm-squared amalglibf the perturbatioffzdx,(77)
is given by

Ny

€ (I Todxa(T)E,) =7 ) ofvi Thwy, (4.2)
i=1

wherev, ando; are thei*” right singular vector and singular valueﬁg% TQMEI% respectively.
Equation (4.2) is essentially a prediction of the respongbe region defined by, to randomly
perturbing the initial conditions in the region definedBy In singular vector targeting, the aim

is to identify the local projectiofl’; from some restricted set that maximises Equation (4.2). The
use of such an expression to define a region for supplemeobmgrvations can be motivated
by suggesting that, if the inner producttatused to define the singular value decomposition is
consistent with the initial condition errors, then Equati@.2) is a prediction of the expected
error variance in the regidh, att, that has its source i, att;; Palmer et al. (1998). The idea
being that by placing observations in the region for which| T20x, (T1)||%, | is maximised, the
reduction in the initial condition errors will lead to theegitest reduction in the forecast error

variance in the verification region.

The singular vector targeting found in publications sucBaigza and Montani (1999) and Leut-
becher etal. (2002) can be interpreted in terms of Equadi@).(In these typical implementations
of singular vector targetin@; is a projection onto all the grid points in the vertical columt a

particular latitude-longitude location. The targetingtheel is implemented by first calculating
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the values of Equation (4.2) for every such latitude-lamgdgt location to produce a 'plan-view’
map of the sensitivity. The targeting region is then defiredhtlude all latitude-longitude lo-
cations for which Equation (4.2) is greater than a certaaction of the maximum; Buizza and
Montani (1999). One point to note is that the targeting dbsdrby Buizza and Montani (1999)
and Leutbecher et al. (2002) does not conform precisely t@tap (4.2). For example in some
cases Buizza and Montani (1999) define a sum the absolutdétadgsl of the singular vectors in
the regionTy; and Leutbecher et al. (2002) sum over the elements singeatdors transformed
to 'total energy variables’ regardless of the inner prodisgtd in the singular vector computation.
Furthermore it must stated that whilst Equation (4.2) haseaipe mathematical interpretation, it
is not necessarily the case for the singular vector tagetinmplemented in publications such as
Buizza and Montani (1999) and Leutbecher et al. (2002). We lshosen to formulate the sin-
gular targeting method using Equation (4.2) because it lms@se mathematical meaning and

enables a clear interpretation of the results of the ide@dlexperiments contained in this work.

4.3 Sensitivity determined using non-locally-projectedisgular vec-

tors

4.3.1 12h integration

Firstly we consider the twelve hour integration. Figure ghbws a sensitivity map for the height
spectral phase plane. In order to produce this sensitivaty afl the singular vectors were included
in Equation (4.2). Several things are evident from Figude &irstly high zonal wavenumbers

have far greater sensitivity than low wavenumbers. This lmarseen more clearly in Figure
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Figure 4.1 The sensitivity plotted in the height-wavenumber phaseepltor thel2h integration.

4.2A which shows the sensitivity map integrated in the eatti This increased sensitivity in the
smallest zonal scales can be interpreted in terms of thelsingectors discussed in Chapter 3.4.2.
In terms of the singular vectors there are two contributiactdrs to the increased sensitivity at
small zonal scales. The first is that the amplification of th&noally amplifying singular vector
is larger for high wavenumbers than low wavenumbers. Thergkcontributing factor is that the
singular values decrease in amplitude less rapidly at smadnal scales. Both these points were

highlighted in the previous chapter.

The second thing that is evident in Figure 4.1 is that the mizdenost sensitive in the region
approximately bounded by the steering levels. Since thtarttie between the upper and lower
boundary steering levels increases with wavenumber, fr Wiavenumbers the sensitive area is
of greater vertical depth. Figure 4.2B shows the sengitagt a function of height. From Figure
4.2B it can be seen that the sensitivity is maximised in alyeariform region spanning the

central half of the domain.
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Figure 4.2 A: The sensitivity as a function of zonal wavenumber, fiR/aintegration (the integral
of Figure 4.1 with respect to height). B: The sensitivity asiaction of height (the integral of

Figure 4.1 with respect to n), for 8#h integration .

4.3.2 48h integration

Figure 4.3 shows the wavenumber-height sensitivity maphen8h integration. The effects of
modal masking on Figure 4.3 are clear. The fact that the thatyspeaks in the region just below
(above) the upper (lower) boundary steering levels can bdergtood in terms of the structure of
the leading singular vectors. Since the steering leveltteigries with wavenumber, the zonal
scale of perturbation to which the model is most sensitiveesavith height. The central vertical
levels are dominated by the intermediate scales, wherea®wrer and upper levels are domi-
nated by the small scales. Since the appearance of theseofifgégh sensitivity near the steering
level is associated with unmasking of the normal modes,eaetid of the integration period the
variance resides predominantly at the upper and lower motesl However it must be noted that
although the sensitivity is dominated by the modal unmagkiechanism, there is still significant
sensitivity to high wavenumber perturbations on the céneetical levels of the domain. This

sensitivity to high wavenumber perturbations in the cenfrthe domain indicates that untilting
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Figure 4.3 The sensitivity plotted in the height-wavenumber phaseelfor thed8# integration.

is still of significance. Whilst the sensitivity of the ceditrertical levels is peaked at the interme-
diate zonal scales, it must be noted that the cumulativeibatibn to the sensitivity in the centre
of the domain from the untilting of small scales is of simifaagnitude to that the intermediate

scales.

Figures 4.4A and 4.4B show the sensitivity as a function ofemamber and height respectively.
From Figure 4.4A one can see that the sensitivity is peakdldersmallest zonal scales. From
Figure 4.4B one can see that the result of the transition fabnuntilting regime to a modal
unmasking regime is the appearance of two distinct peakseivertical sensitivity distribution.
In the next section we shall see that for sensitivity comghutsing zonally localised singular
vectors, this change in vertical sensitivity distributioasults in a change in the zonal sensitivity

distribution.
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Figure 4.4 A: The sensitivity as a function of zonal wavenumber (thegiad of Figure 4.3 with
respect to height), for 484 integration. B: The sensitivity as a function of height (ihkegral of

Figure 4.3 with respect ta), for a 48h integration.

4.4 Sensitivity determined using locally projected singudr vectors

4.4.1 Singular value decomposition

Previously we have computed the singular value decompagiti the Eady model integral prop-
agator without any local projection operator. In this smttive shall be computing the singular
vectors with a final time local projection operator. Our mpimpose is to demonstrate the effect
of the local projection on the sensitivity measure discdssarlier in the present chapter. How-
ever, prior to this we shall define the mathematical formalis the singular value decomposition

and discuss briefly the character of the computed singulzpre

As with the non-locally projected singular vectors we shask the matrix,. € RY+*Ns to de-
note an the integral propagator of an initgald-point streamfunction field to the corresponding
final grid-point streamfunction field. The final time local projection is penied by the matrix

P e RN~*Ny |n addition to these two matrices, an additional initiahéi Fourier filter matrix
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F € R?2NexNy js used to prevent the inclusion of wavenumbers lower thas- 10. This addi-
tional matrix is necessary since the grid-point resolutbthe model is higher than that implied
by the spectral space spanned by the first ten wavenumbeiitst ¥k unprojected singular vec-
tors all contain a single zonal wavenumber, the locallygrtgd singular vectors are comprised of
multiple zonal wavenumbers. For the unprojected singudéwrerdecomposition the Fourier filter
matrix was also used, however it made no difference to thetsire the singular vectors, other
than to set the singular values associated with shortwageilsir vectors to zero. The locally pro-
jected singular vectors, however, have multiple zonal weawgbers in individual vectors. Since
the singular vectors contain multiple zonal wavenumbérs, structure of the singular vectors
differs from those computed without the Fourier filter. $iihg both the initial Fourier filter and

the final local projection singular value decompositiona$irmed

rank(PLFTF)
PLF'F= ) owuv]. (4.3)
i=1

Detailed discussion of the structure of the locally pragecsingular vectors will not be given. We
shall however summarise the basic properties here. Thepogj@ction matrix is used to define
the verification region. For all numerical experiments prgsd in this thesis the verification re-
gion shall be a region of zonal exteMZ/ f, and heightZ; i.e. a region of one Rossby radius
zonally which occupies the full height of the domain. Foerehce, Figure 4.5A shows the first
right locally projected singular vector for ti@h integration. The vertical black lines denote the
boundaries of the verification region. Figure 4.5B showsfitiseright locally projected singular
vector for the48h integration. From Figures 4.5A and 4.5B the effects of thalfiacal pro-
jection on the singular vector structure can be seen. Thditag of the singular vectors are

concentrated in a tilted region of similar width to the veafion region. The tilt of the region
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Figure 4.5 Examples of first right locally projected Eady model singulactors. Black vertical

lines denote the boundaries of the verification region12% integration. B:48h integration.

is larger for longer integration lengths. From a dynamiaaihpof view this is not particularly
surprising since, as was seen in the previous chapter,rémstunction field of the singular vec-
tors is strongly connected to the potential vorticity fieldue to the conservative advection of
the potential vorticity by the sheared mean zonal wind, ttetial vorticity perturbations in the
tilted region will be advected into the vicinity of the vedifition region by the end of the integra-
tion. Consequently the streamfunction field is also comaged in the vicinity of the verification
region at the end of the integration. Since for longer iraégn lengths the potential vorticity will
travel further over the integration, the tilt of the regi@larger. Another property of the locally
projected singular vectors that differs from that of the nafgxted singular vectors is that the lo-
cally projected singular vectors contain multiple zonal@mumbers. As an example Figure 4.6A
shows the streamfunction-squared amplitude of the firstt figh singular vector as a function

height and wavenumbers.
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Figure 4.6 A: The streamfunction squared-amplitude of the first rigitally projectedl2h sin-
gular vector. B: The sensitivity in the height-wavenumbeage plane computed from theh

locally projected singular vectors.

4.4.2 Invariance of the spectral-height phase-plane setisity, to zonal localisa-

tions

The local projection defined in the previous section loealienly the zonal coordinate, and not
the vertical coordinate. It has already been seen that ttadidation changes the structure of
the singular vectors. Despite the change in singular vesttacture, zonal localisation does not
alter the sensitivity of the model when viewed in the spédteaght phase plane. To illustrate
this point, Figure 4.6B shows the sensitivity computed fribim 124 locally projected singular
vectors plotted in the spectral-height phase plane. Cangp&igure 4.6B to the equivalent com-
puted with unprojected singular vectors (Figure 4.1) itpparent that the two are identical up
to a multiplicative constant. This multiplicative constamrelated to the zonal extent (measured
in grid-points) of the verification region, and is given By, /N,, where N, is the number of

gridpoints in the verification region.
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Since the locally projected singular vectors and non-lggadojected singular vectors produce
identical sensitivity patterns in the spectral-heightnplawe can infer that the dynamical proper-
ties of these two singular vector specasmwholeare identical, even if individually the singular
vectors differ in a appearance. Due to this similarity, wigensidering the dynamics from a
wave perspective, we may utilise the analysis of the dynalnpioperties of Eady model singular
vectors given in the previous chapter in discussions of émsisivity patterns generated by the
locally projected singular vectors. It should also be ndtext when considering the sensitivity
as a function of wavenumber, and as a function of height, émsigvity pattern obtained with

the locally projected singular vectors is also identicg {o a multiplicative constant) to those

obtained using the unprojected singular vectors showngares 4.2A and 4.2B respectively.

4.4.3 Introduction of height-zonal correlation by zonal lacalisation

In this section we shall look at the sensitivity computechgshe locally projected singular vectors
in zonal-height plane. Firstly we shall look at some of theegal properties of the sensitivity
patterns in the zonal-height plane. Figures 4.7A and 4.8Wshe zonal-height plane sensitivity
pattern, computed for B2k and48h integration respectively. For both integrations the d@isi
lies in a tilted region of width approximately equal to thedtti of the verification region. From
a potential vorticity dynamics perspective, the sensitagion lies in the region from which the
potential vorticity will have been advected into the vesfion region at the end of the integration.

In a sense one could say that the sensitivity is 'untilted@rde integration length.

As a result of the tilted structure of the sensitive regioifiedent zonal locations are colocated
with regions of sensitivity at different heights. For exdenfpooking at Figure 4.8A, one can

say that atc fo/NoH = 4 the sensitivity occurs at the central height of the domaiheneas at
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xfo/NoH = 2 the sensitivity occurs at/Z ~ 0.8. In this way we can attribute zonal variations
in sensitivity to vertical changes in the sensitivity, arehbe attribute the sensitivity at different
zonal locations to different growth mechanisms and zonalesc Here it is worth emphasising
that we use the term scale rather than wavelength/wavenusitiee by definition the variations
in sensitivity we are referring to must be constructed oftipld wavelengths. To illustrate this,
Figures 4.7B and 4.8B show the sensitivity as a function efat@oordinate for thd2h and
48h integrations respectively. For théh integration, there is a single peak corresponding to the
sensitive region at the central height of the domain. Thetfat the greatest sensitivity occurs
in the centre of the domain is attributable to the fact thaepiial vorticity unshielding is the
dominant growth mechanism for the singular vectors. Bymemttfor thei8h integration (Figure
4.8B) there are two peaks. These two peaks correspond teriséige regions near the upper and
lower boundary steering levels of the shortest wavelengthe two peaks are therefore associated
with the modal unmasking of the shortwave normal modes. &atgs explicitly Figure 4.9 shows
the sensitivity plotted with the shortwaves filtered outaikourier filter. Each line in Figure 4.9
gives the sensitivity calculated with the the scales smdtian wave index. filtered from the
singular vectors; for example the= 1 line contains only the longest wave, whereasrthe 10
line contains all ten wavenumbers and is identical to thatwhin Figure 4.8B. From Figure 4.9
it can be seen that the longest zonal wavelengths are ategbeiith sensitivity between the two
peaks in Figure 4.8B and the double peak does not appeathetimaller scales are added to the
sensitivity calculation. The implication is that the laoat of the peaks corresponds to a region
where the verification region forecast is highly sensitvehanges in the small scales close to
the upper and lower boundary steering level. Between thkspib@ forecast in the verification
region is less sensitive to changes in the small scaless linawever more sensitive to changes in

the large scales than at the peaks.
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10

Figure 4.7 A: The sensitivity in the height zonal plane computed udieg 2/ locally projected
singular vectors. B: The sensitivity as a function of theat@oordinate, computed using theh

locally projected singular vectors.

Another noticeable feature of Figure 4.9 is that the peakseimsitivity gradually separate as
smaller and smaller scales are added to the sensitivityledilon. This separation is attributable
to the fact that peak in sensitivity for each wavenumbemdessclose to the steering level. Since
the separation between the two steering levels increagbswaivenumber, so does the vertical
separation of the sensitivity peaks. Due to the tilted stmecof the sensitivity, these changes in
vertical separation also lead to changes in zonal separafibis behaviour marks a difference
between the untilting and modal unmasking regimes. Forittising regime, since the sensitivity

is maximum in roughly the central vertical levels, the zolwalation of greatest sensitivity is

roughly the same for all zonal scales. By contrast, the modalasking regime is characterised

by variations in the zonal location of greatest sensitiwith zonal scale.
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Figure 4.8 A: The sensitivity in the height zonal plane computed udiegl&h locally projected
singular vectors. B: The sensitivity as a function of theat@oordinate, computed using tH&h

locally projected singular vectors.

4.5 Summary

In this chapter we have considered the sensitivity baseglukin vector targeting function of
Buizza and Montani (1999) in the context of the Eady modeldiar vectors computed in the
previous chapter. In the next chapter we shall introducexsemsion to the singular vector tar-
geting method, that takes account of the data assimilatiooegs, and the dynamical evolution
of errors prior to the forecast initialisation tinhg Firstly, we shall summarise the findings of the

present chapter.

The difference between the dynamical regimes of the di#riand intermediatd8h integrations
leads to difference in the vertical distribution of sendiyi In the case of the short integration,
untilting is the dominant growth mechanism, and consedydiné¢ sensitivity is concentrated in

the central vertical levels of the domain. By contrast fa thtermediate integration the modal
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Figure 4.9 The sensitivity as a function of the zonal coordinate, cdetgpusing thel8h locally
projected singular vectors. The sensitivity is computdt thie small zonal wavenumbers filtered
out. Each line corresponds to a different level of filtering,for example, the = 1 line contains
only the longest zonal wavelength and the= 10 line contains all zonal wavelengths. N.B. the

n = 10 line is identical to Figure 4.8B.
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unmasking is the dominant growth mechanism, and consdgubetsensitivity is concentrated
in two peaks near the upper and lower boundary steeringsiefethe shortest resolved zonal

wavelengths.

When the sensitivity to initial perturbations of a zonalhcélised verification region is consid-

ered, the difference between the two dynamical regimeseo$iiort and intermediate integration
leads to differences in the zonal distribution of the sa@nsit These differences occur because
the sensitivity at a particular zonal location correspotudthe sensitivity of a small number of

vertical levels. Essentially this means that, when untiltis the dominant mechanism and the
sensitivity is greatest in the central vertical levels, femsitivity is greatest at the zonal loca-
tion whose sensitivity depends the sensitivity of the antertical levels. By contrast when the

modal unmasking regime is entered, the sensitivity is getait zonal locations whose sensitivity
depends the sensitivity of the vertical levels near to thgeujpnd lower boundary steering levels.
Consequently for the untilting regime there is a single pediereas, when the modal unmasking

regime is entered, this peak separates into two zonallyaegubpeaks.
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CHAPTER 5

A singular vector targeting method that introduces dynamic

estimates of the initial condition errors

In this chapter we shall define an A-optimal [Berliner et 40999)] targeting method which
utilises singular vectors to obtain a reduced rank premtictif the observation locations that will
be of greatest benefit to the accuracy of the subsequentafireRather than rely on the initial
normalising matrixty, (following Berliner et al. (1999)) we shall approximatestimitial con-

dition error statistics at time; by a transformation of a dynamically evolved backgroundrerr
covariance matrix. Unlike Berliner et al. (1999), howewee, shall define this transformation to
be consistent with the operational data assimilation systand not an ensemble Kalman filter.

This difference in choice of transformation, leads to a ifiiggntly different final result.

By assuming an operational Kalman Filter, Berliner et a®99) arrive at a targeting function
that models the response obtained if the operational dateniéetion were able to spread infor-
mation along the eigenvectors of the dynamically evolveckbeound error covariance matrix.
By contrast, in the analysis presented in this chapter, \a## ahsume that the data assimilation
system contains a pre-specified model of the background esxariance which is not generally
consistent with the estimated actual covariance matrixkidpthis assumption we shall define
a targeting function, the operation of which is summed up buydfion (5.18). The method es-
sentially finds the difference between the predicted faeeaor variance, with and without the

observations, allowing for the fact that observations nmaydase or decrease the forecast error.
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This work can be motivated by Bergot (2001), in which it isrdiduhat the impact of the targeted
observations is highly dependent on the quality of the bemkgd field. It is important therefore

that any targeting method should incorporate informatibaud the background errors. Bergot
(2001) also find that only in cases where the observations w@tocated with regions in which

the singular vectors used in targeting had non-negligibipldude, do they have an effect on the
forecast error. This requirement of collocation with thgioa spanned by the targeted singular
vectors indicates that observations should not be placédeuthis region. It is important to

note however that requiring observations to be collocatéd the targeted singular vectors is
not the same as requiring that observations be located &i¢atons where the singular vectors
have maximum amplitude; i.e. it is not a statement that thgusar vector method described
in the previous chapter is the best means of selecting ddis@nviocations. It is simply that

regions where the singular vectors have negligible ang#itare dynamically disconnected from
the verification region. Bergot (2001) also find that the effeness of targeted observations
depends on the data assimilation system. It is therefoetylithat consistency of the targeting

method with the operational data assimilation system iitant.

In this chapter we shall first outline the statistical foratidn of the targeting method. We shall
then consider how this targeting method may be approximasaty singular vectors. Then we
shall consider the means by which the targeting method mayauke consistent with a hypothet-
ical operational data assimilation system. In the finaliseaif this chapter we shall demonstrate
a simplified implementation of this targeting method in thelfz model, and discuss the connec-
tion between the target locations calculated and the dycsmanalysis of the contained in the

previous chapters.
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5.1 Basic formulation of a targeting method

In this section we define the basis for a targeting method. ofim the basis of the method we
make the assumption that the expected background errori@oga matrix at; evolves from
the identity matrix at an earlier timg, and that the error evolution from to ¢5 is linear. With
these assumptions a basic statistical formulation for &éingeting method follows in a similar
fashion to that of Berliner et al. (1999). There is one sigaiit difference between the statistical
formulation of Berliner et al. (1999) and that which we aulihere. This difference is that
whilst Berliner et al. (1999) make the assumption that thgeolations are assimilated using
an (extended) Kalman filter, we make no such assumption. eR#étlan use the Kalman filter
equations, we define a matrix which is assumed in some wayfmagjmate the gain matrix

(response function) of the operational data assimilatjtesn.

We shall start our discussion by defining the background eoeariance matrix at;. We make

the assumption that the background error covariance metttixis given by

By = ME;'M7, (5.1)

wherel is the linear integral propagator for the intery@to ¢, andEO_1 is a normalising matrix.
Assuming B; takes this form is equivalent to assuming that the backgtaemor covariance
matrix evolves from a uniform, non-covariant, zero-meastritiution (with respect to thé’,
inner product) at,; Berliner et al. (1999). Whilst we have defindd to be simply the linear
integral propagator, it is worth noting here thdtcould in theory incorporate additional periodic

transformations to represent analysis cycles occurrimgd®nt, andi;.

The second component required for the targeting method isanmof transforming the back-
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ground error covariance matrix &t into the analysis error covariance matrix due to tife

possible deployment of observations. For this purpose iiaalthe matrixG,, such that

A(Gy) = G,B1GY = G,ME; "M GY. (5.2)

The matrixG,, is some approximation to the gain matrix (response fungtdrthe data assimi-
lation system. The properties 6f, will be discussed in Section 5.3, but it is worth noting here
that in this definition ofA; we have pre-emptively assumed that the effects of observatirors

on the analysis errors are small enough to be neglected.

Finally we require a means of evolving the analysis erroadavice matrix at; to the covariance
matrix of forecast errors in the verification region defingdle local projection operatdf,, at

to. To produce this evolved covariance matrix we employ theimd} M, whereM is the linear
integral propagator for the interval to ¢. The locally projected forecast error covariances are

then given by

TyBy(Gy)Ty = ToMGyBIGEMTTy = ThoMG,MEy ' MTGEMT'Ty, (5.3)

where

By(G,) = MAL(Gp)MT (5.4)

is the predicted forecast error covariance matrices fair the p'* deployment of observations.

Having defined the expected background errors due tp'thdeployment of observations, the
next step is to define the metric by which the favourabilityhaf deployment may be determined.

For this purpose we use the A-optimal measure of the expdotedast error variance & as
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measured with the norm induced by the inner product. Following Berliner et al. (1999) we
note that the expected forecast error varianck & equal to the trace (sum of the elements on
the main diagonal) of the forecast error covariance nomadlbyEQ%. The expected reduction in
forecast error variance due to th# possible deployment of observationst ais then given by

the reduction in the trace of the background error covadanatrix; i.e.

1 1 1 1
E[|IT2es 1%, — | T2€o(Gp)||%, | = trace{ E2TyBo(I)To B2} — trace{ E2 Ty Bs(G,,) T2 E2 }
(5.5)
wheree,(G,,) ande, denote the vector of forecast errorstatobtained with thep!” possible

deployment of observations and with no observations, cisgedy, and
Bo(I) = MBM7T (5.6)

denotes the forecast error covariance matrixoatvhen no observations are takentati.e. if

G,=1.

Here we have written the background error variance as thectg@F»-norm-squared amplitude
to facilitate comparison with the singular vector targegteriterion given in Equation (4.2) of
Chapter 4. As we shall see latertif= ¢, (i.e. M = I) and if a particularly simple choice of the

form of G, is made, Equation (5.5) reduces to Equation (4.2).

Equation (5.5) defines the basis of the targeting methodetexndue to the high dimension of the
matrices involved, direct calculation 6f[| The, |7, — [|T2€,(Gp)l|%, | for a singleG, is compu-
tationally expensive. The computational expense of cating € [||The, |7, — | To€,(Gp)l|%, |
for multiple G, would be extreme. Evidently Equation (5.5) requires sigaift simplification

before it may be used in practical targeting applicationghé next section we discuss the reduc-
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tion of the dimension of the problem using singular vectansSection 5.3 we shall discuss the

properties of the matrikr,,.

5.2 Using singular vectors to reduce the rank of the targetig prob-

lem

In the previous section we defined the basis of our A-optirm@eting method. The method re-
quires several high dimensional matrix operations to biopmed recursively for different obser-
vational deployments. Such recursive calculations incuast computational expense, therefore
a means of reducing the ’size’ of the problem is required.hla section we shall demonstrate
how singular vectors may be used to approximate the dyn&ewcéution of the errors leading,

to a large reduction in the computational cost.

1 1
We shall start by substituting into the definitionfef 7> B2 (G),)T> E5 , the singular value decom-

position
1 _1
E3ToME, > =UXVT, (5.7)

whereU, V and ¥ are matrices containing the left and right singular vectord the singular

values respectively. With this substitutids (G,,) becomes
1 1 1 1
E3TyBy(Gy)ThE; = USVTER A1(G,)ERVEUT (5.8)

1 1
We are however not interested in computationigfl> B, (Gy,) T2 E5 . We are only interested in

1 1
calculation of the trace of/; 1> By (G)p)T>E5 . We can make use of the fact that the trace of a
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matrix is invariant to similarity transformations (GolubdaVan Loan (1983)) and write the trace

1 1
of E22 TQBQ(GP)TQEQQ as
1 1 1 1
trace{ E3 Ty Ba(Gp)ToE3 } = trace{SVTE2 Ay (G,)E; VE}. (5.9)

Here we have made use of the fact that sibices an orthogonal matrix (Golub and Van Loan
(1983)), U~! = UT, and hence pre and post multiplication byand U’ respectively is a
similarity transformation. Writing the trace as the sumioratover the diagonal elements of
EVTEI% Al(Gp)EI% V¥ and using index notation for the matrix multiplications|gie

NQ
1 1 1 1
trace{ B3 TyBa(Gp)ToE3} =Y [SVTE? A(G,)EE Vi,

N, N, N, ,  (5.10)
1 1
=3 =V B ALGy) B ik[VE k.
i=1 j=1 k=1
where the notatiofiA]; » denotes thg'” element of the:" column of the matrix4. Noting that
thei'® row (column) of SV (VX)is ;0! (0v,), we replace the summations oyeandk with
matrix vector multiplications yielding

1 1 " 1 1
trace{ B3 TyBy(Gyp)ThE3 } = > ojv] Ef Ay(Gp)Efv
=1

(5.11)

1 _1
wherer = rank{E; TobME, *}

The next step is to simplifyd; (G,). We start by noting that components 4f(G),) which lie

in the null-space (Golub and Van Loan (1983))1QfEéM make no contribution to the trace of
EQ% TQBQ(Gp)TgEQ%. Essentially this means that in regions which lie far fromaui@ 'dynamically
disconnected’ from the regidh; att;, can be removed from the search for the optimal observation

locations. We define the local projection operafgrto contain all the geographical locations
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which are to be included in the seardh. is defined such that
TyMG,T\M = ToMG,M, (5.12)

1 1
for all potentialG,, and consequently the trace bf 7> B> (G, )12 E; is unaffected by the pres-

ence ofly; i.e.

1 1 1 ~ ~ 1
trace{E3TyBy(Gp)ToE3} = trace{ E3TyMG,ME; ' MTGEMTTyMEZ Ty}

1 PN A A 1
= trace{ E} To,M G, MEy ' MTT\GEMTTyMEZ Ty}

(5.13)
With this in mind we define the singular value decomposition
.o . 1 "
EIT\ME,® = 64,0, (5.14)
j=1
N 01
where? = rank{T1E; M E * }.
Making use of the orthogonality of the right singular vestare may write
I o 1 7 7 7
EXTLME'MTToER =)0 656400 0,0 =Y 6704, (5.15)
j=1 k=1 j=1

1 1
Substituting the above into the traceBf T, B2 (G)) T2 E5 yields the expression

; b NN 22T B G B e aTE T B
trace{ B3 TyBy(Gy)ToE3 } = > Y oloiv] EEGE, *aa) Ey *GJEfv,.  (5.16)

i%j
i=1 j=1

Noting that this expression is the product of two identicaler products, we may write the trace
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1 1
of E22 TQBQ(GP)TQEQQ as

1
GpEy *@;)*. (5.17)

a1

1 1 T 7
trace{E3TyBy(Gp)TaE3 } = > > 0767 (v] E
i=1 j=1
Finally, using Equation (5.17), we may wrige[||Th€, |3, — IT2€5(G,) 1%, ] in terms of the sin-

gular vectors as
r T 1 1
€ [ITzeall, — 1 T2ea(Gy)llE,] = DY 0id} [(v?ap?—(v?EprEﬁaj)? . (5.18)

The ('viTﬁj)Q term comes about by noting that in the absence of obsergalign= I. By
rewriting in terms of the singular vectors we have reduceddbmputation expense to that of
r x 7 inner products for each possible deployment of observatibiowever the computational
expense will be reduced even further if Equation (5.18) immoted only approximately using
fewer thanr and+ singular vectors. By computing Equation (5.18) with fewegslar vectors

we also reduce significantly the initial expense of commuthre singular vectors.

We can interpret Equation (5.18) by considering the meanofgthe two terms in the square
bracket. The first term(viTaj)Q, is a measure of the projection of the errors in the back-
ground field onto the ‘growing phase-space’ of the forecastrelt is by reducing this projection
that the assimilation of observations is expected to reduedorecast error. The second term,
(U?Elé GpE;%ﬁj)2 is a measure of the projection of the analysis errors agsacigith thep'
deployment of observations onto the growing phase-spatieedrecast trajectory. If the first
term is larger than the second, then the Equation (5.18)siy@andp’” deployment of observa-
tions is expected to be beneficial to the forecast accuramyveésely, if the second term is larger,

then Equation (5.18) is negative and the additional obsiensare likely to be detrimental to the
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forecast accuracy. The idea that adding additional obsena data will be detrimental to the
forecast may seem a little counterintuitive, but if one é¢dais that reducing the errors idacal
region acts as a rotation of tighobal error structure in phase-space rather than a simple global
reduction in error amplitude, it makes more sense. As a exdmple one could consider simply
correcting the background error to the observation wittemyt smoothing. Whilst this simple
correction procedure may reduce the initial condition learaplitude, it is likely create a ‘jagged’
error structure which may lead to greater error amplificati@mn occurs in the uncorrected field. It
is the belief that the data assimilation process 'rotatesinitial condition errors towards smaller
scales that in part motivates the type of singular vectoetadbservation targeting described in
the previous chapter; Palmer et al. (1998). For our purpdsisspartly the possibility of obser-
vations causing 'unfavourable’ phase-space rotation efettnors that motivates both the desire
for G, to be an approximation to the gain matrix of the operatiorga ssimilation system, in
the evaluation of Equation (5.18). We shall show that thtsease in forecast error would not be
predictable if the targeting method assumed the existehea operational Kalman filter, as is
the case in methods such as the ensemble transform Kalneamfdthod. The desired properties

of G, will be discussed more fully in the next section.

5.3 Approximation of the data assimilation response

In the previous sections of the current chapter we proposeéthodology for observation tar-
geting, and demonstrated how the computational expendeeahethod may be reduced. One
component of the methodology is the maifiy, which is a transformation of the estimated back-

ground error covariance &t to the predicted analysis error covariance matri atue to thep”
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possible deployment of observations. We have so far saidlittée about the desired properties
of G, other than the fact it should approximate the response ofpeeational data assimilation
system. Bergot (2001) find that the efficiency of targetecenlaions depends on the assimila-
tion scheme, noting several cases where the assimilatitargéted observations by the 3D-Var
and 4D-Var schemes lead to significant differences in thaghan accuracy of the subsequent
forecast. Bergot (2001) find that in some cases assimilatiabservations with 4D-Var leads
to forecast improvement, whereas if 3D-Var is used, thardkgion of the same observations
degrades the accuracy of the subsequent forecast. Theirigrgeethodologies of Bishop and
Toth (1999) and Hamill and Snyder (2002a) define the targgbmnewhich would be beneficial
to forecast systems utilising ensemble Kalman filter bass@ralation systems. At present me-
teorological centres typically employ 3D-Var and 4D-Vasiaslation systems. The underlying
assumption of the existence of a Kalman filter may lead toatisdations in the expected forecast
correction obtained from a given deployment of observatidBuch mis-calculations have been
noted by Majumdar et al. (2001) who find the benefits of tadjeteservations are overestimated

by the Ensemble Transform Kalman Filter.

How G, should be defined so that it is consistent with the operdtidat assimilation scheme
is a complex question. This question is further complicdigdhe requirement that the gener-
ation of multipleG), and the subsequent calculation of the inner products in tifouéb.18) be

computationally inexpensive. We shall not attempt to tadhkis question in full within this the-

sis. We shall instead demonstrate an inexpen&lydor a simple 3D-Var assimilation system.
But prior to this we shall discuss some of the potential sinties and differences between the
effects of different assimilation schemes. We shall disdust the properties of the 3D-Var and

4D-Var assimilation schemes that are used operationallyeisther forecasting centres. We shall
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also discuss the Kalman Filter. Although the Kalman Fileenot used operationally, Kalman
Filter theory is of particular importance to the targetingthods such as the Ensemble Transform

Kalman Filter.

In the 3D-Var assimilation scheme all observations withprerspecified finite time period (as-
similation window) are assumed to have been made at a simght ip time. For example, if
we generate an analysis of the atmospheric state at thesanéiimet,, in 3D-Var we treat all
observations made within a few hourstgfas if they were made &f. The cost function

(x” -~ X“)TB’1 (xb - x“) + % (y—Hx)" R (y— Hx), (5.19)

which was introduced in Chaptet Is then minimised (usually approximately) using an iteeati
algorithm. In 3D-Var analysis schemes, the backgroundr ewwariances are usually modelled
as separable in the horizontal and vertical directiondy thié horizontal correlations assumed to
be homogeneous. The correlations between the errors eretiff variables and different hori-
zontal wavenumbers are often neglected. Due to the simypbithe assumed background error
statistics, the 3D-Var assimilation scheme is effectiaigd to the day to day variations in the ac-
curacy of the background field. In particular due to the hoemegty of the modelled background
error covariance 3D-Var 'spreads’ observational infoinraevenly in all directions regardless of

any asymmetries in the correlations in the background statistics.

The 4D-Var analysis scheme differs from the 3D-Var in thainadr integral propagator is in-
corporated into the definition of the forward model so thats replaced byHM(ta,to) where

M (tq,t,) is the linear integral propagator from the analysis timg,to the observation time,

t,. In the 4D-Var scheme the background error covariance xpd®; is usually contains simi-

For the definition in this chapter we have assumed that there@ison operator/forward model is linear
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lar approximations to those used in 3D-Var schemes. In 4DNh@wvever, the inclusion of the
linear integral propagator means that observational iné&dion is spread in a manner more con-
sistent with the current atmospheric flow. In particular ¢ the iterative solution methods used
to approximately minimise the cost function, 4D-Var prefaially adjusts the background field
along the leading singular singular vectors of the maktixt,, t,). Essentially this means that
the change in the background field induced by observatioegpected to effect the structures
which amplify the most over the time interval to ¢,. This picture is not so clear-cut, however,
since the degree to which the current dynamics affect thesaslimg of observational information
is dependent on the time intervglto ¢,. If the observations are made close to the analysis time
then the influence of the dynamics will be much lower thanef dbservations are made far from
the analysis time. For the former case, that of observatieirsgy made close t,, the differences
between the response of a 4D-Var and a 3D-Var assimilatibarse with identicalB matrices

may be small.

In contrast to the 3D-Var and 4D-Var assimilation schemies,Kalman Filter scheme does not
make assumptions of homogeneity of thanatrix. In the Kalman Filter scheme th&matrix is
continually evolved using the linearised dynamical mo@le to this continuous evolution of the
error statistics the Kalman Filter assimilation schemesaccount of large scale inhomogeneous
statistical correlations in the background errors whiatuaaulate over time intervals longer than
the analysis windows used in 3D-Var and 4D-Var. For exantpadalman Filter may spread in-
formation along dynamical features such as fronts and ogsloMajumdar et al. (2001). 3D-Var
and 4D-Var are only aware of these long range correlatioss imuch as they have been incorpo-
rated into the homogeneous model background error cowariaratrix. Whilst the Kalman Filter

assimilation scheme is at present too expensive to be usgzbnational weather forecasting it is
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still relevant to targeted observations. This relevanciiesto the fact that targeting methods such
as the Ensemble Transform Kalman Filter and the ensembleotchef Hamill and Snyder (2002a)
predict the forecast correction that would be obtainedeafdbservations were assimilated using
Kalman Filter based data assimilation schemes. Essgntiadise Kalman filter based methods
have the underlying assumption that the data assimilattberse is 'aware’ of long range dy-
namical correlations specific to the current flow regime, nvimeactual fact the operational data
assimilation scheme may well be unable to account of sudhmrirdtion. It is important to note
here that the fact the data assimilation scheme does niseutiformation about long range dy-
namical error correlations does not mean such correlatiomd exist, merely that they do not
effect the 'spreading’ of observational information dgrithe assimilation process. A targeting
method that does not make use of Kalman Filter theory magtbes give a more accurate pic-
ture of the response to the placement of observations inendacation. A targeting method
that assumes a 3D-Var or 4D-Var assimilation system mayajivere accurate prediction of the
optimal observation locations. Consistency with the 3D-&ssimilation scheme may be more
easily achievable than consistency with the more comple¥dDscheme, but as has been noted
when the observation time is close to the analysis time theseassimilation systems may be
relatively similar in their response. In the remainder o gection we shall define@, which is

both consistent with a simple 3D-Var type assimilation sceé@and computationally inexpensive.

We shall commence our definition 6, by defining the analysisy?, as the zero point of the
Jacobian (first derivative with respect 9 of the cost function Equation (5.19). Taking the first

derivative and equating to zero yields

9 1 A
i ) =587 (X = x*) + gH R (v~ Hx,) =0 (5.20)
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We define the analysis, observation and background errdrs tioe vector deviations® = x* —
x% € = Hx! —y ande® = x* — x® from the an imaginary perfect analysis (or 'truthg}.
Substituting these error definitions into Equation (5.2@) eearranging, we can write the analysis

errors

€ =B 1+H'R'H) Y B+ H' R 1e). (5.21)

From the above equation, we can see that the analysis ersoteeasum of matrix transforma-
tions of the background and observation errors. If the alag@ns are to be taken in regions with
large background errors, it is reasonable to assume thatntipditude of the background errors
will be larger than the observation errors, so we may simiifuation (5.21) by letting® = 0.
The effect of observation errors on the target selectiordcbe included by adding an additional
term to the target selection Equation (5.18), however, éorcesion, discussion of this term will
not be included in this thesis. With this small observatiomreapproximation, the analysis er-
rors are simply defined as a matrix transformation of the pamzknd errors. We can define the

transformation associated with th€ deployment of observations as

Gp= (B '+H R, 'H,)"'B™", (5.22)

whereH,, andR, are the observation operator and observation error cov@imatrix associated
with the p** deployment of observations. It is worth reminding the readblat the matrices%;1
and B~! are the error covariances assumed by the data assimilatitens and are not neces-

sarily the same as the 'actual’ error covariance. Usingserman-Woodbury-Morrison formula
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(Golub and Van Loan (1983)) we may rewritg, as

_1 _1 _1 _1
Gy, =(B—-BHIR,*(I+R,*H,BH''R,?)"'R,?>H,B)B™!
1 1 1 1
=I1-BH'R,?(I+ R, ?H,BH'R,?)"'R,*H,
p P P p p =P P P (5.23)
=1-BH,(R+ H,BH,) 'H,

—1-ql,

where

G, = BH, (R+ H,BH, ) " H,. (5.24)

Substituting the above definition @f,, into the targeting criteria given in Equation (5.18) and

rearranging, yields

& [IT2e; /%, — 1T2ex(Gp) I, ] =

(5.25)
If N, =randN, = #, then this is exactly equal to Equation (5.18), but if fewsartN, = r
and N, = 7 singular vectors are used then the two equations are onhpsipgately equal. After
the initial outlay of the singular vector computation, tleerputation of the target region requires
a singlecomputation of theV, x N; inner productsp; 4, plus the computation aV, x Nj
inner productSp;fE‘%G;E%ﬁj, for every observational deployment to be tested. The esgpen
of the inner productsva*%G;E%ﬁj may be significantly reduced by exploiting the structure of
the matrix products which defir(é;. For example the matriceBHpT andeTHp have the same
number of columns as there are observations. The numbemeter elements in each column

will depend on the manner in which the observational infdramais spread by the data assimila-
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tion system and the relationship between the observatiotishee control vector. In the simplest
case, if the control and observed variable are identicaltl@dbackground and observation error
covariance matrices are diagonal, th@phave only one non-zero element per observation. By
contrast, if the background and observation error coveeianatrices are dense and the control
variable has a complicated relationship with the obsereille therG, will have a large num-
ber of non-zero elements. The complexityf determines the computational expense incurred
when testing each possible observational deployment. inider &), the greater number of ob-
servational deployments that can be tested in a given timiedeln the next Section we shall

define a simple data assimilation system to be used in the iadg| and the correspondirdg,.

5.4 Implementation of the targeting method in the Eady model

5.4.1 A simple definition ofG,

In this section we shall define a simple data assimilatiotesydor the Eady model. We shall
then show the form of the correspondi6fy based on the assumption that the observation errors
are small. We shall start by defining the control vector ferdlata assimilation system. We shall

define the control vector to be

X =P = Fip, (5.26)

whereF is the reduced rank Fourier transform introduced in the @ andy is the spectral-
space representation of the streamfunction field. Hereasldhbe stressed that defining the
control vector in this way restricts the analysis increraeiat only contain the first ten zonal

wavenumbers. We shall further assume that all observatimnsf streamfunction and collocate
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with model grid. The observation operator is then defined as the inversedfatansformation,
FT ¢ RNox2Nk from the spectral control-space to the grid point spadevi@d by a projection,

Q € RNoxNs onto the grid points at which observations are located:; i.e.

H=QFT. (5.27)

Following the conventions of 3D-Var we shall define the datsirailation system’s background
error covariance matrix such that the zonal and verticaletations are separable, the zonal cor-
relations are homogeneous and isotropic and there are nelat@ns between different zonal
wavenumbers. With these assumptions, the background @ariance matrix consists of an
N, x N, block for each zonal wave component. For the time being wi sbiadiscuss the prop-
erties of the vertical correlations. Finally we shall make assumption that the errors in different
observations are not correlated. Without correlationg/beh observations the observation error
covariance matrixk € RNoxNo is diagonal. From Equation (5.21) the analysis errors fer th

Eady model data assimilation system are defined as

€= (B '+ FQTR'QFT) !B te® + FQTR e, (5.28)

and it follows thatG, may be written

G, = BFQ[ (R, + QuF"BFQ]) ' Q,F". (5.29)

2N.B. the reader is reminded that sinE&is not full rank, the model grid is of higher dimension thae #ourier

space associated with the first ten zonal wavenumbers
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5.4.2 Simplification of G,

Once the singular vectors have been computed, the onlyfisgmi computational expense comes
from the inversion of the bracketed teXiR,, + QpFTBFQg) for multiple possible deployments
of observational deployments. Making use of the followirilge observation errors vary with
height only; the background error covariance matrix is #grf@omogeneous and isotropic; and
by neglecting the vertical background error correlatiotithiw the bracketed term, we may write

Gy

G), ~ BFQD(2)Q,F", (5.30)

whereD(z) is a diagonal matrix whose elements depend on the heigheaitikervation. Proof
of Equation (5.30) is given in Appendix C. Since, béthF? BFQT); ; and depend on height and
not the zonal location, the diagonal element®afepend only on the height of the corresponding
observation. The extent to which this approximation isdrdkpends on how close to being diago-
nal B actually is. Interestingly in 'typical’ 3/4d-Var assimilan schemes the vertical correlations
in B are strongest at low wavenumbers and on the upper and lowedbdes. By contrast, as
we shall see, the low wavenumbers and the upper and loweidades play only a minor role
in the selection of the target region using the method cedliabove. Essentially this means that,
for typical assimilation schemes, the approximatiorBdby its diagonal in the bracketed term is
likely to be most inaccurate in the regions of phase-spadehndre of least importance for the
target selection. That is not to say, however, that this imeg@ a good approximation, merely

that the greatest inaccuracy occurs in the least signifiesibns.

At an even greater level of approximationAfand R are taken as uniform diagonal matrices (i.e.
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constant multiples of the identity matrix) throughc@q; then we may write
Gl ~ cH} H, = cFQ] Q,F" = T, (5.31)

wherec is a constant and), is a local projection operator that sets the model state lo ee-
erywhere except at the observation locations. For thisquéatly simple definition ofG’, when

t1 — to = 0, the targeting criteria given in Equation (5.25) reducesh® same mathematical
formulation of the targeting criteria given in Equation¥. However wheri; — ¢, is not equal

to zero then Equation (5.25) and Equation (4.2) are not oféme mathematical form. For this
simple choice of,, the targeting criteria given in Equation (5.25) can berpieted as an ex-
tension to Equation (4.2) in which the effect of the evolatad the errors prior to the observation
time is taken into account. In the next section we shall destrate a simple implementation
of Equation (5.25) in whicl}, = ¢T}, and discuss the relationship to the results shown in the

previous chapter.

5.4.3 Computing the singular vectors

In this section we shall describe the implementation of #rgeting method in the Eady model.
Firstly we need to define the singular vectors that will bedusecompute the target region. As
in the previous chapter we shall define the singular valuerdeosition over the forecast period

from t; to ¢y thus,

BLFT =" ouv,. (5.32)
=1
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For this first set of singular vectors the local projectioa j{gojection onto the verification region.
For all calculations in this section the verification regisiselected to be the same as that used in

the previous chapter.

The second set of singular vectors are defined, over thevattgrto t; as
PLFT =) 60, (5.33)
=1

whereL is the integral dynamical propagator for the intertgto ¢;, and P; is a local projec-
tion. The local projectionP; is defined to include all grid locations in which the ‘sensiy’ as
identified by using the singular vector method of Buizza arehidni (1999) has non-negligible

amplitude.

5.4.4 Examination and dynamical interpretation of the optmal observation loca-

tion

In this section we consider the dynamical effects whichieitee the target regions calculated in
the Eady model using the new targeting method. We shall densiow the target regions vary
as the time intervalg to ¢, is increased from zero. Since the target calculationtfor to = 0
yields the same results as the targeting method of Buizzavaomdani (1999), we may use the
results to compare the targets calculated with the new rddththose which would be computed
using that of Buizza and Montani (1999). The main aim of teisti®n is to demonstrate how the
use of an additional set of singular vectors to approximagestatistics of initial condition errors
affects the location of the target region, and how this eslab the dynamics of the Eady model.

We shall consider two observing scenarios. These two sosmae that a single vertical column
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Figure 5.1 Predicted reduction in forecast error variance for2ah forecast as a function of (A)

zonal location, (B) height, for different valuestgf— ;.

is observed and that single vertical level is observed.

Figures 5.1A and 5.1B show the targets calculated fod/aforecast. Figure 5.1A shows the
variation in the predicted reduction of forecast error aace obtained by observing in a single
vertical column, with the zonal location of the column. Figb.1B shows the same but for a
single vertical level. The different coloured lines referthe different values of; — ¢3. For

t1 — to = 0 (blue line) the results are proportional to those that wdaddobtained using the

targeting method discussed in Chapter 4.

Two things are noticeable in Figure 5.1. Firstly, fas— ¢, increases, two peaks occur in both
Figures 5.1A and 5.1B. Secondly, as the time intetyal ¢, is increased, the expected correction

in forecast error variance first increases, then decreases.

The fact that, ag; —¢, increases, two peaks occur in both Figures 5.1A and 5.1Bisistent with

the transition from the ‘untilting/unshielding regime’tite ‘modal unmasking regime’ discussed
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in the previous chapter. For valuestgf— ty of order one to two days it may be inferred that the
effect of dynamical evolution of the errors is to push théiahicondition errors further into the
modal unmasking regime. One can infer from this, that as ivagése in the previous chapter,
the two peaks are associated with the smaller zonal scalss t the upper and lower boundary
steering levels, and that the area between the peaks isigesowith the untilting of smaller

scales and the modal unmasking of the larger scales.

For thel12h forecast the dynamical effect of evolved initial conditierrors is greater, than for
the 24h forecast. However this effect only leads to a double peakwdiserving for observing
different vertical levels; i.e. equivalent to Figure 5.1t shown. When observing a single
column, the location of the peak does not vary significanftyunderstand this lack of variation
in the location of the peak for thh forecast, one can consider that the tilt of the sensitiveoreg
(see Figure 4.7A) is small, and consequently the regionsceged with modal unmasking and
those associated with untilting/unshielding are in royghke same zonal location. The result of
the coincidence of the regions associated with differeotvgit mechanisms is that transition from
the untilting/unshielding regime to the modal unmaskinghtéque does not significantly effect
the zonal location of the target region. For longer forecéstg. 48h), since the transition from
the unshielding to modal masking regime has largely ocdutiee effect of changing;, — t; on
the location of the peaks is small. To see this explicithgure 5.2B shows the variation in the
predicted reduction of forecast error variance obtainedtserving in a single vertical column,
with the zonal location of the column. In Figure 5.2B one caa that there is a small increase in
the distance between the peakgas tg is increased. This lack of zonal variation in the location
of the optimal observation location, fo2/ and48h forecasts indicates that there is a ‘window’ of

forecasts durations, somewhere aro@ud, during which the zonal location of the target region
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Figure 5.2 Predicted reduction in forecast error variance as a funotiof height for (A) al2h

forecast, (B) ai8h forecast, for different values of — ¢.

is sensitive to short term dynamically evolved perturbaio However this statement must be
qualified by the fact that the Eady model background stateslde inhomogeneities present in the
dynamics of models linearised about time evolving forecasiectories. These inhomogeneities
may well lead to greater spatial variations in the optimaesisation location with differing;, —.
Results from other authors [e.g. Snyder et al. (2003), Hamd Snyder (2002b)] suggest that the
effects of inhomogeneities in the background state can &aignificant impact on the structure
of linearly evolving covariances, over short time perioBsirther investigation into the effect of

such spatial inhomogeneities on this simplified dynamigabpe of targeting is required.

The second thing that is noticeable in Figures 5.1A and 5s1Bdt, as the time interva] — ¢ is
increased, the expected correction in forecast errorvegidirst increases, then decreases. This
behaviour is also seen in Figures 5.2A and 5.2B. Here theerdaademinded that the target is
normalised by the trace of the predicted back ground errear@@nce matrix at,, so that the

spatially averaged initial error variance is the same fehealue oft; — ty. The implication of
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this increasing then decreasing expected reduction im eariance is that targeted observations
will be most effective if they correct errors that are dyneafly evolved structures, but correcting
errors which are ‘too dynamically evolved’ will have lesgmipact. The implication is that there
is a value oft; — tg for which the impact of observations will be greatest. Thatue is likely

to vary with forecast length, so in order to make more genesaiments we have to consider
different forecast lengths. For this purpose, the dasimeddf Figure 5.3 shows integral under the
curve (y-axis) of Figure 5.1A as a function af — ¢y (x-axis). The solid, dotted and dot-dashed
lines show the equivalent fdRh 36~ and48h forecasts respectively. Interestingly for all forecast
integrations, this increasing and decreasing effects®ioé observations with increasimg — ¢

is observed. For longer forecasts the peak effectivenesg®oat smaller values of — ¢, but for

all forecast lengths shown the peak occurs at a value efty greater than zero. Conversely, for
larget; — to the effect of observations is smaller than for small- ¢g, implying that correction
of the long term evolved components of the forecast error naag lesser impact, than correcting
error components which are closer to random. However we sites$s that this result comes
about because we have normalised the covariante #twe had normalised the error statistics
attg, then the average error variancetatwould be larger for larget; — ty, and the predicted

effectiveness of observations would increase with in@eas— .

5.5 Summary

In this chapter we have introduced a new singular vectoetarg method and examined targets
produced using this new method using the Eady model singeletors. This targeting method

gives a prediction of the reduction in forecast error varéathat would be obtained from a given
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Figure 5.3 The variation of the predicted reduction in forecast errariance obtained by observ-
ing every location, as a function of the valuet@f— ty. Each line corresponds to a different
forecast lengtht, — t1. For ease of viewing the values for tBéh, 36k and 48h forecasts have

been rescaled by factoiy'2, 1/4, and1/8 respectively.

deployment of observations. The essential differencesdst this new method and previous
methods are that, it uses singular vectors to produce a dgaliyndetermined estimate of the

initial condition errors, and that it utilises a linear tsformation that can be made consistent
with the operational data assimilation system to approtentbe effect of observations on the

initial condition errors.

In a simplified setting, the new targeting method is seenitwcate with the singular vector target-
ing of Buizza and Montani (1999). In this sense the new metlamcbe interpreted as an extension
to ‘traditional’ singular vector targeting. In this chaptee examined the effect of including dy-
namically evolved initial condition error estimates ink@ tsingular vector targeting method. The
effect of including these evolved initial condition erraemn be interpreted dynamically as moving

the error evolution further into the modal unmasking regirirea similar fashion to increasing
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the forecast length in traditional singular vector tanggt{see Chapter 4), increasing the length
of the dynamical evolution of the initial condition errolsads to the appearance of double peaks
in the zonal and vertical sensitivity distribution. Funtmere it is found that the effectiveness of
observations is increased if they correct errors that heskved over a short time period. If this

time period is increased or reduced, then the effectiveoiesiservations is reduced.

145




CHAPTER 6

Conclusions

This thesis is a contribution to the subjects of mid-lattwtynamics and targeted observations.
For the first time the full spectrum of singular vectors of By model are considered. The im-
portance and implications of the unshielding and modal wking mechanisms, to the computed
singular vectors are discussed. The computed singulaprgeate used to analyse the singu-
lar vector targeting function commonly used in observatangeting, in a vertical cross-section.
Through comparison of this vertical cross-section to theamlyics of singular vectors, inferences
about the scale and qualitative behaviour of the pertwhbatio which particular regions are 'sen-
sitive’ are made. In the final section of the thesis, a newetamg method is introduced. This new
targeting method utilises a set of evolved singular vedimiepproximate the background errors
within the region identified by a set of targeted singularteeas dynamically connected to the
verification region. The two sets of singular vectors camtbe used as a computationally inex-
pensive means of predicting the reduction of forecast efdance that will be obtained from a
given deployment of observations. In this final chapter walgummarise the main results and
conclusions of the work in the thesis, as well as motivatitgre work which may follow from

that contained within the thesis.

In Chapter 3 we examined the properties of the full spectréirsirggular vectors in the Eady
model. The results and conclusions of this chapter can bensuised as follows. Roughly

speaking we can partition the dynamics of the Eady singudators into two regimes. These two
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regimes are the untilting regime and the modal unmaskinigneeg-or short integration lengths it
is found that untilting of potential vorticity is the domimamechanism for singular vector growth.
As the integration length increases then modal unmaskicrg@ses in importance, eventually be-
coming the dominant growth mechanism. Whilst the imporaotboth these mechanisms to
singular vector growth has already been established by atithors, what has not been estab-
lished is the implications for these mechanisms for simguégtors other than the first, and the
significance of zonal wavenumber in setting the time-scatettie transition between the two

regimes.

For the untilting regime, it is found that the requirementdchogonality between untilting struc-
tures means that at higher zonal wavenumbers the secordlethisingular vectors will have an
initial tilt closer to that of the first. This similarity ofltimeans that the second, third etc short
wavelength singular vectors will have singular values @lde that of the first singular vector,
than would the equivalent longer wavelength singular vsct&urthermore, it is found that for
short integrations the singular values at smaller zondkscare closer to that suggested by the
untilting mechanism, whereas at longer scales they ardisigntly smaller. This discrepancy is
attributed to the fact that at the smaller scales the nornoale® are shallower so the interaction
between the potential vorticity dynamics and that of themadrmodes is lower than in the larger
scales, allowing for the untilting of potential vorticitg bccur in the smaller scales more freely
at smaller scales. Taking into account both these scaletseleffects, it may therefore be said
that, for the untilting regime, the smaller scales domirthgesingular vector spectrum because
their maximum growth is larger, and because there are arlatgeber of singular vectors which

achieve large amplification.

It is found that the modal masking regime which is charasgetiby concentrations of singular
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vector amplitude near the steering level allows for amgltfan which can exceed the maximum
amplification possible via untilting. The transition frohetuntilting to the modal masking regime
is shown to occur more rapidly at the smaller zonal scales tiva larger zonal scales. The time-
scale for the transition is found that to depend approxiipate the relative phase speeds of the
normal modes and the potential vorticity in the region inethihere is a strong interaction be-
tween potential vorticity and the normal modes. For shaegrations this phase difference is
too small to lead to a significant change in the phase of thealoand continuum mode. As the
integration length increases the difference in phase speweeen the normal modes and the po-
tential vorticity waves which interact with them is suffioteo allow a 'half-period’ phase change
to occur. The integration length required for this requieainto be met is inversely proportional
to the wavenumber, therefore the smaller zonal scales vailenthe transition from the untilting
to the modal masking regime at a shorter integration lertgh the larger scales. An interesting
result of the scale selectivity of this transition is thetfdmat for models with very high resolu-
tion one would expect that the smallest scales will haveredtthe modal masking regime even
at very short integration lengths, leading to singular @ectvith the amplitude of the smallest

scales concentrated at the steering level.

In Chapter 4 we examine the singular vector targeting metdke context of the Eady model
singular vectors. By examining the ’sensitivity’ as idéetil in the zonal-height plane we are
able to make the following links between the singular vedigmamics and the sensitivity at dif-
ferent longitudes. During the untilting regime, there idyoa single peak in sensitivity which
corresponds to untilting perturbations on the centralic@rtevels of the model. Since the sin-
gular vectors amplify via untilting, the peak in sensitjvis associated with the most sensitive

region for all zonal scales. As the integration length iases and the dominant growth mecha-
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nism tends to modal unmasking, then the zonal location ddigeity of smaller scales diverges
from that of larger scales. The sensitivity to smaller ssalecurs at two peaks 'near too’ and
‘far from’ the verification region. These two peaks are agted with unmasking the normal
modes on the lower and upper boundaries, respectively. @ihgtwity at longitudes between
these peaks is associated with the unmasking of the longee-wormal modes and the untilting
of shorter wavelengths. The association of different liocet with different scales/growth mech-
anisms is of particular significance to singular vectoré#irg of this kind, as whilst the targeting
method identifies target regions, it does not yield infoiorabn how to deploy observations in
these regions. Knowledge of the perturbation scales andtstes to which these 'sensitive re-
gions’ are sensitive may increase the ability to make infxrohoices about actual observational

deployment, within the context of the established singuésntor method.

In Chapter 5 we introduce a new singular vector targetinghoeet This targeting method dif-
fers from previous singular vector targeting methods, at ihutilises a dynamical estimate of
the initial condition errors, rather than assuming thaséherrors are random with respect to a
chosen inner product. It differs from the Ensemble Tramsfétalman Filter (ETKF) in that it
utilises singular vectors that are computed to only coniaiormation dynamically relevant to
the verification region, rather than a non-linear evolveskeanble, which potentially contains lit-
tle information relevant to the verification region. Alsolika the ETKF, the validity of method
also does not require the user to assume the presence of @tiapa Ensemble Kalman Filter,
but rather allows the user to utilise any desired level ofaximation to the operational data as-
similation system in the estimate of the forecast errorararé reduction. One further difference
between the method and both the singular vector and ETKFaustlis that it explicitly predicts

the reduction in forecast error variance as the differemte/den the forecast error variance with
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and without the targeted observations. This additionalfeantroduces the potential for the pre-
diction of instances where adding observations is likeligsal to arincreasen the forecast error

variance in the verification region.

The targets identified using the new targeting method in theéyBmodel with simplified data
assimilation system are calculated. The target regionusddo always reside somewhere within
the sensitive region identified by the traditional singuactor methods, however the location
of the best observation varies when the time-scale of dycaliyievolved initial condition error
estimate is varied. As with the ‘traditional’ singular vectargeting method discussed in Chapter
4, the changes in the optimal observation location are iedily the transition from the untilting
to the modal unmasking regime. However unlike the traditi@ingular vector targeting method,
in the new method the transition from the untilting to the mlaghmasking regime occurs through
evolution of the initial condition errors prior to the foest initialisation time, rather than due an
increase in the duration of the forecast. It is also found ttieforecast error is more sensitive to
corrections in initial condition errors that have evolvegioa short time interval, than those which
have not evolved or those which have evolved over a longex itinerval. This result is based on

the assumption that in each case the initial condition srnare the same average variance.

The work in this thesis has concentrated on the analysisrafibation amplification and targeting
observations within the context of the Eady model. Whilg #implicity of the Eady model
facilitates analysis, itis of interest to see how the rastdin be extended to more complex models.
Of particular interest is the relationship between the twoainical regimes of the Eady model
singular vectors and the dynamical regimes identified irBGMWF model singular vectors by
Hoskins et al. (2000). A further consideration is the relaship between the targets identified

using the Eady singular vectors and those computed usigglsinvectors obtained from a time
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varying background state.

Another area in which this work could be extended is that ¢& dessimilation. The targeting
method defined in Chapter 5 utilises a linear transformatospproximate the effect of data as-
similation on the initial condition errors. Whilst in priipde this transformation could be highly
representative of the data assimilation system, in oultseste have reduced it to a simple lo-
cal projection. One question that remains unanswered 8, dimilar does this transformation
have to be to the operational data assimilation system #taitgeting method to be successful,
and furthermore how significant will the difference betwelea targets calculated with the new

method be to those calculated using a Kalman filter basedttaggmethod.
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APPENDIX A

The Numerical Eady Model

A.1 Non-Dimensionalisation and Co-Ordinate Change

For the purpose of numerical accuracy, the Eady Equatiotiined in Chapter 2 are non-
dimensionalised. The zonal, vertical and temporal coatd® {, z andt) are rescaled by divisors
Lr = NoZ/fo, Z and Ny/ foA, respectively. A summary of the resultant rescaling applce

different variables is given in Tablé.1. In non-dimensional form Eady Equations are

an/ @qA/ T S [O,X]

of = _ag 9% > (Al)
z2€(0,2)
oy . ol & e0,X]
E = —ug% + 1, ) (A.2)
2=0,2=27
where
2, 2, b el0,X
VA (A3)
012 032 L '
2€(0,2)
where
N
b = C{wA (A.4)
0z
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The Numerical Eady Model
and

X
/ Pdz =0, z€|0,7], (A.5)
0

where the hat denotes the non-dimensional variables. Tomsi@ the variation in the magnitude

of the mean zonal wind over the domain the zero point is mowékld centre of the domain. The
mean zonal wind field may therefore be written

)
Il
N>
|

l\')| N

(A.6)

This change to the zonal wind is equivalent to placing the ehoda frame of reference moving
in the positivetz direction with speed?/Q; ie.

(A7)

wherezg the zonal coordinate at= 0. The use of this moving coordinate frame acts only to

translate evolving perturbations in the zonal directioraligctorz /2 relative to the coordinate,.

In the next section we shall discussion the descritisatfidheoEquations (A.1) to (A.5). The hats

and dashes will be neglected and all quantities assumeditorfma-dimensional form.

A.2 The Discrete Equations and Numerical Model

For time integration of Equations (A.1) to (A.5) by a compgeveral processes are implemented
at each discrete time-step. The exact numerical schemeé$ardbese processes will be discussed

in this section. Prior to this the nature and order of thesegsses will be summarised. Firstly
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the potential vorticity, Equation (A.3) is inverted, suttj¢éo Equations (A.4) and (A.5), to obtain
the stream-function field. Secondly the meridional pestidn velocity on the upper and lower
boundaries is computed from the stream-function. Thirdqyd&ions (A.1) and (A.2) are solved
to find the potential vorticity and upper and lower boundampyancy at the next time-step. In
what follows the hats and dashes will be omitted from our timta however all variables are

identical to those used in Equations Equations (A.1) to YA.5

The time dimension is discretised into intervals of length The spatial domain is discretised
into an NV, by IV, grid with grid spacingAx and Az in the zonal and vertical directions respec-

tively. The discrete and continuous spatial and time coateis are related via

x=1iAzx, i €[1,2,...,N,], (A.8)
z=(j—1)Az je[l,2,...,N.], (A.9)
t=nAt, ne€[l,2,...,00]. (A.10)

Due to the periodic boundariég, Ax is equivalent to bothr = X andz = 0.

In this discrete representation a five-point scheme is usegbproximate the Poisson Equation

(A.3) for potential vorticity. With this scheme the disegiotential vorticity is defined

n n n mn n n
o Yy T2 TRy Vi T 200 Y
%5 = Ax2 Az2 ’

(A.11)

At the periodic boundaries the boundary conditions

Vo = VN, (A.12)
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and

PN,t1, = V1 (A.13)

are used. The derivative upper and lower boundary conditéwa approximated using one-sided

difference approximations. The discrete boundary comustiare defined as

Yitg — i
no= s A.14
Z,l AZ 9 ( )
and
N, — VN1
ey o= E A.15
’L,NZ AZ Y ( )

on the top and bottom boundaries respectively. The use o$taofider accurate one-sided dif-
ference scheme on the upper and lower boundaries rathetitdaecond order accurate centred
difference scheme is motivated by the fact that the use ohtremt difference scheme on the
boundary was found to lead to 'non-physical’ singular vedvucture. Tests of the accuracy
of the streamfunction field obtained from the potential iedtst inversion scheme outlined above
reveal that the accuracy is second order in the centre ofdheith and first order at the upper

and lower boundaries.

The Constraint Equation (A.5) is written for the discretedmloas

Nz
S ()’ =0, jel2,... Nz (A.16)
=1

Equations (A.11) to (A.16) for a discrete elliptic integpabblem, which can be solved to uniquely

determine the stream-function field. Empirical convergetasts have shown that the solution to
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this integral problem has first order accuracy on the uppet@mer boundaries and second order

accuracy in the central vertical level of the domain.

The time evolution of buoyancy and potential vorticity isrgauted by solving the discrete equa-

tions
+1 n—1 n n
4G — 4 _ 41, — %1
Jo ) g ) T 2,3,..., Nz —1]; A.17
AL U= ony 0 JEB3 . Ne -1 (A.17)
and
prtl _ pnol o
1,] nj = Titlyj i—1 . s .

for qgfjl and szl respectively. In Equation (A.18) discrete meridional wélp v;’; is obtained
from the stream-function field using

n ZnJrl,j — Zn*l,j
= . A.19
L (A.19)

The Centred Time Centred Space advection scheme used édhjaations gives second order
accuracy in both space and time. This scheme remains nuihestable as long as the Courant
number,i; At/Az, remains strictly less than zero for gllHowever, the scheme requires knowl-
edge of the state at two time-poinisgndn — 1) in order to find the: 4 1! state. Since the initial

condition gives the state at only one time-point, an inftimlvard time centred space step is taken

for the initial time-step of the integration. This initialep is taken by solving the equations

n+1 n n n

= €12,3,...,Nz —1]; A.20
At u] 2A1‘ 7.]6[737 ) < ]a ( )

156




Appendix A The Numerical Eady Model

and

n+1 n n n
bij —bi; by b

A7 = —1; SAL +viy, j=1,j= Nz, (A.21)

for ¢ andb}' I respectively.

A.3 The Effect of Courant Number on the Accuracy of Solution

The Eady background state is characterised by a constaat wamd speed that is a linearly
increasing function of height. It is the rate of increase e zonal wind-speed (relative to a
fixed domain height) that determines the stability propsrtf the model. The stronger the wind-
shear the greater the store of potential energy in the baakgrflow and hence the greater the
instability in the system. Due to errors in the phase spersmtemherent in the Centred Time
Centred Space Advection scheme, the implied vertical profilthe of the mean zonal wind in
the discrete Eady model differs from that specified in thetinoaous Eady model. In this section

the nature of this discrepancy and its relationship withGberant number will be discussed.

The dynamics in the interior of the model domain are goveimethe conservative zonal advec-
tion of potential vorticity perturbations. On the upper émder boundaries the zonal advection of
potential temperature perturbations is augmented by tipddihnmeridional advection of poten-
tial temperature along the background meridional tempegagradient. In the continuous Eady
Equations all potential vorticity anomalies travel withasle speed(2), which is a function of
height only. However, in the numerical Eady model the phased is a function of both height

and the anomaly’s horizontal wave-number. The numericabptspeed of each wavenumber,
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is given by
_ PN R )
Unum (2, k) = T sin [c(z) sin (kAa;)} ; (A.22)
where the Courant numbest, is defined
. ~ 0 At
c(2) = u(Z)A_:C (A.23)

It is clear from inspection of Equation (A.22)— 1 then,,,,, — At/Ax, which from Equation
(A.23) implies thati,,.., — u; the numerical phase speed tends to that specified in theeont
uous equations. The exact phase speed however is unoliagnate for numerical stability the
magnitude of Courant number is restricted to remain syrietss unity. However, for Courant
numbers with magnitude close to one the numerical phasel speegood approximation to the
true phase speed at all wavenumbers. Seemingly keepingaine&@ number close to one will
minimise the effect of phase speed errors. In reality twdlems with this idea occur. Firstly
having high Courant number causes the magnitude of ossilassociated with the computa-
tional mode to be high and degrades the accuracy of the taseous solution. Secondly, since
the phase speeadis a function of height the Courant number can not be unifdmaughout the

model domain. This lack of uniformity means that the accyaiche solution varies with height.

Vertical variations in phase speed accuracy in the Eady hiwle important consequences for
the vertically sheared wind field. The Eady model backgrostade is characterised by a uni-
formly sheared wind field. In the non-dimensionalised eiguat the magnitude of this shear is

given by the non-dimensional wind-shear paraméter 1. Differentiating the numerical phase
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speed Equation (A.22) with respect to the height we obtamtimerical wind-shear parameter
sin (/%A:c)
~ 7\ 202 (1 A
N (z, k:) = 7/%Aa: {1 c“(2) sin (k:A:z:) } A. (A.24)
The Courant number varies linearly with height and its miaglg is bounded by the values on
the upper and lower boundaries. If the magnitude of the Guumamber ranges between values
~ +1 then the numerical wind-shear parameter becomes a naar-fimection of height, thereby
contradicting the constant wind-shear assumed in the rmomis Eady model. If however the
Courant number remains bounded by values of magnitude resstitian one, then the numerical

phase speed may be written

A, & Sin}g%@)[x, (A.25)
X

and so depends on wave-number only. Since the wind-sheampger no longer depends on
height the properties of the zonal wind-field are consistdttt the linearly increasing wind as-
sumed in the continuous Eady Equations; albeit with eaclemawber experiencing a slightly

different wind-shear.
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Quantity Symbol Factor Value
vertical coordinatel 2 A 10%m
zonal coordinate x Lr = NoZ/fo 105m
time t No/ foA 2.5 x 10%s
stream-function 4 LrZA 4 x 10"m?2s~!
horizontal velocity| @, v} ZA 40ms—1
buoyancy v NoZA 4 x 10~ ms—2
potential vorticity q foA/Ng 4 x 107°s71

Table A.1  Non Dimensionalisation factors.
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APPENDIX B

Orthogonality between plane-waves

In this appendix we shall derive the condition for orthodipdetween plane-waves of the same
zonal wavenumber. We shall start by defining two plane wavtsthe same zonal wavenumber

kn, but differing vertical wavenumbers; andms. These two plane-waves are

Y1 = cos (kpx +myz), (B.1)

o = cos (knx + maz), (B.2)

wherem; # msy. Here it is worth reminding the reader that the tilt is retate the vertical
wavenumber by: = m/k. The two plane-waves are orthogonal if the integral of tipegduct

over the domain is equal to zero; i.e.

/O : / Uibadzdz = 0. (B.3)

We shall start by rearranging the product
P19 = cos (kpx + mqz) cos (knx + maz) . (B.4)
1

Using the trigonometric identityos(0)cos(¢) = 5(cos(0 + ¢) + cos(6 — ¢)), we obtain

Y1hy = % {cos (2knx + [m1 + malz) + cos ([m1 — ma]2)} . (B.5)
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Using the further trigonometric identiyos(6 + ¢) = cos(0)cos(¢) — sin(f)sin(¢), we obtain

P11hy = % {cos (2kyx) cos ([my + ma]z) — sin (2k,x) sin ([my + me]z) + cos ([m1 — m2]z)} .

(B.6)

Next we shall integrate the rearranged product with resfpectandz. Firstly we note that the
integral with respect te of the wave termsos(2K,,z) andsin(2k,x) will vanish, since we are
integrating over whole periods of the wave. Integratinghwéspect tac and applying the limits

we obtain

X 29 22
/0 /Zl Y1 hodzdr = /Z1 Xcos ([m1 — ma]z) dz. (B.7)

Integrating with respect te we obtain

22

X 22
/0 /Z1 1)odzdr = [ﬁsm (Im1 —ma]2)| . (B.8)

21

From this expression, it is evident thai andy will be orthogonal ifsin ([m; — ma)z1) =

sin ([m1 — malz2). This will occur for arbitraryz; andzs only if
(m1 —ma)z1 = (M1 — ma)ze £ 2¢m, (B.9)

where¢ # 0 is an integer. Rearranging this condition and writing imtgrof the tilta = m/k,,,
we arrive at the condition that is imposed on the tilt to gntea orthogonality between the plane

waves

(B.10)
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APPENDIX C

The relationship between a simple data assimilation systeand a

local projection operator

The aim of this appendix is to show that, if we neglect veltmarelations inB and R and
variations inB with zonal wavenumber and assuming the observations ameateld with model

height levels, then we may write
FQU (R, + QuF"BFQ] ) 'QF" = FQDQ,F", (C.1)

whereD is a diagonal matrix.Each diagonal elementircorresponds to an observation location
and is given

N C))
o(2) = r(z) + b(z) (€.2)

wherer(z) andb(z) are diagonal elements @t and B respectively and is the height of the

observation.

To begin with we note that, in the absence of vertical coti@ia in R and B, (G, becomes block
diagonal with each invertible bIoclép, corresponding to a single vertical level. For this reason
we may treat each diagonal separately. If we assume thabgeation error varies with height

only, then for a single block

R(z) =r(2)], (C.3)
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and likewise forB,

B(z) =b(z)1, (C.4)

(R(2) + QpFTB(2)FQy) ™! = (r(2)] +b(2)Qp FTFQp) ™. (C.5)

For simplicity we shall drop the subscriptior the rest of this appendix.

As in Bishop et al. (2001) we can make use of the fact that stnssymmetric, the eigenvectors
of QT FFT( are form a complete orthonormal basis. We shall write thereiglue decomposi-

tion
QFTFQT = oro” (C.6)

wherel is diagonal and is orthonormal. Sincé is orthonormal, it satisfies = ®®7, therefore

we may write

(r(2)I +b(2)QFTFQT) ™ = (r(2)®®7 4 b(2)®T'dT) ™! = &(r(2)I + b(2))"'dT. (C.7)

We can also note that the eigenvectors and eigenvaluég 6fF'7'() are the right singular vec-
tors and singular values squaredfof Q respectively. Assuming may define the singular value

decomposition of 7' Q as
FQT = raT, (C.8)

wheref2 is a matrix containing the left singular vectors dfids a possibly hon-square diagonal
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matrix that satisfie¥” Y = I". Using this singular value decomposition we may write

FQTo(r(2)I +b(2)D) 1T QFT = QY®Td(r(2)I + b(2)D) Lol orTQT, (C.9)

and the fact thab?'® = I we write

FQTo®(r(2)I 4 b(z)D) 1T QFT = QY (r(2)I + b(2)D)trTQT, (C.10)

Now we shall consider the form of (r(2)I + b(z)I')~!YT. The matrix (r(z)I + b(z)[')~*
is a diagonal matrix with thé’" diagonal element given by/(r(z) + b(2)(I');;). It is worth
emphasising here that even (I'); ; is zero, 1/(r(z) + b(z)(I');;) may not be. However,
(Y(r(2)I + b(z)D) Y1), = (1)ii/(r(2) + b(2)();;) and thereforeis equal to zero if

(I");; = 0. Furthermore if all the non-zero elementsiohave the same valug we may write

FQTo(r(2)I +b(2)I)1oTQFT = ¢(Q)YYT0T, (C.11)

wherec(Q) = ~/(r(z) + vb(2)) is a scalar that depends on depends observation distrititio
Here it is worth noting that non-zero elementslofvill only have the same value for specific
choices ofQ). We shall discuss these choices(df little further on. First however we note that,

from the definition of the singular value decomposition Eopra(C.8)

c(QQYTTQT = (Q)FQTQFT = ¢(Q)Th (=), (C.12)

wheref’l(z) is a diagonal block of the local projection operafgr corresponding to a single
vertical level. For single a single observation on a veltieael and for an observation at ev-

ery grid-point on that level Equation (C.11) and ,consetjyeBquation (C.12) are found to be
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generally true. This result was obtained empirically, bynparing the matrices eigen-spectra of
(R+QFTBFQ) andTy. This relationship was also found to hold exactly and apipnasely for

many cases, but for concision further discussion will bdetwtgd.
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Mathematical Symbols

AT Transpose of general matrik
A1 :Inverse of general matrid or A to the power—1
A* : Psuedo-inverse of general matrx
(A);; 4t jt" element of a general matrix
(b); :elementit" of a general vectob
A; : Theit" matrix A
: Theit" vectorb
|bll2 = bTb : Vector 2-norm of general vectdr
|b||z = bTEb : Vector E-norm of general vectdr
1 : ldentity matrix
u . Left singular vector
U : Matrix of left singular vectors
v Right singular vector
V' : Matrix of right singular vectors
o : Singular values

Y, : Matrix of singular values
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Mathematical Symbols

S NN = B

=y

oy

: Non-linear numerical weather prediction model

. Linear perturbation weather prediction model

: Weather forecast model state

: Perturbation to weather forecast model state

: Data assimilation cost function

: Non-linear observation operator or foreward model
. Linear observation operator or foreward model

: Observation error covariance matrix

: Background error covariance matrix

: Local projection operator

: E-Norm defining inner-product matrix
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x @ Zonal spatial coordinate

y . Meridional spatial coordinate

z : Vertical spatial coordinate

t :Time

¢ : Zonally directed unit vector

7 Meridionally directed unit vector

k : Vertically directed unit vector

k : Zonal wavenumber

I : Meridional wavenumber
m : Vertical wavenumber

1 : Quasi-geostrophic sreamfunction
g : Quasi-geostrophic potential vorticity
b : Scaled potential temperature perturbation (buoyancy)
u : Magnitude of zonal velocity

v . Magnitude of meridional velocity
w . Magnitude of vertical velocity

u =ui +vj +wk :Velocity
v =ut +vj : Horizontal velocity

f i Coriolis parameter
N : Static stability parameter

A : Eady model wind-shear parameter
X : Zonal extent of model domain

Z : Height of model domain

Ro : Rossby number
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