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Abstract

This thesis is a contribution to the subjects of midlatitudeatmospheric dynamics and targeting

observations for the improvement of weather forecasts. Forthe first time the full spectrum of

singular vectors of the Eady model are considered. The importance and implications of the un-

shielding and modal unmasking mechanisms to the computed singular vectors are discussed. The

computed singular vectors are used to analyse the vertical structure of the singular vector tar-

geting function commonly used in observation targeting, ina vertical cross-section. Through

comparison of this vertical cross-section to the dynamics of singular vectors, inferences about the

scale and qualitative behaviour of the perturbations to which particular regions are ’sensitive’ are

made. In the final section of the thesis, a new targeting method is introduced. This new targeting

method utilises a set of evolved singular vectors to approximate the background errors within the

region identified by a set of targeted singular vectors as dynamically connected to the verification

region. The two sets of singular vectors can then be used as a computationally inexpensive means

of predicting the reduction of forecast error variance thatwill be obtained from a given deploy-

ment of observations. This method differs from previous targeting methods as it makes no use of

stationary norms or Kalman filter theory. It allows for both adynamically determined estimate

of the initial condition errors and allows for the operational data assimilation to be taken into ac-

count. Another major difference between the new targeting method and existing methods, is that

it explicitly predicts the reduction in forecast error variance as the difference between the forecast

error variance with and without the targeted observations.This additional feature introduces the

potential for the prediction of instances where adding observations is likely to lead to anincrease
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in the forecast error variance in the verification region.
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CHAPTER 1

Introduction

Meteorology is the study of atmospheric phenomena, particularly as a means of forecasting future

weather events. Weather forecasts are produced by evolvingthe estimated current atmospheric

state forward in time using large non-linear numerical models of the physical and dynamical

processes in the atmosphere. The ability to create accuratenumerical forecasts is reliant on both

the accuracy of these models and the accuracy of the initial conditions. The initial conditions

used in weather forecasting are statistically based ’compromises’ between observational data and

a previous forecast, which are generated by a process known as data assimilation. Since Lorenz

(1963) brought chaos theory to the attention of meteorologists, it has been understood that the

non-linear nature of evolutionary process in the atmosphere causes errors (no matter how small)

in initial conditions supplied to the forecast models to eventually grow into large errors in the

forecast. This chaotic behaviour is referred to as sensitivity to initial conditions and is often

summed up with the flippancy “if a butterfly flaps its wings in Brazil a tornado is set off in

Texas”. As a direct result of the work of Lorenz (1963), meteorologists began to speculate about

the existence of a theoretical upper limits to the times-scales over which an accurate forecast

can be made. Since the publication of Lorenz (1963), improvements in numerical models and

observation density have lead to large improvements in forecast accuracy. With the continued

development of numerical forecasting methods and new observation platforms, it is hoped that

there is still room for improvement before any theoretical limit of predictability is reached.
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Chapter 1 Introduction

Since the mid 1990s, there has been a move to make forecast generation methods more specific

to the atmospheric flow on a particular day and the requirements of the end user. One part of this

move has been the development of methods by which the observation distribution resulting in the

most accurate forecast may beobjectivelydetermined. With the development of new ’movable’

observation platforms, the possibility of day to day variations in the observation network based on

the specific requirements of the forecast may present itself; Emanuel et al. (1995). Observations

obtained in this manner have come to be known as ’targeted’ or’adaptive’ observations; Lorenz

and Emanuel (1998).

Several questions surround the use of an adaptive observation strategy. Most of these questions

are summed up in the words of Thompson (1957):

“What return in increased predictability can be expected from increasing the overall density of

reporting stations, and how does this compare with the corresponding outlay of funds? Where

is the point of rapidly diminishing return per outlay? How should the new stations be located in

effecting the increase of overall station density?”

Thompson (1957), however, was writing about the development of a larger network offixedob-

servations, and so for ’targeted’ observations a further question exists: What methods can be used

to identify the best observation locations on a day to day basis? Attempting to answer these ques-

tions several targeting methods have already been proposedand tested ’in the field’. This thesis

is a further contribution to the answers to two of these questions, namely,

Where should the additional observations be located?

and

What method should be applied to identifying these locations?

2



Chapter 1 Introduction

Answers to a further ’sub-question’,

Why should the observations be placed in these locations?,

are also sought. An outline of the findings of this thesis can be found at the end of this introduc-

tory chapter. Prior to this, we shall give a more detailed explanation of the subject of adaptive

observations. To put the subject of adaptive observations in context, the following section dis-

cusses the properties of a ’generic’ weather forecasting system. The available literature on the

subject of adaptive observations is then discussed in Section 1.2. The final section of this chapter

contains a summary of the main conclusions and chapter contents of the thesis.

1.1 Forecast-Analysis Systems

This section serves as an illustration of the generic properties of weather forecasting systems. It

is not intended to give a full discussion of the specifics of topic but rather to introduce concepts

and terminologies that will be relevant to subsequent discussions. The production of accurate

weather forecasts requires the ability to perform two tasks: Firstly to propagate an estimate of

the current atmospheric state forward in time; Secondly to make accurate estimates of the current

atmospheric state. The first of these tasks is performed using large numerical weather prediction

(NWP) models. The second is performed by combining observations of the current state of the

atmosphere with an estimate of the atmospheric state from a previous forecast.

NWP models are a set of discrete non-linear equations that approximate the physical and dynam-

ical processes in the atmosphere. The integration of a NWP model over a finite time interval

τ from an initial stateχa(0) to a forecast stateχf (τ) can be written as the non-linear operator
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Chapter 1 Introduction

equation

χf (τ) = M [χa(0), τ ] (1.1)

whereχ is a vector containing the model state variables (pressure,temperature, velocity at differ-

ent grid points for example) andM is a non-linear operator containing the model equations.

The second task required for the successful production of a forecast needs slightly more expla-

nation. Ideally the model would be initialised using a set ofhomogeneously distributed accurate

observations, at least equal in number to the number of variables in the the model state vector

χ. Unfortunately, due to the high dimension of the model stateand the inaccessibility of many

required observation locations, the observations are neither large enough in number nor homo-

geneous enough in their distribution to specify entirely the model state. In order to solve this

problem the observational data are combined with a previousforecast to produce the estimated

current atmospheric state,χa, based on the estimated statistics of the error in both the forecast

and observations. This process is known as data assimilation. The forecast used in the data as-

similation process is known as the background. The estimated state obtained through the data

assimilation process is known as the analysis. The various data assimilation methods in use in

weather forecasting centres derive from the minimisation of the quadratic cost function

J (χ) =
1

2

(

χ− χb
)T

B−1
(

χ− χb
)

+
1

2
(y − H [χ])T R−1 (y − H [χ]) , (1.2)

where the vectorχ is the control vector1, χb is a vector containing the background,y is a vector

containing the observations,H is the forward model (or observation operator) which transforms

1Here we assume the control vector contains the same variables as the model state. In general any variables that

are uniquely related to the model state can be used for the control vector.
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Chapter 1 Introduction

the model variables to the observed variables,R is matrix containing an estimate of the covariance

between observational errors, andB is a matrix containing an estimate of the covariance between

the errors in the background. From this cost function the analysisχa can be defined as the vector

χ for which J (χ) is minimised. In order to formulate the cost function, certain assumptions

have to be made about the background and observation errors.These assumptions are, that the

observation and background errors are statistically independent, and that individually the assumed

error statistics must lead to non-singular covariance matrices. The assumption of non-singular

covariance matrices essentially implies that all possiblestates must have a reasonable probability

of existing, even if in the current atmospheric flow they are so unlikely that their probability of

existing is very close to zero. A useful property of the cost function is that if the approximation to

the background and observation errors is ’good’ and the forward model can be approximated by

the linear operatorH, the analysis error covariance matrixA is equal to the inverse of the Hessian

(second derivative with respect toχ) of the cost function; i.e.

A ≡

[

∂2J

∂χ2

]−1

=
[

B−1 +HTR−1H
]−1

. (1.3)

Ideally the covariance matrices in the cost function would depend on the time of observation and

the observations would be used to correct the model state corresponding to the time of obser-

vation. To make the background error covariance time specific one could in theory evolve the

analysis error covariance matrix. In reality however the dimension of the model state vector is

typically greater than106 so that the background error covariance cannot be stored by current

computers, let alone evolved or explicitly inverted. Due tothe limitations in computational power

and concerns that evolving covariance matrices may become singular, many methods of solving

approximate cost functions have been developed. It is not our intention to give a detailed dis-
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Chapter 1 Introduction

cussion of these methods but some of the more general properties will be highlighted. One such

approximation to the cost function is the (extended) Kalmanfilter. The essential components of

the (extended) Kalman filter are that the covariances are evolved using a linear approximation

to Equation (1.1) and the observations are assimilated sequentially into the background field at

the ’correct’ time. The computational expense required to implement a Kalman Filter for NWP

models is presently too great for the computers used at meteorological centres. 3D-Var and 4D-

Var data assimilation schemes are commonly used operationally in meteorological centres. The

essential components of 3D-Var are: the background error covariance matrix is assumed to be sta-

tionary in time; spatial correlations between errors in thebackground field are typically assumed

to be separable in the vertical and horizontal directions and isotropic in the horizontal direction;

the cost function is minimised (usually approximately) by an iterative algorithm. In 3D-Var the

observations are assimilated into the background at predetermined discrete intervals (analysis cy-

cles) and the time point in the background field evolution at which the observation are assimilated

does not necessarily correspond to the observation time. 4D-Var is an extension to 3D-Var in

which a linear dynamical model is incorporated into the forward model (observation operator), so

that the distribution of the observations in time is taken into account in the assimilation process.

Due to the sensitivity of non-linear models to errors in the initial conditions, there has been a

move by meteorological services in recent years towards ’ensemble forecasting’. In ensemble

forecasting, rather then creating a single forecast, an ensemble of forecasts is created by adding

small perturbationsδχi to the initial condition. The motivation behind ensemble forecasting is to

make a probabilistic forecast rather than a single deterministic forecast. The most likely forecast
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Chapter 1 Introduction

can then be given by the ensemble mean

χ̄
f
i (τ) =

Ne
∑

i=1

χ
f
i (τ)

Ne

=

Ne
∑

i=1

M [χa(0) + δχi, τ ]

Ne

, (1.4)

whereNe is the number of ensemble members. One immediate question that arises from the en-

semble method is what form should the perturbations to the initial conditions take. Two methods

for generating initial perturbations exist. These are the breeding method and the singular vector

method. The singular vector method is motivated by the assumption that the effect of the data

assimilation process is to randomise the initial conditionerrors; Palmer et al. (1998). Since the

initial condition errors are assumed to be random, it is assumed that by perturbing the initial con-

ditions with the perturbations that grow the most over the forecast integration, the most relevant

information about the forecast error is obtained; Palmer etal. (1998). It is the desire to get the

greatest spread in the ensemble that motivates the use of singular vectors to define perturbations

for ensemble forecasting; Molteni et al. (1996). In meteorological applications, singular vectors

are used as estimates of the phase space directions which amplify the most over a finite time

period. Singular vectors will be discussed in more depth in the next section. Like the singular

vector method, the breeding method aims to maximise the spread of the ensemble, but with the

qualification that the growth be sustainable; Toth and Kalnay (1997). In the breeding method a

small perturbation is added to the initial conditions. Bothinitial conditions are evolved with the

non-linear model over one analysis cycle. The resultant fields are then subtracted from each other

to obtain the evolved perturbation. This evolved perturbation is then reduced in amplitude, added

to the new initial conditions and the process is repeated. This continual evolution and amplitude

reduction is designed to replicate the evolutionary behaviour of the errors over multiple analysis

cycles; Toth and Kalnay (1997).
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Chapter 1 Introduction

1.2 Adaptive Observations

1.2.1 Summary of Adaptive Observations

The question as to the best deployment of observational resources has long been of interest to

meteorologists; e.g. Thompson (1957). In recent years the development of practical methods

for identifying the best locations for additional observations based on the day to day variations

of the atmosphere has become an active area of research. Thissubject area has been referred

to variously as adaptive or targeted observations. One immediate question which arises from

adaptive observations is how to define what is meant by the best location. Generally speaking,

adaptive observations can be motivated by the desire to achieve two different, but interrelated,

goals. The first possible aim of targeting is to obtain the best analysis achievable with the limited

observational resources. Lorenz and Emanuel (1998) and Morss et al. (2001) have proposed

methods which utilise estimates of the initial condition errors from ensemble forecasts to identify

regions where the initial condition errors are large. By targeting observations to areas with large

initial condition errors it is hoped that the maximum improvement in theanalysiscan be obtained.

Whilst maximally reducing the initial condition errormayreduce the subsequent forecast error,

this is not explicitly the aim of the targeting methods proposed by Lorenz and Emanuel (1998)

and Morss et al. (2001). The other possible goal of adaptive observations is that of reducing

forecast error. For the work in this thesis we are concerned only with this second goal; i.e. that

of maximally reducing forecast error. For current targeting techniques the aim of targeting is

usually defined as finding the observations that will maximally improve the forecast within a

geographically localised verification region at a specific verification time.

Several targeting methods which seek to identify the observation locations that maximally reduce
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Chapter 1 Introduction

forecast error have been proposed. These targeting methodshave been loosely classified into

two types: those which rely on non-linearly evolved ensembles to incorporate information about

small error dynamics, such as Ensemble Transform [Bishop and Toth (1999)] and the ensemble

transform Kalman filter [Bishop et al. (2001)]; and those which rely on linear approximations to

inform the target selection about the error dynamics, such as gradient sensitivity [Bergot et al.

(1999), Pu et al. (1998)], quasi-inverse linear method [Pu et al. (1997)] and singular vector target-

ing methods [Buizza and Montani (1999), Montani (1998)]. Ofthese methods, two in particular

have come to the fore and were used in determining the observation locations during the ’Atlantic

Thorpex Regional Campaign’ (AtREC) field test of targeted observations in 2003. These two

methods are the singular vector method [Buizza and Montani (1999)] and the ensemble transform

Kalman filter method [Bishop et al. (2001)].

Berliner et al. (1999) set out a simplified but ’well posed’ statistical framework for the targeting

problem. This statistical framework may be summarised as follows: Given an estimate of the

atmospheric state at timet0 and the error statistics associated with that estimate, identify the

observations at a later timet1 that will optimise by some measure the expected errors in the

subsequent forecast att2. Berliner et al. (1999) suggest several measures which may be used to

define an optimality criterion. Of these measures, theexpectedforecast error variance is of most

direct relevance to the targeting methods in the current literature. Berliner et al. (1999) refer to

criteria for observation selection that minimise the expected forecast error variance as A-optimal

criteria. We may summarise the essential components of an A-optimal targeting method as: an

estimate of the error statistics att1, an estimate of the effect of observations on those statistics

and an estimate of the evolution of the statistics up tot2. All the targeting methods discussed in

this section (with appropriate assumptions) can be viewed as roughly falling into this description.
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Additionally, all the targeting methods discussed in this section rely on the assumption that the

evolution of the error statistics is linear. This is equallytrue of methods which make explicit

use of linear operators and those that rely on non-linearly evolved ensembles. The accuracy

of the linear approximation is dependent on the amplitude ofthe perturbation, since for small

perturbations the amplitude of non-linear terms in a seriesexpansion of the dynamical equations

are smaller than the linear terms. However, since atmospheric dynamics leads to perturbation

amplification, it is expected that the accuracy of the linearapproximation deteriorates over time.

The time period over which the linear approximation is validis referred to as ’the linear regime’.

Several investigations into the duration of the linear regime for perturbations with initial amplitude

consistant with the estimated amplitude of initial condition/analysis errors have determined the

maximum duration of the linear regime to be roughly two to three days; see for example Errico

et al. (1993), Rabier and Courtier (1992) and Vukicevic (1991). The validity of this linearity

assumption is questioned by Gilmour et al. (2001).

1.2.2 The singular vector method for observations targeting

The first of the two targeting methods that were used in the AtREC field experiment is the sin-

gular vector method. In simplistic terms the essential components of the singular vector method

can be summarised thus: A small set of perturbations (the singular vectors) that maximise the

amplification of small perturbations to the initial conditions over the finite forecast integration pe-

riod are calculated; the observations are then targeted to regions in which this set of perturbations

weighted by their amplification over the forecast period have large amplitude. The finer details

of this method are somewhat more complex than this simplistic explanation so we shall break it

down into three sections. Firstly we shall describe the mathematical properties and computation
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Chapter 1 Introduction

of the singular vectors. Secondly we shall describe the implementation of the targeting method

using the singular vectors. Finally we shall identify some assumptions that may be used to link

the method to the generic description of ’A-optimal’ targeting methods.

To compute the singular vectors, it must first be assumed thatthe dynamical behaviour of the per-

turbations (or errors) we are interested in is well approximated by a linearisation of the dynamical

equations about a time varying background state. For targeting applications, this background state

is the portion of the forecast started att0 which lies betweent1 andt2. This linearisation gives

rise to the linear operator

M [χ(t1), t2] =
∂M

∂χ
[χ(t1), t2] (1.5)

which approximates the evolution of perturbationsδχ(t1) to the stateχ(t1) over the intervalt1

to t2. The evolution of perturbations over this finite time interval is then described by

δχ(t2) = M [χ(t1), t2] δχ(t1) + O(δχ2). (1.6)

The O(δχ2) terms are assumed to be much smaller thanM [χ(t1), t2] δχ(t1) and neglected,

yielding a linear evolution equation. The use of a linear approximation to the non-linear evolution

of perturbations to the state of atmospheric models is usually justified on the grounds that the

amplitude of the perturbations are assumed to be initially small, and the time periods over which

the approximation is applied does not exceed two to three days. HereafterM [χ(t1), t2] will be

donated simply asM .

The singular vectors used in targeting are obtained by computing the singular value decompo-

sition of the matrixK = E
1

2

2 T2ME
− 1

2

1 (Buizza and Montani (1999)); whereE
− 1

2

1 andE
1

2

2 are
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matrices which normalise the initial and final perturbations respectively, andT2 is a local pro-

jection operator. Here we use the subscripts1 and2 to refer to the time at which each operator

is applied; e.g. those applied to the perturbation att1 are subscripted1. The local projection

operator is an operator that sets the amplitude of the perturbation to zero outside the verification

region and is usually defined as a symmetric matrix; e.g. Buizza (1994). Several definitions of

the terms singular value decomposition, singular vector and singular value appear in the meteo-

rological literature. For clarity we shall restrict our definition of these three terms to that given

in linear algebra texts such as Golub and Van Loan (1983) and Strang (1988). The singular value

decomposition (expansion) is defined

K =

rank(K)
∑

i=1

σiuiv
T
i ; (1.7)

whereσi, ui andvi are the singular values, left singular vectors and right singular vectors respec-

tively. By convention the singular values are ordered such that

σ1 ≥ σ2 ≥ . . . σrank(K) > 0. (1.8)

The left and right singular vectors satisfy the orthonormality relationships

vT
i vj =















1, i = j

0, i 6= j

, (1.9)

uT
i uj =















1, i = j

0, i 6= j

, (1.10)
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and the equations

Kvi = σiui, (1.11)

and

KTui = σivi. (1.12)

Due to the high dimension of the numerical models used in atmospheric modelling, the matrixK

is too large to allow for direct computation of the singular value decomposition. In practice only

a few of the leading right singular vectors are computed via the Lanczos algorithm; Golub and

Van Loan (1983). By the term ’leading’ singular vector we refer to those associated with large

singular values. From the indexing convention given in Equation (1.8) the leadingN singular

vectors are those corresponding toi = 1 to i = N .

The left and right singular vectors are related to model state perturbations att1 andt2 via

δχi(t1) = E
− 1

2

1 vi (1.13)

and

T2δχi(t2) = σiE
− 1

2

2 ui; (1.14)

where

δχi(t2) = Mδχi(t1). (1.15)

Each right singular vector can be transformed to a corresponding perturbation of the state vari-
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Chapter 1 Introduction

ables at timet1. Each left singular vector can be transformed to a local perturbation of the state

variables at timet2. This local perturbation is the localisation of the perturbation evolved from

δχi(t1) over the finite time intervalt1 to t2. From the orthogonality relationships given in Equa-

tions (1.9) and (1.10) it is evident thatδχi(t1) andT2δχi(t2) are orthogonal with respect to the

inner products defined by the matricesE1 andE2 respectively; i.e.

δχT
i (t1)E1δχi(t1) =















1, i = j

0, i 6= j

, (1.16)

δχT
i (t2)T2E2T2δχi(t2) =















1, i = j

0, i 6= j

. (1.17)

The singular value decomposition of the matrixK can therefore be used to define a set of dy-

namical perturbationsδχi(t1) which are orthonormal with respect to the ’E1 inner product’.

These perturbations evolve over the finite time interval to the corresponding evolved perturba-

tionsδχi(t2). These evolved perturbations are orthonormal within the local region defined by the

local projection operatorT2.

A very important aspect of the singular value decompositionis that the singular vectors form a

complete set. This means that any state perturbationδχ may be written as a linear combination

of either the right or left singular vectors. IfK is not full rank then some of these singular vectors

will be associated with zero singular values. The real powerof singular vectors is seen when a

perturbation to the state att1 is written as the linear combination

δχi(t1) =

Ns
∑

i=1

γiE
− 1

2

1 vi, (1.18)
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whereγi = vT
i E

1

2

1 δχi(t1) is the ’E1’ projection coefficient ofδχi(t1) onto theith singular vector

andNs is the number of elements in the vectorδχ. When the perturbation att1 is written in this

form then the amplitude within the verification region of theevolved perturbation measured in the

norm defined by the ’E2’ inner product is given by

‖T2δχi(t2)‖
2
E2

= δχT
i (t2)T2E2T2δχi(t2) =

Ns
∑

i=1

γiσ
2
i . (1.19)

Furthermore, if the initial condition errors att1 are ’white’ with respect to theE1 inner product

then the expected value ofγi is equal to a constantγ for all i; Palmer et al. (1998). If the

initial condition error is white with respect to theE1 inner product and the approximation of the

error evolution byM is valid then the expected error variance in the verificationregion att2 as

measured in theE2 norm is given by

E
[

‖T2δχi(t2)‖
2
E2

]

=
γ

Ns

Ns
∑

i=1

σ2
i . (1.20)

Due to the high dimension of the numerical models used in meteorological centres exact calcu-

lation of Equation (1.20) is computationally expensive andtime consuming. Since the Lanczos

algorithm allows the computation of the leading singular vectors without the expense of com-

puting all the singular vectors, Equation (1.20) can be approximated using the firstN singular

vectors.

In singular vector targeting the observations are directedtowards regions in which the amplitudes

of the right singular vectors weighted by their singular values are ’large’; e.g. Buizza and Montani

(1999). The idea being that by reducing the errors in regionswhere the singular vector amplitude

is large one reduces the amplitude of the projectionγi of the error at timet1 onto the leading

right singular vectors. From Equation (1.19) it is evident that reducing the magnitude ofγi for the
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leading right singular vectors will reduce the forecast error. Furthermore if the initial condition

errors att1 are ’white’ with respect to theE1 inner product and theexpectedeffect of placing

observations in region defined by a local projectionT1 is to uniformly reduce the amplitude of the

error in that region it can be shown that the reduction in expected forecast error variance obtained

by observing inT1 is

E
[

‖T2δχi(t2)‖
2
E2

− ‖T2δχi(t2, T1)‖
2
E2

]

=
γ

Ns

Ns
∑

i=1

σ2
i v

T
i T1vi, (1.21)

whereδχi(t2, T1) is written as a function ofT1 to distinguish it from the forecast without addi-

tional observations. From this expression it is evident that the singular vector method is in some

ways A-optimal. Equation (1.21) will be discussed in more detail in Chapter 4 however it is intro-

duced here to motivate singular vector targeting as an A-optimal targeting method. A significant

difference between the singular vector method and the A-optimal design of Berliner et al. (1999)

is that in the singular vector method the observations are not explicitly taken into account.

Whilst the use of singular vectors in targeting can be motivated as an A-optimal targeting method,

several other interpretations of their use exist. The specific interpretation of the singular vectors

depends on the choice of the matricesE1 andE2; Palmer et al. (1998). We have already noted

that the A-optimal interpretation of singular vector targeting requires that the matrixE1 is chosen

as the covariance matrix of the initial condition errors att1. In theory, the matrixE2 can be chosen

to measure the aspects of the forecast errors that are considered most vital to remove, however in

practice,E2 is almost universally chosen such that the associated innerproduct is a measure of

the total energy (kinetic energy plus potential energy) of the perturbation. IfE1 is chosen to be the

same asE2, then the singular vector calculation yields the perturbations that amplify the most over

the forecast intervalt1 to t2. In this case the use of singular vector targeting can be motivated by
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the desire to prevent the errors from growing over the forecast interval. Typically for this optimal

amplification motivation bothE1 andE2 are chosen such that their associated inner products

give the total energy of the perturbation. Palmer et al. (1998) test the consistency of the several

potential metrics with estimates of the analysis error covariance metric. The tested metrics are

total energy, streamfunction, kinetic energy and enstrophy. Of the four metrics that Palmer et al.

(1998) test, it is found the total energy is the least inconsistent with the analysis error covariance

metric. The use of total energy to define the metrics at both the start and end of the forecast interval

can therefore be seen as an attempt to both target the growingerrors and to achieve the A-optimal

goal of minimising the expected forecast error variance. However, since the total energy metric

takes neither the observation network nor the atmospheric dynamics prior tot1 into account, it can

be at best weakly related to the analysis error covariance metric. The use of total energy singular

vectors in targeting is therefore more easily justified on the grounds of preventing error growth.

Barkmeijer et al. (1998) demonstrate the computation of singular vectors using the Hessian of the

3D-Var2 cost function to define the metric att1. These ’Hessian singular vectors’ are computed

using the total energy metric att2 and the Hessian metric att1. Since the metrics differ att2 andt1

the Hessian singular vectors cannot be interpreted as optimally growingperturbations. However

since the inverse of the Hessian matrix is in theory equal to the analysis error covariance matrix

the use of Hessian singular vectors for targeting is more consistent with the A-optimal design

outlined by Berliner et al. (1999). However the background error covariance matrix used in

operational data assimilation systems are not (at present)dependent on the day to day variations

of the atmospheric flow. The background error covariance matrices used in 3D-Var and 4D-

Var are modelled to reflect the climatological statistics ofthe analysis errors so that they can be

applicable to multiple forecast analysis cycles. These background error covariance matrices often

2more recently the Hessian of the (incremental) 4D-Var cost function has been used; Leutbecher (2003)
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contain many simplifications designed to reduce computational expense. The Hessian metric does

however take explicit account of the location and estimatedaccuracy of routine observations.

In summary, singular vector targeting identifies a region inwhich it is determined that observa-

tions are expected to be most beneficial. This type of targeting can be motivated to a certain

extent by the A-optimal design of Berliner et al. (1999) and/or by the desire to prevent error

growth betweent1 andt2. The exact interpretation of the method depends on the specific choices

of the matricesE1 andE2, which define the metrics att1 andt2 respectively. In the case where

E1 andE2 are identical, the computed singular vectors can be interpreted as the perturbations

which amplify the most with respect to the inner product associated withE1 andE2 over the fi-

nite time intervalt1 to t2. In the case of the identicalE1 andE2 therefore targeting with singular

vectors can be thought of as an attempt to prevent the amplification of errors. Preventing errors

from amplifying however is not necessarily consistent withreducing the forecast error since for

example non-amplifying errors which have large amplitude at t1 may have a significant impact

on the forecast error att2. If however the metric att1 is chosen to represent the statistics of the

analysis errors att1 then the singular vector targeting method can be related to the A-optimality

motivation of Berliner et al. (1999). Since the singular vector targeting method does not explicitly

take into account the character and deployment of the adaptive observations it can arguably only

be A-optimal ’in spirit’ rather than in actuality. Singularvector targeting is more easily thought

of as means of identifying ’sensitive regions’; i.e. regions in which small variations in the initial

conditions are likely to lead to large variations in the forecast.
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1.2.3 The ensemble transform Kalman filter method of observation targeting

The second of the two targeting methods which have were used during the AtREC experiments

is the ensemble transform Kalman filter; Bishop et al. (2001). The ensemble transform Kalman

Filter has its root in the Ensemble transform technique devised by Bishop and Toth (1999). Both

Ensemble transform and ensemble transform Kalman filters fitcomfortably within the A-optimal

framework of Berliner et al. (1999). The essential aim of both these methods is to predict the fore-

cast error variance att2 associated with a particular deployment of observations att1. In ensemble

transformation, the analysis error covariance matrix associated with a particular deployment of

observations att1 is estimated, using linear transformation ensemble forecast initialised att0. The

approximate analysis error covariance matrix is defined

A1 ≈ D1CC
TDT

1 (1.22)

where the columns of the matrixD1 are given by the normalised departuresdi(t1) of the ensemble

members̄χf att1 from the ensemble mean andC is a linear transformation to be determined. The

normalise departures are defined

di(t1) =
χ

f
i (t1) − χ̄

f
i (t1)

(Ne − 1)
1

2

; (1.23)

whereχf
i (t1) is theith ensemble member att1, χ̄f

i (t1) is the ensemble mean att1 andNe is the

number of ensemble members. The method for determiningC will be discussed a little later. We

shall first concentrate on howC is used to estimate the forecast error for a given deploymentof

observations. Once the transformation matrixC associated with a particular observation deploy-

ment has been determined, the resultant forecast/background error covariance matrix att2 is then
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approximated by

B2 ≈ D2CC
TDT

2 (1.24)

whereD2 is the matrix of normalised departuresdi(t2) at t2. The essential assumption in deter-

mining the relationship betweenA1 andB2 is that the forecast errors evolve linearly about the

forecast trajectory defined by the ensemble mean. This linear assumption implies that

B2 = M
[

χ̄f (t1), t2

]

A1M
T

[

χ̄f (t1), t2

]

(1.25)

and

D2 = M
[

χ̄f (t1), t2

]

D1. (1.26)

Combining Equations (1.22), (1.25) and (1.26) one readily obtains Equation (1.24).

In the ensemble transform technique, the transformation matrix C is computed by specifying the

form of A1 associated with a given observational deployment and solving Equation (1.22) for

C. The ensemble transform Kalman filter is an extension to the ensemble transform technique,

in which the matrixA1 is (theoretically) determined by substituting the approximate background

error covariance

B1 ≈ D1D
T
1 (1.27)

at t1 into the Hessian of the cost function (Equation (1.3)) and inverting. The transformation

matrix, C, associated with this estimated analysis error covariancematrix is then obtainable as

before from Equation (1.22). The actual calculations used in the ensemble transform Kalman
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filter are significantly more efficient than these described here. For a full discussion on these

calculations, see Bishop et al. (2001).

To implement the ensemble transform Kalman filter for adaptive observations, the method can

be applied to multiple possible deployments of observations and the most favourable deployment

selected. The favourability of the targeted observations is quantified from the ’signal variance’ at

t2

s(t2) = trace

{

E
1

2

2 T2D2(I − C1C
T
1 )DTT2E

1

2

}

, (1.28)

whereE2 andT2 are the “inner product defining” and local projection matrices respectively used

in singular vector targeting; Bishop et al. (2001). As with singular vector targeting total energy

is usually used to defineE2. If the assumption of linear error evolution is valid and theapprox-

imated covariance matricesB1, A1 andR are accurate and consistent with the data assimilation

system used in the weather forecasting centre, then the signal variance is equivalent to the ex-

pected reduction in forecast error variance induced by the observations; Bishop et al. (2001).

This equivalency is also reliant on the accuracy with which the forecast model can evolve a given

initial condition. In practice the matricesB1 andA1 are not consistent with those used in opera-

tional data assimilation systems and the ensemble transform Kalman filter has a tendency to over

estimate the effects of observations on the forecast; Majumdar et al. (2001).

Unlike singular vector targeting, the Ensemble Transform Kalman Filter explicitly takes the as-

similation process into account, although this assimilation process does not correspond to the

actuality of operational assimilation systems. Also, the singular vector method makes no attempt

to identify the optimal observational deployment, and onlydefines a region to be observed. It

must be noted however that the Ensemble Transform Kalman Filter is often used only to generate
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’summary maps’ of the signal variance, which are then used toidentify target regions, and not

specific observation locations; Majumdar et al. (2002). A second difference between the Ensem-

ble Transform Kalman Filter and singular vector targeting is that, for the singular vector method,

the covariance matrix of the initial condition errors is modelled by the flow-independent matrix

E1, whereas for the ensemble transform Kalman filter the initial condition covariance matrix is

modelled by the flow dependent ensemble perturbations.

1.2.4 Variations of the singular vector and Ensemble Transform Kalman filter ob-

servation targeting methods

Several ’variants’ of the singular vector and ensemble transform Kalman filter targeting meth-

ods have been proposed. Leutbecher (2003) applies the methodology of the ensemble transform

Kalman filter to the Hessian singular vectors used in singular vector targeting. This method ar-

guably has several advantages over both singular vector targeting and the ensemble transform

Kalman filter. In the former case the Hessian reduced rank, asthe method of Leutbecher (2003)

has come to be known, has advantages over the ’regular’ singular vector targeting method in that

it explicitly takes the assimilation process into account in determining the target region. The Hes-

sian reduced rank has two advantages over the ensemble transform Kalman filter method. The

first of these two advantages is that the assimilation schemeassumed by the Hessian reduced rank

is consistent with the operational data assimilation scheme; Leutbecher (2003). A second less ob-

vious advantage is that the use of the local projection operator T2 in the singular vector calculation

means that by design the Hessian singular vectors used in theHessian reduced rank contain only

information relevant to the verification region. By contrast the ensemble members used in the

ensemble transform Kalman filter are designed to maximise the amount of information about the
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’global’ error statistics. It may be inferred therefore that a greater number of ensemble members

than Hessian singular vectors are required to accurately assess the effects of observations on the

forecast error in the verification region. However the ensemble used in the ensemble transform

Kalman filter is available ’for free’ from the ensemble forecast Majumdar et al. (2001) whereas

the computationally expensive targeting Hessian singularvectors are an added expense to the rou-

tine forecasting system. A very significant difference between the ensemble transform Kalman

filter and the Hessian reduced rank is that while the former takes into account the dynamical evo-

lution of the errors betweent0 andt1 the latter does not since the Hessian of the 3D/incremental

4D VAR cost function is not flow dependent. Kim et al. (2004) propose targeting observations

to locations where non-linearly evolved singular vectors have large amplitude. In the method of

Kim et al. (2004) the singular vectors are computed for the interval t0 to t2 and the target lo-

cations specified using the right singular vector non-linearly evolved tot1. Hamill and Snyder

(2002a) consider the use of background error covariance estimates obtained from an ensemble

Kalman filter to specify the location of observations required to optimally improve the analysis at

t1. This method uses the flow dependent background errors to specify the error statistics att1 but

takes into account that these error statistics may not correspond to the error statistics assumed by

the operational data assimilation system. Although, it must be stressed that the method of Hamill

and Snyder (2002a) is designed to improve the analysis att1 and not the forecast att2. Hamill

and Snyder (2002a)do define a method for determining the forecast improvement att2, but this

additional method is only applicable if an ensemble Kalman filter is used operationally.

23



Chapter 1 Introduction

1.3 Thesis Summary

This thesis covers topics in two areas. In the first half of thethesis, the dynamics of singular

vectors in the Eady model are discussed. In the second half ofthe thesis, this discussion is then

extended to adaptive observations. In this thesis the role of dynamically evolved background er-

rors on the efficacy of targeted observations is examined. Inparticular the effect of using evolved

singular vectors to specify the dynamically organised component of the background error is in-

vestigated. In the first half of the thesis the dynamics of singular vectors in the Eady model are

investigated. In the second half the use of singular vectorsin targeting is investigated. Firstly

the effect of singular vector dynamics on the location of targets identified using singular vectors

is investigated, by considering the singular vector targeting function (e.g. Buizza and Montani

(1999)), which is usually a vertical integral, in the height-zonal plane. Following this a new

targeting method, that utilises these evolved singular vectors to approximate the leading eigen-

vectors of the flow dependent background errors, is introduced. The evolved singular vectors are

combined with the singular vectors used in current singularvector targeting schemes (e.g. Buizza

and Montani (1999)) to estimate the reduction in forecast error variance which will be obtained

from a given deployment of observations. Although this targeting method uses a flow dependent

background error covariance model, it does not rely on the assumption that the operational data

assimilation system is a Kalman filter, as is the case of the ensemble transform Kalman filter

(ETKF) method; Bishop and Toth (1999).

The thesis is divided into chapters as follows:

Chapter 2 contains a description of the Eady model used in this thesis.

Chapter 3 contains an analysis of the singular vectors of theEady model.
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Chapter 4 contains a examination of the sensitivity based singular vector targeting, in the context

of the Eady model singular vectors.

Chapter 5 contains the description of a new singular vector based targeting method, and the anal-

ysis of the method in the context of the Eady model singular vectors.

Chapter 6 contains a summary of the main conclusions of this thesis.
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CHAPTER 2

The Eady model

2.1 Introduction

This chapter contains a summary of dynamical properties of the two dimensional Eady Equations.

Discrete versions of the two-dimensional Eady equations are used to define the numerical model

used for experiments in this thesis. The present chapter focuses on the properties of the continuous

equations. The properties of the discrete equations are discussed briefly in the next chapter and in

detail in Appendix A.

The purpose of the present chapter is three-fold. Firstly, the physical motivations of the quasi-

geostrophic equations, upon which the Eady Equations are based, are explained in Section 2.2.

The aim of the discussion of the quasi-geostrophic equations is to motivate the Eady model as a

model of the ’dynamic atmosphere’, and set it in the context of a ’more complete’ model of the

atmosphere. The second purpose for the present chapter is todefine the Eady Equations. Section

2.3 contains the formulation of the Eady Equations. The third purpose of the present chapter

is to introduce the properties of the solutions and dynamical growth mechanisms of the Eady

model which will prove relevant to later discussions. Thesesolutions and growth mechanisms are

described in Section 2.4.
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2.2 The Inviscid, Adiabatic, quasi-geostrophic equationsfor incom-

pressible flow on a Mid-latitudef -plane.

The quasi-geostrophic equations approximate the dynamicsof synoptic scale (horizontal scales of

∼ 103km) depressions in the mid-latitude region (30 to 70 degrees north/south of the Equator).

It is from these equations that the Eady model is obtained. Inthis section, we will introduce

the quasi-geostrophic equations. The intention here is to highlight the underlying physics and

dynamics that motivate the equations, rather than to give a fully fledged derivation. A more

detailed treatment of this topic can be found in many fluid dynamics texts such as Pedlosky

(1979) or Holton (1992).

We shall define the quasi-geostrophic equations in Cartesian coordinates and neglect the effects

of the curvature of the Earth. Thex coordinate shall point eastwards, they coordinate northwards

and thez coordinate upwards. Due to the assumed orientation we shallrefer to thex, y, andz

coordinates as the zonal, meridional and vertical coordinates respectively. We will usei, j , k to

denote unit vectors in thex, y andz directions respectively. All parameters will be chosen to be

consistent with the Mid-latitudes.

Many assumptions about, and approximations of, the nature of fluid flow in the atmosphere have

to be made, to obtain the Quasi-geostrophic equations. For concision, we shall list some of the

more basic ones here. Firstly, the atmosphere is assumed to obey the ideal gas law

ρ =
p

RT
(2.1)

whereρ, p andT are the air density, pressure and temperature respectivelyandR is the gas con-
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stant. Secondly, the effects of internal and external frictional forces on the atmosphere have been

neglected. Without these viscous effects, deceleration ofthe winds, by the conversion of kinetic

energy associated with air flow, to thermal energy does not occur within the equations. Thirdly,

diabatic effects due to the presence of water vapour in the atmosphere have been neglected. This

third assumption means that the transfer of thermal energy by evaporation and condensation does

not occur within the Quasi-Geostrophic equations. Fourthly, due to the rotation of the Earth all

fluid elements experience a centripetal acceleration pointing towards the axis of rotation. The

effects of this centripetal acceleration are small and are omitted from the equations. Also due to

the fact that the coordinates are defined in a rotating frame of reference all fluid elements expe-

rience an ’apparent’ acceleration known as the Coriolis acceleration. For the Quasi-geostrophic

equations only the vector component of the Coriolis acceleration pointing in the vertical direction

is retained. The horizontal vector components of the Coriolis acceleration are assumed to be neg-

ligible away from the Equator. A further simplification to the Coriolis acceleration can be made

by assuming the magnitude of vector component pointing in the vertical direction has the constant

valuef0 at all latitudes. Assuming a constant Coriolis acceleration is referred to as thef -plane

approximation1. The ’β effect’ accounts for accelerations due to increased (decreased) planetary

vorticity, when moving in a northwards (southwards) direction, and is important in defining the

planetary scale wave (Rossby wave) motion. Making thef -plane approximation removes the

’β effect’ and therefore planetary scale motion is poorly represented in the equations of motion.

Finally, the gravitational acceleration is assumed to takethe constant valueg at all locations.

We have already made several general simplifying assumptions about the properties of atmo-

spheric motion in the Mid-latitudes. A large number of further simplifying assumptions can be

1Thef -plane approximation is an extension to the ’standard’ Quasi-Geostrophic Equations
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made based on observations of the weather systems they are designed to describe. As Eady (1949)

puts it, the dynamical equations can be simplified by ’the omission of all those terms which do

not make a major contribution to the particular type and scale of motion envisaged’. For the

quasi-geostrophic equations the type of motions envisagedare mid-latitude depressions. Obser-

vations of these cyclonic disturbances reveal that: they are convectively stable; they have typical

length and heightL =∼ 103km and H =∼ 10km respectively; and they have typical ve-

locities U =∼ 10ms−1. With these properties in mind we shall now demonstrate the further

simplifications that lead to the quasi-geostrophic equations.

Firstly for convectively stable systems we may (in almost all cases) neglect vertical accelerations

and use hydrostatic balance to describe the vertical structure of the atmosphere; Eady (1949).

Hydrostatic balance is a balance between the force due to vertical pressure gradients and the

gravitational force; i.e.

∂p

∂z
= −ρg; (2.2)

wherep is the pressure andρ is the density. The mid-latitude cyclones we wish to describe appear

as small time dependent eddies in a largely hydrostatic atmosphere; the thermodynamic state of

the atmosphere can be expressed as a sum of the stationary component depending on height alone

and an eddy component depending on all spatial coordinates and time thus

p(x, y, z, t) = ps(z) + pe(x, y, z, t), (2.3)

ρ(x, y, z, t) = ρs(z) + ρe(x, y, z, t), (2.4)

θ(x, y, z, t) = θs(z) + θe(x, y, z, t), (2.5)
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where the subscriptss ande denote the stationary and eddy components respectively andθ is the

potential temperature. The potential temperature is related to the actual temperature by

θ = T

(

p0

p

)
R

Cp

(2.6)

whereCp is the specific heat at constant pressure andp0 is a constant reference pressure, com-

monly chosen to be mean sea-level pressure. It is worth noting here that by definition the wind

velocity makes no contribution to the stationary state and is associated solely with the eddy com-

ponents of the atmosphere. With the cancellation of small terms and the approximation of the

stationary state density and potential temperature by meanvalues, we can ’subtract out’ the sta-

tionary state and define the quasi-geostrophic hydrostaticequation

f0
∂ψ

∂z
= b, (2.7)

where

b = g
θe

θ0
(2.8)

is a buoyancy parameter, the stream-functionψ = p/f0ρ0 is a scaled pressure perturbation and

ρ0 andθ0 are the mean values of the stationary state density and buoyancy. The quasi-geostrophic

hydrostatic equation, describes the balance of gravitational and vertical pressure gradient forces

for the eddy components of the atmospheric state. Taking mean values of the stationary state den-

sity and potential temperature is justifiable in this equation on the grounds that observations of the

atmosphere indicate that the magnitude of variations in these quantities are small by comparison

to the absolute magnitude.
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Whilst deviations in the magnitude of the stationary state density and potential temperature are

dynamically unimportant, the gradient of these deviationsdoesplay an important role in the dy-

namical evolution of the eddy components of the state. It is the nature of the vertical stratification

of the stationary state that defines the restoring force experienced by air masses displaced in the

vertical direction; i.e. prevents the appearance of convective instability by enforcing the condition

that density is a decreasing function of height. For the quasi-geostrophic equations this stability

property is contained in the static stability parameter

N2 =
g

θs

∂θs

∂z
, (2.9)

which we shall take to have the constant valueN2
0 .

The observed propagation speed of the mid-latitude cyclones we wish to represent are much

smaller than the speed of sound (∼ 330ms−1). Since we do not require to represent disturbances

which travel close to the speed of sound we may neglect the dynamical effects of density gra-

dients and assume that the atmosphere is incompressible; i.e. the density is constant in space

and time. It should be pointed out here that in the quasi-geostrophic equations the effect of the

vertical stratification of the stationary state density is retained implicitly in the static stability pa-

rameter and the effect of the vertical density gradients in the eddy components of the state are

retained implicitly in the definition of the Quasi-Geostrophic hydrostatic equation. Since mass is

conserved in the atmosphere, incompressibility enforces the condition that the net flow of mass

into a volume must be zero and therefore the wind must be non-divergent. Zero divergence can

be expressed mathematically as

∇h · v +
∂w

∂z
= 0, (2.10)
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wherev = ui + vj is the horizontal wind velocity,w is the magnitude of the vertical wind

velocity and

∇h =
∂

∂x
i +

∂

∂y
j

is the horizontal gradient operator.

In the atmosphere, the acceleration of air masses due to horizontal pressure gradients is balanced

by two accelerations. Firstly, by the Lagrangian acceleration; i.e. the change in wind velocity.

Secondly, by the Coriolis acceleration which occurs due to the use of a rotating frame of reference

in the equations. The flow is said to be in geostrophic balanceif the pressure gradient acceleration

is equal and opposite to the Coriolis acceleration. The horizontal wind can be separated into a

geostrophically balanced component, the geostrophic windvg, and an unbalanced component,

the ageostrophic windvag. The geostrophic wind is purely horizontal and is defined by

vg = k ×∇hψ. (2.11)

The geostrophic wind is non-divergent. Since the total windfield is non-divergent (Equation

(2.10)) the sum of the ageostrophic and vertical wind must also form a non-divergent circulation.

For geostrophically and hydrostatically balanced flows, there exists a thermal wind balance rela-

tionship

∂vg

∂z
=

1

f0
k ×∇hb, (2.12)

which relates horizontal gradients of potential temperature2, b, to vertical gradients of the

2N.B. the buoyancy parameter is a scaled potential temperature
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geostrophic wind. For example a negative meridional gradient of potential temperature induces

a positive vertical variation in the zonal geostrophic wind. As we shall see the flow in the mid-

latitudes is dominated by the geostrophic wind. Due to the large meridional temperature gradient

(warm at the equator, cold at the poles) the flow in mid-latitudes is dominated by a zonal wind

component which increases in magnitude with height.

The Rossby number

Ro =
U

f0L
(2.13)

gives an estimate of the typical ratio of the magnitude of theLagrangian acceleration to the Cori-

olis acceleration. When the Rossby number is small the flow isclose to geostrophic balance.

For the mid-latitudes the Coriolis parameter has a valuef0 = 10−4s−1. The typical velocity

and length scales of the cyclones we wish to depict areU ∼ 10ms−1 andL ∼ 103km. With

these valuesRo ∼ 0.1 and the flow is nearly in geostrophic balance and the geostrophic wind

dominates. Since the flow is dominated by the geostrophic wind we can ignore advection of the

eddy components of the state by the ageostrophic and vertical winds; therefore the application of

the Lagrangian time derivative to the eddy components of thestate can be approximated by the

geostrophic Lagrangian time derivative

Dg =
∂

∂t
+ vg · ∇h. (2.14)

For adiabatic motion, the internal energy of the system remains constant, and entropy is con-

served. For the atmosphere, this is equivalent to assuming that potential temperature is conserved

following the flow. Using the approximation of the Lagrangian time derivative by the quasi-
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geostrophic Lagrangian time derivative, potential energyis only approximately conserved. This

approximate conservation is enforced by the thermodynamicequation

Dgb+N2
0w = 0. (2.15)

The second term (N2
0w) of this conservation law stems from the advection of the stationary state

potential temperature by the vertical wind. It is assumed that the magnitude of this vertical ad-

vection is too small to significantly alter the properties ofthe stationary state.

On anf − plane the quasi-geostrophic horizontal momentum Equation is defined

Dgvg + f0k × vag = 0. (2.16)

Several terms have been neglected in this equation, most notably the time derivative of the

ageostrophic wind. The ’neglect’ of these terms is only valid if the Rossby number is small.

Applying ∇h× to the quasi-geostrophic horizontal momentum Equation (2.16) and taking the

vertical derivative of the Thermodynamic Equation (2.15),we can combine these two equations

to form

Dg

(

1

f0
∇h × vg +

1

N2
0

∂b

∂z

)

= −∇ ·
(

vag + wk
)

. (2.17)

Since the divergence of the combined ageostrophic and vertical wind is zero we may define a

quasi-geostrophic potential vorticity

q = ∇h × vg +
f0

N2
0

∂b

∂z
(2.18)

which is conserved following the geostrophic flow. The first term on the right hand side of Equa-
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tion (2.18) is the vertical component of the vorticity of thegeostrophic wind. The second term

on the right is the vertical gradient of the potential temperature,b. The conservation of potential

vorticity expresses the fact that positive tendencies of vorticity (i.e. deepening of low pressure

systems) are associated with negative tendencies in potential temperature gradient (i.e. warming

at upper levels and cooling at the surface). For negative tendencies in vorticity the opposite is true

so that the development of high pressure systems is associated with cooling above and heating at

the surface. From a physical point of view this heating and cooling is induced by the transport

of warm air from the surface (for low pressure systems) and cold air from upper levels (for high

pressure systems) via the circulation of combined ageostrophic and vertical winds.

From a mathematical point of view the ageostrophic-vertical circulation plays only a diagnostic

role in the quasi-geostrophic equations and the evolution of the flow is determined by the conser-

vative advection of Quasi-Geostrophic potential vorticity by the geostrophic wind. i.e.

Dgq = 0. (2.19)

The quasi-geostrophic potential vorticity can be written as a Laplacian function of the quasi-

geostrophic stream-function

q = ∇2
hψ +

f2
0

N2
0

∂2ψ

∂z2
. (2.20)

With suitable boundary conditions, the potential vorticity can be inverted to obtain the stream-

function field; Hoskins et al. (1985). Once the stream-function is known, every aspect of the

flow can be determined. The quasi-geostrophic equations therefore comprise a simple prognostic

Equation (2.19) which along with suitable (usually time evolving) boundary conditions and the

Laplacian Equation (2.20) can be used to integrate a chosen initial condition forward in time.
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Despite the apparent simplicity of the equations non-linearities associated with the advection of

potential vorticity by the geostrophic wind (which dependson the potential vorticity) have so

far prevented the discovery of an analytical solution. To make the Quasi-Geostrophic Equations

solvable by analysis requires further simplifications. Eady (1949) defined a linearised formulation

of the Quasi-Geostrophic equations which allowed both analytical solutions and the retention of

the essential dynamics of cyclogenesis. In the next sectionwe shall introduce the two dimensional

formulation of Eady’s original equations.

2.3 The Two-dimensional Eady Model

In this section, the formulation of the ’Two-Dimensional Eady Equations’ will be described. The

2D Eady Equations are based on a linearisation of the quasi-geostrophic equations about the

time-invariant background state first proposed by Eady (1949). The background state consists of

constant (in space and time) meridional potential temperature gradient

∂b̄

∂y
= −f0Λ, (2.21)

whereΛ is a constant. The over-bar is used to denote a time-invariant background state variable. It

must be stressed that this time-invariant background stateis connected with the eddy components

of the quasi-geostrophic equations and is not part of the stationary hydrostatic state discussed in

the previous section. This time invariant temperature gradient is an approximation to the sus-

tained differential solar heating which supplies the atmosphere with its thermal energy. Through

the thermal wind balance relationship (Equation (2.12)) a vertically sheared zonally orientated
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geostrophic flow

ūg = Λz, (2.22)

is induced. Since the constantΛ defines the vertical wind-shear it is referred to as the wind-shear

parameter. This background state is shown schematically inFigure 2.1.

Figure 2.1 The Eady background state

To obtain the 2D-Eady Equations the following boundary conditions are applied. Rigid surfaces

are assumed to exist on the upper and lower boundaries,z = Z andz = 0 respectively. The

assumption of rigid upper and lower surfaces implies that the vertical velocityw vanishes at

z = 0 andz = Z. Periodic boundary conditions are assumed in the zonal direction, such that

x = 0 ≡ x = X. The meridional coordinate is effectively removed from thedynamical equations
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by assuming that the meridional wavelength of perturbations to the background flow is zero; i.e.

∂ψ′

∂y
≡ 0,















































x ∈ [0,X]

y ∈ (−∞,∞)

z ∈ (0, Z)

t ∈ [0,∞)

, (2.23)

where the dash denotes a perturbation to the background state. Making this assumption is roughly

equivalent to assuming the zonal scale of perturbations to the background flow is much larger than

the meridional scale and means that solutions to the 2D Eady model are ’technically’ solutions to

the full non-linear Quasi-Geostrophic Equations (Green (1960)). One effect of this assumption

is that flow of wind associated with perturbations to the Eadybackground state exists only in the

meridional direction.

With the above boundary conditions the evolution via Equation (2.19) of potential vorticity per-

turbations to the background flow can be written as

{

∂

∂t
+ Λz

∂

∂x

}

q′ = 0,















































x ∈ [0,X]

y ∈ (−∞,∞)

z ∈ (0, Z)

t ∈ [0,∞)

, (2.24)

where the dash denotes a perturbation perturbation to the Eady background state. The definition
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of potential vorticity given in Equation (2.20) becomes

q′ =
∂2ψ′

∂x2
+
f2
0

N2
0

∂2ψ′

∂z2















































x ∈ [0,X]

y ∈ (−∞,∞)

z ∈ (0, Z)

t ∈ [0,∞)

. (2.25)

Once the potential vorticity can be inverted to obtain the stream-function the model state can be

fully determined.

With the vanishing of vertical velocityw atz = 0 andz = Z the thermodynamic Equation (2.15)

becomes

{

∂

∂t
+ Λz

∂

∂x

}

∂ψ′

∂z
− Λ

∂ψ′

∂x
= 0















































x ∈ [0,X]

y ∈ (−∞,∞)

z = 0, z = Z

t ∈ [0,∞)

, (2.26)

on the upper and lower boundaries. This new thermodynamic equation defines the evolution of

normal derivative upper and lower boundary conditions required for the inversion of potential

vorticity.

To ensure that the inversion of potential vorticity subjectto periodic and derivative boundary
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conditions is unique, a further integral constraint

∫ X

0
ψ′dx = 0,















































x ∈ [0,X]

y ∈ (−∞,∞)

z ∈ (0, Z)

t ∈ [0,∞)

, (2.27)

is used. This constraint is equivalent to imposing the condition that all non-zero solutions must

be composed of zonal waves.

Equations (2.23) to (2.27) form a complete set which can be used to determine the evolution of

’quasi-two-dimensional’ perturbations to the Eady background state. In all that follows primes

will be dropped from perturbation quantities and all ’un-barred’ variables will be assumed pertur-

bations to the Eady background state. The subscriptg will be dropped from the geostrophic wind,

since the ageostrophic wind makes no explicit appearance inthe Eady Equations. Also since the

solutions to Equations (2.23) to (2.27) are identical at allmeridional locations, the meridional

coordinatey will be removed from the domain of dependence and solutions will be treated as

two-dimensional.

2.4 Dynamical behaviour of solutions to the 2D Eady Equations

2.4.1 Form of the general solution to the Eady Equations

The 2D Eady Equations outlined form an initial boundary value problem to which the solution is

fully determined if the initial stream-function field is known at every point in space. As was noted

in the previous section solutions to the equations are wave-like in the zonal direction. We shall
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usekn = 2nπ/X to denote the zonal wavenumber of solutions whereX is the zonal extent of the

domain andn > 0 is an integer which we shall call the wave index. Since at eachtime point the

stream-function field must be a solution to the inversion of potential vorticity the total solution to

the equations comprises a particular (non-zero potential vorticity) solution of the form

ψp(x, z, t) = F (z, t)eiknx (2.28)

whereF is a function of height and time, and a homogeneous (zero potential vorticity) solution

of the form

ψh(x, z, t) = {A (t)cosh(knz) + B(t)sinh(knz)} e
iknx (2.29)

whereA andB are functions of time only.

The original solutions of Eady (1949) consisted of only the zero potential vorticity component of

the solution, which depends only on the potential temperature structure on the upper and lower

boundaries. The zero potential vorticity solutions form a discrete set of normal modes (two for

each wavenumber) the behaviour of which shall be discussed in more detail later. Pedlosky (1964)

noted that the normal modes did not form a full set and therefore the contribution from the ’con-

tinuum of modes’ associated with a non-zero potential vorticity field must be taken into account,

in order to fully describe the behaviour of an arbitrary initial disturbance. A full general solution

to the Eady Equations can be found in Pedlosky (1964), but it is not our intention to give any

formal mathematical discussion of this solution other thannoting its dependence on both normal

modes and ’continuum modes’. In the following sections we shall discuss the structure and be-

haviour of the normal modes; then give a a brief explanation of the structure and behaviour of

the continuum modes; we shall then discuss the behaviour of the untilting plane-wave particular
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solution found in Farrell (1984); and finally we will discussthe effect of resonance between the

normal modes and the interior potential vorticity structure.

2.4.2 The Normal Modes of the 2D Eady Equations

The original solutions of Eady (1949) to the Eady Equations contained only the homogeneous

zero potential vorticity component of the solution defined by Equation (2.29). The solutions of

Eady (1949) are of the form

ψh(x, z, t) =

{

sinh

(

N0

f0
knz

)

−
N0

f0Λ
knc cosh

(

N0

f0
knz

)}

eikn(x−ct) (2.30)

where thecomplexphase speed is given by

c =
ZΛ

2
±
f0Λ

Nkn

√

{

NZ

2f0
kn − coth

(

NZ

2f0
kn

)}{

NZ

2f0
kn − tanh

(

NZ

2f0
kn

)}

. (2.31)

The real component of solutions of this type are the normal modes of the Eady model. Since the

second term of Equation (2.31) can be positive or negative there are two normal modes for each

zonal wavenumber. The vertical structure of the normal modedepends on the zonal wavenumber

but is independent of time. The phase speed of the normal modes is given by the real componentcr

of c and an exponential amplification factor is given byknci whereci is the imaginary component

of c.

The real and imaginary parts of the phase speed (normalised by ΛZ) are shown in Figures 2.2A

and 2.2B respectively. For wavenumbers greater than the critical ’short-wave cutoff’ valuekc =

2.4f0/N0Z, c is entirely real and there are two distinct real phase speedsfor each wavenumber

and the normal modes are non-amplifying. Since their amplitude does not change with time
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Figure 2.2 A: Real Normal mode phase speed. B: Imaginary Normal mode phase speed.

these short-wave normal modes are referred to as the neutralmodes of the Eady model. For

wavenumbers smaller than the ’short-wave cutoff’c is complex and both normal modes have real

phase speedcr = HΛ/2 and are exponential growing or decaying in time depending onthe sign

of the imaginary phase speed. Since the background zonal wind varies in height asu(z) = Λz,

the real phase speed of the normal modes corresponds to the background zonal wind-speed at the

heightcr/Λ. The height at which the background zonal wind-speed is equal to the normal mode

phase speed is called the ’steering level’ of the normal mode. From Equation (2.31) it can easily

be verified that the phase speed tends to background zonal wind speed on the upper and lower

boundaries askn tends to infinity; hence the steering levels tend toz = 0 andz = Z.

Figures 2.3A and 2.3B show the height variation of the mean squared stream-function amplitude

ψ̄2(z, kn) =

∫ X

0
ψ2

kn
(z, x)dx

/
∫ Z

0

∫ X

0
ψ2

kn
(z, x)dxdz , (2.32)

of the normal modes as a function of wavenumber; the dashed and solid lines show the normal

mode steering level. For the neutral modes, the amplitude isconcentrated on the boundary nearest

to the steering level height; Therefore the neutral modes may be thought of as being either the
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Figure 2.3 Normal mode mean squared amplitude (Equation (2.32)) as a function of height and

zonal wavenumber. A: Decaying mode/lower boundary neutralmode. B: Growing mode/upper

boundary neutral mode. Figures are plotted from verticallydiscretised continuous normal modes.

upper or the lower boundary neutral mode. One noticeable feature of the neutral modes is that the

amplitude resides predominantly between the steering level and the boundary. As the wavenum-

ber increases the steering level moves closer to the boundary and the normal mode amplitude is

contained in an increasingly shallow region at the boundary.

Unlike the neutral modes, the unstable/stable mode’s amplitude is evenly distributed between both

boundaries. Rather than referring to the upper or lower boundary mode, the two components of

the phase speed refer to the growing and decaying modes. For reference examples of the stream-

function structure of the growing (kn = πNZ/2f0), decaying (kn = πNZ/2f0) and lower

boundary neutral (kn = 7πNZ/8f0) modes are shown in Figures 2.4A, 2.4B, 2.4C respectively.

The upper boundary neutral mode is not shown as this is merelya reflection of the lower boundary

neutral mode about the linez = Z/2. The growing neutral modes have a westward phase tilt with

height and the decaying modes have a eastward tilt with height. The magnitude of these phase

tilts decreases with increasing wavenumber.
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Figure 2.4 The streamfunction fields associated with A: Growing mode. B: Decaying mode. C:

Neutral mode. The figures are generated by discretising the continuous normal mode.

2.4.3 The ’Continuum Modes’ of the Eady Equations

The normal modes of the Eady model form a discrete set of perturbations associated with the

potential temperature structure on the upper and lower boundaries. Pedlosky (1964) noted that

since there are only two normal modes for each zonal wavenumber, the normal modes do not

form a full set and therefore cannot be used to represent an arbitrary initial disturbance. In order

to be able to represent an arbitrary initial disturbance thecontribution from the potential vorticity

structure in the interior must be taken into account. Using interior potential vorticity perturbations

of the form

q(x, z, t) = Qδ(z − z0)e
ikn(x−Λz0t), (2.33)

whereQ is a constant wave-amplitude,

δ(z − z0) =















0, z 6= z0,

1, z = z0,

(2.34)
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is the Dirac delta function andz0 ∈ (0, Z) is a constant, Pedlosky (1964) solved the 2D Eady

equations in generality. The solution given by Pedlosky (1964) is an unwieldy equation and is not

repeated here; however we shall discuss the some of the qualitative features.

Equation (2.33) defines a zonally orientated potential vorticity travelling wave residing solely at

heightz0. The phase speed of the potential vorticity wave is equal to the background zonal wind

speedu(z0) = λz0 at the heightz0. The stream-function field associated with the potential vor-

ticity wave must satisfy the boundary conditions. For a single potential vorticity wave Pedlosky

(1964) found that he could write the solution as a summation of three separate time dependent

components. The first two of these components are constant multiples of the Eady normal modes

defined by Equations (2.30) and (2.31); where the constant isdefined by the projection of the

initial condition onto the respective normal mode. The third term is the particular solution associ-

ated with the potential vorticity wave. This particular solution comprises a vertically distributed

stream-function field travelling with the phase speed of thepotential vorticity wave. The full so-

lution to the problem is formed from an infinite sum of the potential vorticity wave solutions. The

stream-function fields associated with potential vorticity waves of the form of Equation (2.33)

are collectively known as the continuum modes of the Eady model. The phase of the continuum

modes is constant in height. The phase speed of each continuum mode is equal to the phase speed

of the potential vorticity wave with which it is associated.

A notable feature of the continuum modes is the difference instructure of the low and high

wavenumber modes. To demonstrate this difference Figures 2.5A and 2.5B show the variation

of mean squared stream-function amplitude (Equation (2.32)) with height (y-axis) as a func-

tion of zonal wavenumber (x-axis) for single potential vorticity waves located atz0 = Z/2 and

z0 = 3Z/4 respectively. For reference the dashed and solid black lines show the steering level

46



Chapter 2 The Eady model

height and the dotted black line shows the location of the potential vorticity wave. When the

potential vorticity wave is located in the centre of the domain (Figure 2.5A) the low wavenumber

continuum modes have equal amplitude maxima on the upper andlower boundaries, whereas the

high wavenumber modes have a single amplitude maxima at the location of the potential vorticity

wave. The ’intermediate’ wavenumbers have three maxima onelocated in the centre and one on

each boundary. When the location of the potential vorticitywave is moved toz0 = 3Z/4 (Figure

2.5B) those wavenumbers for which the potential vorticity wave remains sufficiently below the

steering level still have amplitude maxima located at the position of the potential vorticity wave;

whereas those wavenumbers for which the potential vorticity wave is close to or above the upper

boundary steering level have maximum amplitude on the upperboundary.

It is interesting to note that at the high wavenumber end of the zonal spectrum the continuum

modes associated with a potential vorticity wave located near the centre of the domain have neg-

ligible amplitude above (below) the upper (lower) boundarysteering level; whereas the ampli-

tude of normal modes (Figure 2.3) resides almost exclusively above (below) the upper (lower)

boundary steering level. The result of this disparity of structure is that for high wavenumbers the

potential vorticity waves located near the centre of the domain are ’dynamically isolated’ from

the normal modes. By contrast at the low wavenumber end of thezonal spectrum the amplitude

of both the normal modes and the continuum modes is concentrated on the boundaries. This is a

point that we shall return to in our analysis of the singular vector structure of the Eady model.

With the inclusion of the continuum modes in the solution to the 2D Eady Equations there exist

several growth mechanisms additional to the exponential growth associated with the unstable nor-

mal modes. These mechanisms are growth by unshielding/untilting of potential vorticity, growth

by the unmasking of normal modes which are initially masked by continuum modes and growth
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Figure 2.5 Continuum mode streamfunction-squared amplitude as a function of height and

wavenumber. A: For a potential vorticity wave residing atz/Z = 0.5. B: For a potential vorticity

wave residing atz/Z = 0.75. Figures are plotted using discretised continuous continuum modes

taken from the solution given in Pedlosky (1964).

by the resonance of the normal modes with the continuum mode located close to the steering level.

Starting with potential vorticity untilting/unshieldingthe properties of these three amplification

mechanisms will be outlined in the subsequent three sections of this chapter.

2.4.4 Potential Vorticity Untilting/Unshielding

Streamfunction amplification via untilting/unshielding relies on the principle of constructive and

destructive superposition of streamfunction waves. For example two superposed streamfunction

waves with the same wavenumber will sum to give a larger amplitude wave if they are in phase.

By contrast the two waves will cancel to give a lower amplitude wave if they are out of phase.

As we have seen in our analysis of the continuum modes of the Eady model, a potential vorticity

wave located at a particular height induces a stream-function field throughout the domain. The

phase speed of this stream-function field is equal to that of the potential vorticity wave. Since
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the phase speed of the potential vorticity waves varies withheight, the phase speed of superposed

streamfunction fields associated with potential vorticitywaves on different levels differs. Due

to this difference in phase speed, initially out of phase streamfunction fields can be brought into

phase by the advection of the potential vorticity. As the streamfunction fields are brought into

phase they become increasingly constructively superposed, leading to amplification. This growth

by superposition is encapsulated in the untilting solutionof Farrell (1984).

Farrell (1984) solved the Eady equations for the particularinitial condition3

ψ(x, z, 0) = ei(kx+m0z) = eik(x+a0z), (2.35)

wherek is the zonal wavenumber,m0 is the initial vertical wavenumber anda0 = m/k. The

initial condition given in Equation (2.35) describes uniform amplitude wave-field in which the

phase of the zonal waves is constant along planes which tilt with an angleφ0 = − tan−1 a0 to

the vertical. Since the parametera0 = m/k defines the initial tilt angle of the planes of constant

phase we shall call this theinitial tilt . Following Orr (1907), Farrell (1984) found a particular

solution to the interior potential vorticity equation of the form

ψp(x, z, t) =
(1 + a2

0/S)

[1 + (a0 − Λt)2/S]
eik(x+[a0−Λt]z) =

(1 + a2
0/S)

[1 + a2(t)/S]
eik(x+a(t)z), (2.36)

whereS = N2
0 /f

2
0 anda(t) = a0 − Λt. We shall calla(t) the tilt . For a positive initial tilt the

evolution described by Equation (2.36) may be summarised asfollows: The initial plane wave

structure has a westward tilt with height; over time the tiltreduces due to differential advection

3Since we are dealing with the 2D Eady model the meridional coordinate has been omitted from Farrell (1984)’s

solution.
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by the shear flow; along with this reduction in tilt the amplitude increases as per

|ψ| =
(1 + a2

0/S)

[1 + (a0 − Λt)2/S]
=

(1 + a2
0/S)

[1 + a2(t)/S]
; (2.37)

the amplitude reaches a maximum value of1+a2
0/S at timet = a0S/Λ; at t = a0S/Λ the planes

of constant phase are parallel to the vertical; beyondt = a0S/Λ the plane waves begin to tilt

eastwards and the amplitude decays with time.

The reason for the amplification of the untilting plane-wavecan be interpreted by considering

the associated potential vorticity field. The particular solution (2.36) is associated with a tilted

potential vorticity plane-wave field of the form

qp(x, z, t) = −k2(1 +
a2

0

S
)eik(x+a(t)z). (2.38)

This potential vorticity field can be viewed as the infinite sum of potential vorticity waves of

the form Equation (2.33). Each of these potential vorticitywaves induces a vertically distributed

streamfunction field with uniform phase. When the potentialvorticity waves on different levels

are out of phase (i.e. the plane-waves are tilted) the streamfunction fields associated with these

potential vorticity waves are also out of phase leading to destructive superposition. As the po-

tential vorticity waves are brought into phase by the shear-flow the streamfunction function fields

are also brought into phase leading to constructive superposition. On a domain of infinite vertical

extent the amplitude of a streamfunction field associated with a potential vorticity wave would

decay with vertical distance from the potential vorticity ’source’; Bishop and Thorpe (1994). In

this infinite domain case the behaviour of the solution in time could be entirely characterised by

the untilting potential vorticity plane-waves and the local interactions between the streamfunc-

tion fields associated with the potential vorticity structure on adjacent vertical levels. However
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the structure of the continuum modes is not in general consistent with that of potential vorticity

waves on an infinite domain and the effect of the upper and lower boundaries on the behaviour of

the solution must be taken into account. In order to satisfy the boundary conditions a contribution

from the homogeneous component of the solution is required.The full solution takes the form

ψ(x, z, t) = ψp(x, z, t) + (A (t)cosh(k/z) + B(t)sinh(kz)) eikx, (2.39)

whereA (t) andB(t) are chosen to satisfy the particular initial condition; Farrell (1984). As we

shall see in the following chapter, the presence of this homogeneous solution plays an important

role in determining the structure of the singular vectors ofthe Eady model. It is worth noting

that unlike the continuum mode solutions of Pedlosky (1964), the behaviour of the homogeneous

component of the plane-wave streamfunction solution is nottrivially related to that of Eady’s

normal mode solutions.

2.4.5 Modal Unmasking

Modal unmasking (Morgan and Chen (2002)) is similar to potential vorticity unshielding in that

it relies on the constructive and destructive superposition of the streamfunction fields associated

with different modes. In modal masking the streamfunction field associated with a normal mode

is ’masked’ by the superposed streamfunction fields associated with the continuum modes. Due

to the difference in phase speed between the continuum modesand normal modes, the normal

mode is ’revealed’. This revealing can be caused either because the net streamfunction field of

the continuum modes decays away due to potential vorticity untilting or because the difference

in phase speed of the normal and continuum modes means that the, initially out of phase, normal

and continuum modes are brought into phase.
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2.4.6 Neutral Mode Resonance

Neutral mode resonance is somewhat akin to the exponentially amplifying resonance of the long-

wave normal modes. Neutral mode resonance occurs, however,for wavenumbers greater than

the short-wave cutoff. The essential component of neutral mode resonance is that a potential

vorticity wave resides at the steering level of the neutral normal mode. When this occurs the

interaction between the continuum and normal mode leads to linear amplification of the potential

temperature wave which is sustained indefinitely; Thorncroft and Hoskins (1990). For discrete

numerical models exact neutral mode resonance can only occur if the steering level height for a

particular wavenumber is co-located with one of the models vertical levels and in practice only

approximate resonances are likely; Chang (1992). Unlike the potential vorticity unshielding and

modal unmasking mechanisms, neutral mode resonance (and normal mode resonance) lead to

indefinite growth.
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CHAPTER 3

The Singular Vectors of The 2D Eady model

3.1 Introduction

The use of singular vector decompositions of linearised dynamical models has become common

in meteorological centres; for example in the generation ofperturbations for ensemble forecasts

Molteni et al. (1996). Singular vectors have come to be associated with the notion of ‘opti-

mal growth’ over finite time intervals; e.g. Buizza et al. (1993). The use of singular vectors to

obtain optimally amplifying perturbations, rather than considering normal modes/eigenvectors,

lies in the fact that since the linear operator associated with small perturbation dynamics in the

atmosphere are not symmetric, their eigenvectors are not orthogonal and therefore a linear com-

bination of eigenvectors may achieve finite time amplification greater than that implied by the

largest eigenvalue; Farrell and Ioannou (1996). The rapid,but transient amplification of singular

vectors has lead them to be associated with rapidly growing forecast errors [e.g. Farrell (1990),

Lorenz (1965)] and the initial stages of rapid cyclogenesis[e.g. Farrell (1989)].

In this chapter the singular vector structure of the 2D Eady model will be described. The work

presented in this chapter follows on from that found in Frameet al. (2005). The singular vectors

of the Eady model with rigid upper and lower boundaries have been presented previously by

Mukougawa and Ikeda (1994), Morgan (2001), Morgan and Chen (2002) and Kim and Morgan

(2002). Several further related studies on the subject of optimal perturbations/singular vectors
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exist. Fischer (1998) discusses the optimally growingmodalstructures of the Eady model with

uniform potential vorticity. De Vries and Opsteegh (2005) discuss the singular vectors of the

Eady model without rigid upper boundaries. The motivation behind the present discussion of this

subject is twofold. Firstly this chapter serves to illustrate properties of the Eady singular vectors

which will prove relevant to later discussions of adaptive observations. Secondly all previous

published discussions have approached the problem from a purely optimal growth perspective,

limiting their discussions to the growth mechanism of the first singular vector. In our treatment

of the subject we take a predictability standpoint, analysing the effect of the dynamical growth

mechanisms on the structure of the full spectrum of singularvectors.

To be concise, we shall focus our discussions on the singularvectors computed for a short and

intermediate integration length. For the short integration a integration length ofτ = 1.73N0/f0Λ

is used. This integration length is approximately12h with the parameters assumed in the model.

For the intermediate integration a time-scaleτ = 6.91N0/f0Λ, corresponding to an integration

of approximately48h, is used. The choice to focus on these two particular integration lengths is

made as they are characterised by distinct dynamical processes. For the short forecast untilting

is the dominant amplification mechanism and explains much ofthe structure and behaviour of

the singular vectors. For the intermediate integration length modal masking is significant and the

singular structure deviates from that expected from the untilting mechanism although untilting is

still important to the singular vector. In a sense we can identify two amplification regimes: the

untilting/unshielding regime which exists for short integration times; and the modal unmasking

regime which exists at longer integration times.

The concept of two dynamical regimes for leading singular vector growth in the European Centre

for Medium-Range Weather Forecasting model has been proposed previously by Hoskins et al.
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(2000). Hoskins et al. (2000) attribute the second regime tolong term normal mode-like growth

due to coupling of potential vorticity with the surface, rather than to transient growth, which can

be interpreted as a modal unmasking effect. Hoskins et al. (2000) propose the transition point

between the two regimes be defined using ‘the two dimensionalquasi-geostrophic expression for

the vertical group velocity of Rossby waves’, with the second regime occuring when the singular

vector energy has propagated to the upper boundary. For the 2D Eady model, in which the merid-

ional potential vorticity gradient is zero, there is no Rossby wave motion and such a definition is

not applicable. In contrast to Hoskins et al. (2000) we find that the transition from the unshield-

ing regime occurs roughly when the integration length is sufficient for a potential vorticity wave

located near the steering level to achieve aπ phase transition relative to the normal mode. As we

shall see, a further implication of this requirement that short wavelength perturbations will enter

the modal unmasking regime at shorter integration lengths than long wavelength perturbations.

Whilst it would be interesting to investigate further the links/contradictions between these two in-

terpretations of the ‘regimes of singular vector growth’, such an investigation will not be included

in this thesis.

The chapter is divided into three sections. In the first section, we outline the singular vector

computation. In the second section we examine the implications of plane-wave untilting and

modal unmasking growth mechanisms for singular vector growth, by considering the properties

of continuous solutions to the Eady model. In the third section, we examine the singular vectors of

the Eady model themselves and seek to relate these to the properties discussed in the first section.

By examining the functional form of the plane-wave solutionof Farrell (1984), several properties

of the untilting mechanism related to singular vectors are identified. Firstly, the optimal initial

tilt for streamfunction amplification over a given finite time interval is identified. It is noted that,
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for short time intervals, this optimal tilt is larger than that which would render the plane waves

completely vertical within that time interval. By determining the necessary condition for orthogo-

nality between plane-waves, it is found that the differencein tilt between orthogonal plane waves

is smaller for high wavenumbers than for low wavenumbers. The similarity of the initial tilts of

orthogonal planes at high wavenumbers implies that the finite time amplification of orthogonal

plane waves is more similar at high wavenumbers than low wavenumbers. This means that, when

the amplification of singular vectors other than the first is taken into account, the high wavenum-

bers will be dominant. Although they are not of exact plane-wave form it is found that the12h

singular vectors share the properties of the plane-waves outlined above. It is found that the prop-

erties of the singular vectors are more similar to that of plane-waves at high wavenumbers. This

increased similarity is attributed to the fact that the normal modes have shallower structure at high

wavenumbers and therefore do not ’interfere’ as much in the potential vorticity dynamics at high

wavenumbers.

By extending the concept of an optimal height for modal unmasking of a potential vorticity wave,

that was proposed by De Vries and Opsteegh (2005), the requirement for modal unmasking to lead

to large amplification is inferred. This requirement is thatthe optimal unmasking height coincide

with the region just above (below) the lower (upper) boundary steering level, where the projection

of the continuum modes onto the normal mode is potentially large. Through this connection it

is implied that the transition from the untilting to modal masking regime will occur at shorter

integrations for small zonal scales, than for large zonal scales. Furthermore it is hypothesised that

unlike untilting, modal unmasking cannot characterise thegrowth of large numbers of singular

vectors. This is because modal masking requires the continuum modes to conceal two specific

normal modes, whereas untilting requires that a multiplicity of continuum modes conceal each
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other.

3.2 Definition and Computation of the Eady Model Singular Vectors

3.2.1 Definition of the singular vectors

The singular value decomposition was introduced in Chapter1. For convenience we shall re-

iterate the basic points again here. We shall also make definitions of the matrices used in the

singular vector computation which are specific to Eady modelsingular vectors computed in this

thesis. We shall use the matrixL ∈ R
Ng×Ng to denote an integration of a numerical version of

the Eady model over a finite time intervalτ . The operation of the matrixL is summarised by the

matrix vector equation

ψ(τ) = Lψ(0) (3.1)

whereψ ∈ R
Ng is vector of grid-point streamfunction values andNg is the number of grid-points.

It is worth noting here that the matrixL will be used only for the Eady model. For discussions of

general linearised dynamical models the matrixM will be used.

As was discussed in the previous chapter, the quasi-geostrophic approximations from which the

Eady model is derived are only applicable to scales of order103km. However for reasons of

numerical accuracy, which will be discussed in the next section, the numerical model resolves

zonal wavelengths much smaller than103km. To filter these smaller zonal wavelengths from the

initial conditions we define a reduced rank discrete Fouriertransform matrixF ∈ R
2Nk×Ng . The

matrix F transforms the grid-point streamfunction vectorψ ∈ R
Ng to the lower dimensional
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vector of streamfunction Fourier coefficientŝψ ∈ R
2Nk , whereNk is the number of resolved

wavelengths greater than a chosen truncation. For the experiments presented in this thesis the

wave-spectrum is truncated at0.8N0Z/f0 which corresponds to800km with the parameters used

in the Eady model. The reverse Fourier transformation is performed by the matrixF T . Since

the rows ofF are orthonormal [Golub and Van Loan (1983)],F T is the pseudo-inverse [Golub

and Van Loan (1983)] ofF . For grid-point streamfunction vectorsψ which do not contain zonal

wavelengths shorter than0.8N0Z/f0, the following relationships are satisfied:

‖ψ‖2 = ‖Fψ‖2, (3.2)

F TFψ = ψ; (3.3)

however these relationships are not satisfied ifψ contains wavelengths smaller than the cutoff

wavelength. For grid-point streamfunction vectors which do contain wavelengths shorter than

0.8N0Z/f0 multiplication by the matrixF TF removes these smaller wavelengths, leaving the

wavelengths longer than0.8N0Z/f0 unchanged. The matrixF TF is a discrete Fourier filter.

The Eady model singular vectors are computed from the matrixLF TF ∈ R
Ng×Ng . The use of

an initial time Fourier filter is consistent with the singular vector computation methods employed

using more complex models in meteorological centres; e.g. Buizza (1997), LI et al. (2005).

The mathematical properties of the singular vectors are summarised thus. The singular vectors

consist of two complete orthonormal bases. One basis is formed from the right singular vectors

vi ∈ R
Ng , and the other from the left singular vectorsui ∈ R

Ng . Since they form orthonormal
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bases the singular vectors satisfy the relationships

vT
i vj =















1, i = j

0, i 6= j

, (3.4)

and

uT
i uj =















1, i = j

0, i 6= j

. (3.5)

The left and right singular vectors are linked by the equation

LF TFvi = σiui, i ∈ [1, 2, . . . Ng]. (3.6)

whereσi ∈ R is the corresponding singular value. By convention the singular values and vectors

are ordered such that

σ1 ≥ σ2 ≥ . . . σNg ≥ 0. (3.7)

The right singular vectors can be interpreted as a set of orthogonal initial states. Each of these

initial states evolves over the finite time interval to the corresponding left singular vector mul-

tiplied by the singular value. Since the left singular vectors are orthogonal to each-other, each

of the final states are also orthogonal to each-other. The singular vectors can be viewed as a set

dynamical perturbations for which each perturbation is orthogonal to every other perturbation in

the set at the beginning and at the end of a finite integration.It is this orthogonality property in

combination with the ordering of the singular vectors that guarantees that a linear combination

of singular vectors cannot amplify more than the first singular vector over the integration period

[Farrell and Ioannou (1996)].
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An important aspect of singular vectors is that, since they form a complete basis for the model

phase space, there are the same number of singular vectors asthere are degrees of freedom in

the model. It is worth noting here that, due to the presence ofthe Fourier filter matrixF TF ,

degrees of freedom corresponding to zonal wavelengths shorter than0.8N0Z/f0 are associated

with zero singular values. The set of the firstm right singular vectors contains the maximum

information containable inm vectors about the effect of initial random perturbations onthe final

state. Here the term ’random perturbations’ refers to perturbations which are random with respect

to the initial inner product and ’the effect on the final state’ is measured in terms of the norm

deriving from the final inner product. For the Eady model singular vectors computed in this thesis

the 2-norm of the streamfunction field is used as both the initial and final norm. The choice of

norm will be discussed more thoroughly in Section 3.2.3.

3.2.2 Computation of the singular vectors

The singular vectors are computed from the matrixLF TF corresponding to a finite integration

of a numerical version of the Eady model. The details of the discrete equations can be found

in Appendix A but we shall note some of the basic points here. The model is formulated on

a numerical grid withNx = 120 grid points zonally andNz = 51 grid points vertically. The

discrete streamfunction field is defined on all grid-points.The potential vorticity is defined on

all grid-points except the upper-most and lower-most vertical levels. The boundary potential

temperature is defined on the upper-most and lower-most level. The streamfunction is related to

potential vorticity using a5−point approximation to the Laplacian operator and to the upper and

lower boundary potential temperature using a one-sided difference approximation to the vertical

derivative. The use of one-sided approximations to the vertical derivative is motivated by the
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fact it allows the numerical model state to be determined by knowledge of the streamfunction

at all grid-points. The zonal derivative is approximated using the ’leapfrog’ scheme. The zonal

advection equations are solved using a centred-time centred-space scheme.

All calculations are performed on a physical domain of dimensionX = 8 × 103km andZ =

10km corresponding to spatial steps∆x = 66.6̇km and∆z = 0.2km respectively. A time-

step∆t = 11.0min is used. Parameter valuesf0 = 10−4s−1, N0 = 10−2s−1 andΛ = 4 ×

10−3s−1 are used. For numerical accuracy, the time, zonal and vertical coordinates are non-

dimensionalised by factorsN0/f0Λ,N0Z/f0 andZ respectively.

Due to the use of the centred time centred-space advection scheme, the advection speed of the

background zonal wind is under-estimated by a factor which depends upon the wavenumber. As

long as the Courant number is kept below a certain threshold value, this factor is the same for a

given wavenumber on every vertical level. It is important that the factorial phase error for a given

wavenumber is the same on every level, as it guarantees that,although each zonal wavenumber

experiences a slightly different zonal wind-field, the wind-field experienced by each wavenum-

ber increases linearly with height. Ensuring that the zonalwind-field experienced by each zonal

wavenumber is linearly increasing is important for consistency between the numerical and con-

tinuous Eady equations and facilitates the comparison of numerical and continuous solutions to

the Eady model. From a physical point of view the phase errorsare equivalent to an underesti-

mation of the wind-shear parameter. The numerical wind-shear parameter can be written as the

wind-shear parameter assumed in the continuous equations multiplied by a constant. Table 3.1

gives the numerical phase speed as a fraction of the continuous phase speed for the first ten zonal

wavenumbers (kn = 2nπ/X, n = 1, 2, . . . 10) supported by the domain. The values in Table 3.1

were computed via Equation A.25 given in Appendix A. For reasons of numerical accuracy, and
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n 1 2 3 4 5 6 7 8 9 10

Λnum/Λ 1.0 1.0 1.0 0.99 0.99 0.98 0.98 0.97 0.96 0.95

Table 3.1 Fractional phase errors.

because the Quasi-Geostrophic approximation applies onlyto horizontal scales of∼ 103km and

above, we shall restrict the computed singular vectors to the region of phase space spanned by

the first ten zonal wavenumbers. The Fourier transform matrix F is therefore defined to compute

only the Fourier coefficients of first ten zonal wavenumbers.For the advection of the potential

vorticity field, the numerical phase speed is characterisedby the values in Table 3.1. The normal

modes, however, do not travel with the advection speed of thebackground flow, therefore the

numerical normal mode phase speed is not obtained directly from the values given in Table 3.1.

The numerical phase speed of the normal modes is estimated empirically, by evolving discretised

continuous normal modes using the numerical model. For the exponentially unstable long-wave

normal modes, the real phase speed is found to be equal to the phase speed in the centre of the

domain. For the neutral short-wave normal modes, the phase speed is found to correspond to the

numerical phase speeds of potential vorticity waves located slightly below the theoretical steer-

ing level height. For reference, Figure 3.1 shows the theoretical steering level (continuous black

dashed line) and the empirically determined discrete numerical steering level (blue dashed line).

The singular value decomposition is computed from matrix operatorLF T ∈ R
Ng×2Nk , corre-

sponding to an integration of the numerical model over a finite time interval. This matrix operator

is obtained by systematically evolving and storing columnsof the identity matrixI ∈ R
2Nk×2Nk .

The singular value decomposition is then performed on the stored matrix. It should be noted here

that, although the right singular vectors are computed in Fourier space, the Fourier space singular

62



Chapter 3 The Singular Vectors of The 2D Eady model

4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

n

z/
Z

continuous
discrete

Figure 3.1 Continuous (black line) and discrete numerical (blue line)steering levels

vectorsv̂i are trivially related to the grid-point singular vectors ofLF TF via vi = F T v̂i.

3.2.3 On the choice of norm

The singular value decomposition of atmospheric models hasbeen found to be highly sensitive to

the particular choice of inner product used in the computation; Palmer et al. (1998). For the sin-

gular vectors to be able to completely span the model phase space the norm must be defined using

a non-singular transformation of the model state variables. In quasi-geostrophic theory the entire

state of a model is uniquely determined by knowledge of the stream-function field at all points in

the model domain; Pedlosky (1979). Therefore the requirement of a norm in the Eady model is

that it be uniquely related to the stream-function field. Three such uniquely determinable norms

have been used to compute singular vectors in the Eady model.These three norms are the stream-

function norm, the quasi-geostrophic total energy norm [Ehrendorfer (2000)] and the potential

enstrophy norm. The potential enstrophy norm is the2−norm of the boundary potential temper-

ature perturbations and interior potential vorticity perturbation. Since the perturbation potential

vorticity is conserved in the Eady model, the potential enstrophy norm measures the amplification
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of the boundary potential temperature perturbations weighted by a constant contribution from the

potential vorticity. The use of potential temperature throughout the domain as a norm is prohibited

because the transformation from stream-function to potential temperature is singular. Ehrendorfer

(2000) showed that by adding the transformation matrices for potential temperature and velocity,

a non-singular transformation could be defined that allows the use of total energy as a norm in

quasi-geostrophic models.

The norm dependence is of particular importance to predictability problems, because, in singu-

lar vector based targeting, it is the choice of initial time norm that reflects what is known about

the initial condition errors. For predictability problems, total energy has commonly been used to

define the norm. The choice of total energy stems from tests performed by Palmer et al. (1998)

which indicate that for total energy singular vectors the distribution of energy in wave-space is

most similar to estimates of the distribution of analysis error energy in wave-space. Interestingly

Palmer et al. (1998) find that diagnostics of singular vectors computed using the kinetic energy

norm yield results which are ’qualitatively similar’ to those of total energy singular vectors. The

similarity of kinetic and total energy singular vectors implies that the kinetic energy plays a sig-

nificantly greater role in determining the structure of total energy singular vectors than potential

energy.

For perturbations in the Eady model consisting of a single zonal wavelength, stream-function and

velocity amplification are equivalent. Kinetic energy amplification is trivially found from velocity

amplification squared. Since the singular vectors of the Eady model are found to be single zonal

wavelength perturbations the structure of the singular value decomposition is identical whether the

initial and final norms are stream-function or the initial and final norms are kinetic energy; Kim

and Morgan (2002). The qualitative similarity between kinetic energy and total energy singular
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vectors highlighted by Palmer et al. (1998) has been noted inthe Eady model by Kim and Morgan

(2002). Also, Kim and Morgan (2002) note that in contrast to the potential enstrophy singular

vectors, the leading stream-function (a proxy for kinetic energy) and total energy singular vectors

both rely heavily on the untilting of initially up-shear tilted potential vorticity anomalies. Further

evidence for the similarity between kinetic and total energy amplification in the Eady model

comes from Badger and Hoskins (2001), who demonstrate that,for the untilting mechanism,

the variation of amplitude and growth rates measured by the kinetic and total energy norms are

qualitatively very similar.

For simplicity in the work presented here we will consistently use the stream-function norm at

both initial and final time for all singular value calculations. It can be fairly well assumed that

in the Eady model at least the singular vectors computed using the stream-function norm are

consistent with those computed using the total energy norm and therefore consistent with the type

of singular vectors commonly used in singular vector targeting methods.

3.3 Implications of the dynamical mechanism of the Eady model for

singular vectors

3.3.1 Comparison of continuous and discrete perturbations

Since the Lanczos algorithm allows accurate computation ofthe leading singular vectors without

the expense of computing the full spectrum [Golub and Van Loan (1983)], the singular value

decomposition has become a useful tool in analysing the stability properties of high dimensional

(linearised) non-linear numerical models. The leading right singular vectors are interpreted as
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the most unstable initial phase space directions for a finitetime integration; Palmer et al. (1998).

In this context instability is defined as instability of the flow to perturbations which are random

with respect to the initial time norm used in the singular vector computation. The orthogonality

properties of the singular vectors guarantee that they contain the maximum possible information

about the instability of the linearised model over a finite time interval within a limited number

of vectors. However, since the singular vectors are computed from numerical models they do

not possess a continuous functional form and generalisations about the relationship between the

background flow and the singular vectors are not easily made.

For simple models such as the Eady model the existence of analytical solutions to the contin-

uous equations facilitates the comparison of singular vectors to continuous functions. Several

publications exist in this area: Mukougawa and Ikeda (1994)interpret the properties of the first

singular vector in terms of the untilting mechanism of Farrell (1984); Morgan and Chen (2002)

diagnose the first singular vector structure in terms of continuum and normal modes to investigate

the effect of modal masking; De Vries and Opsteegh (2005) investigate the effect of neutral mode

resonance on the first singular vector of the Eady model without rigid upper boundary. All these

studies concentrate on the dynamical properties of the firstsingular vector and do not consider its

relationship to the other ’lower order’ singular vectors. By lower order singular vectors we mean

the second, third, fourth, etc singular vectors.

In this section we consider the implications of the growth mechanisms described in Chapter 2 to

the properties of singular vectors. The aim here is not to characterise and explain the structure

of particular singular vectors, but rather to make inferences about more general properties of the

singular vector structure as a whole. Properties such as theoptimal growth of the first singular

vector, the orthogonality between the vectors and the number of orthogonal phase space directions
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which can be characterised by a certain behaviour will be considered. We present this material

prior to discussion of the computed singular vectors, because whilst it will prove relevant to

our discussion of the singular vectors, it does not derive from analysis of the singular vectors

themselves. This section is divided into two subsections. In the first subsection we consider the

plane-wave solution of Farrell (1984) and in the second we consider the modal masking and to a

lesser extent resonance growth mechanisms.

3.3.2 Plane-Wave untilting

Mukougawa and Ikeda (1994) draw an analogy between Farrell (1984)’s plane-wave particular

solution to the Eady equations and the dynamical growth mechanism of the first singular of the

Eady model. Here we shall extend this analogy and consider the implications of untilting to the

plane-waves orthogonal to the optimally growing plane-wave. Firstly it must be noted that the

plane-wave particular solution in itself cannot be used to specify every phase space direction,

because the upper and lower boundary conditions give rise toa ’non-plane-wave’ homogeneous

solution. However, for the moment we shall ignore the effectof the homogeneous solution and

discuss the plane-waves in isolation. Ignoring the homogeneous solution may be considered

equivalent to applying the upper boundary condition from DeVries and Opsteegh (2005) (for

example) to both boundaries; i.e. the streamfunction vanishes atz = ±∞ and we are only

interested in the behaviour of the solution within a finite region [z1, z2] which lies far from the

upper and lower boundaries.

The continuous equivalent of the streamfunction norm is defined by the square-root of the integral
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of the streamfunction-squared amplitude over the domain; i.e.

‖ψ‖c =

(
∫ z2

z1

∫ X

0
ψ2dxdz

)

1

2

, (3.8)

where the subscriptc denotes the continuous norm. The continuous streamfunction norm amplifi-

cation over a finite time interval,τ , is then defined as the ratio‖ψ(τ)‖c/‖ψ(0)‖c. By substituting

the plane-wave Equation (2.36) into this ratio, we define thecontinuous streamfunction norm

amplification over a finite time intervalτ of a plane with initial tilta0 as

‖ψ(τ)‖c/‖ψ(0)‖c =
1 + a2

0f
2
0/N

2
0

1 + (a0 − Λτ)2f2
0 /N

2
0

. (3.9)

From this expression it is noted that the amplitude depends only on the initial tilt and the integra-

tion length. Since it depends on initial tilt and not zonal wavenumber the amplification achieved

over a finite time interval by plane-waves with the same initial tilt but different zonal wavenum-

bers is the same. For a fixed finite integration length,τ , the plane-wave initial condition that gives

rise to maximum amplification will be the one whose initial tilt maximises Equation (3.9). We

shall call the tilt which maximises the amplification over a finite time period the optimal tiltaopt
0 .

By equating the differential of Equation (3.9) with respectto a0 to zero and rearranging we obtain

a±0 =

Λτ ±

√

Λ2τ2 + 4
N2

0

f2

0

2
. (3.10)

The optimal tilt is obtained when the square-root term is positive; i.e. aopt
0 = a+

0 . When the

square-root term is negative the tilta−0 is that which maximises decay over the finite time interval.

The optimal initial tilt is plotted in Figure 3.2 (black dashed line) as a function of integration

lengthτ . For reference the dotted line shows the initial tiltaOrr
0 = Λτ for which the potential

vorticity is rendered vertical at the end of the integrationperiod and the untilting plane-wave has
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Figure 3.2 The variation of optimal initial tilt (dashed) and Orr tilt (dotted).

reached its maximum amplitude. Following the naming convention of Mukougawa and Ikeda

(1994) we callaOrr
0 = Λτ the Orr initial tilt. From Figure 3.2 it is evident that the initial tilt

that maximises growth over a finite time interval is always greater than the Orr tilt, but that as

the integration length increases these two values converge. The fact the optimal tilt is larger

than the Orr tilt is a correction to the plane-wave singular vector analogy of Mukougawa and

Ikeda (1994) who model singular vector growth using the Orr tilt rather than the optimal tilt.

By substitutingaopt
0 into Equation (3.9) an upper bound on the amplification achievable by the

untilting mechanism is obtained.

Having identified the maximally amplifying plane-wave we now consider the condition for or-

thogonality between two plane-waves. For two plane waves with the same zonal wavenumberkn

but differing tiltsa(t) anda(t) + δa the criteria for orthogonality can be shown to be

δa = ±
2φπ

kn(z2 − z1)
, (3.11)
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whereφ 6= 0 is an integer. Proof of this relationship is given in Appendix B. Perturbations of

differing zonal wavenumbers are orthogonal to each-other due to the periodicity of the domain

in the zonal direction. Since the evolution of the tilt between two time-pointst1 andt2 is given

by a(t2) = a(t1) − Λ(t2 − t1), it can easily be verified that two plane-waves that satisfy the

condition for orthogonality given in Equation (3.11) at a given time pointt1, will still satisfy

the orthogonality condition at a subsequent time pointt2. To see this one simply need consider

two tilts at t1, a and a′(t1) = a(t1) ± δa respectively. Over the time intervalt1 to t2 both

tilts change by−Λ(t2 − t1), therefore att2 we may writea(t2) = a(t1) − Λ(t2 − t1) and

a′(t1) = a(t1) ± δa− Λ(t2 − t1) = a(t2) ± δa; i.e. the difference between the two tilts remains

fixed at±δa.

Several points may be inferred from the orthogonality and optimal growth/decay conditions de-

fined by Equations (3.10) and (3.11) respectively. Firstly,it is noted that, as is the case for singular

vectors, a set of orthogonal plane-waves will be orthogonalat both the beginning and end of a

finite time interval. Secondly we are free to choose one plane-wave in the set to be that which

maximises growth over the finite time interval, and using Equation (3.11) we may chose all sub-

sequent plane-waves to be orthogonal to it. In this way, we can define a discrete set of continuous

functions which share some of the properties of the singularvectors of a discrete set of equations.

From Equation (3.10) we can deduce that the difference in tilt between the optimally growing

and decaying plane-wave is given bya+
0 − a−0 =

√

Λ2τ2 + 4
N2

0

f2

0

. If the difference in the tilt of

optimally amplifying and decaying plane-waves satisfies the orthogonality criteria given in Equa-

tion (3.11), then both the optimally amplifying and decaying plane-waves will be contained in the

discrete set of orthogonal plane-waves. This condition canonly be satisfied for a discrete set of

values ofτ , since the orthogonality criteria yields a discrete set of tilts. It is worth noting that
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for this discrete set of finite time intervals the orthogonalplane-waves (if normalised) appear to

share several of the mathematical properties of the singular vectors of a discrete matrix; however

it must be stressed that we are not attempting to suggest thatthis set of orthogonal plane-waves

is analogous to singular vectors; we are rather motivating the contrived question: ’if the singu-

lar vectors structure and evolution were described entirely by the plane-wave untilting Equation

(2.36), what would we expect the properties of the singular vector spectrum to be?’. As we shall

see in Section 3.4, and as is evident in the work of other authors (Morgan (2001) for example),

the singular vectors are not of purely plane-wave. In answering this question we shall however

shed some light on the properties of singular vectors.

We have identified the optimal tilts for amplification and decay, but we have not yet considered the

amplification of the plane-waves orthogonal to the maximally amplifying/decaying plane-wave.

To shed some light on this topic Figure 3.3 (after Badger and Hoskins (2001)) shows the variation

of the stream-function amplification rate (y-axis) with tilt (x-axis). From Figure 3.3 it can be

seen that the maximum amplification and decay rates occur near a = 0 and that as|a| tends to

infinity the amplification rate tends to zero. Since the amplification rate tends to zero as the tilt

tends to infinity the amplification over a finite time intervaltends to unity as theinitial tilt tends

to infinity; Therefore for a finite time interval all the growing and decaying plane-waves will have

tilts ’near’ toa0 = 0. Mukougawa and Ikeda (1994) make the point that for discretemodels when

the integration length increases beyond a certain level theOrr initial tilt will require a vertical

wavelength smaller than the discrete model’s resolution. We may also make the point that for a

fixed integration if the vertical resolution is increased (relative to a fixed zonal resolution) beyond

a certain value then the newly resolved perturbations will not be able to grow via the untilting

mechanism. From a singular vector perspective this impliesthat if untilting accounts for the
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Figure 3.3 Untilting streamfunction/kinetic energy amplification rate; after Badger and Hoskins

(2001)

growth of singular vectors, then increasing vertical resolution will eventually lead only to the

addition of a large number of arbitrary (except in their orthogonality to the growing/decaying

singular vectors), ’essentially’ neutral singular vectors.

An important implication of Equation (3.11) for the amplification of plane-waves orthogonal to

the optimally amplifying plane-wave is that, sinceδa depends on1/kn, the difference in tilt

between two orthogonal plane-waves is smaller for high zonal wavenumbers. Since the differ-

ence between the tilts of orthogonal plane-waves is smallerfor high zonal wavenumbers than for

low zonal wavenumbers, the difference in growth rates between orthogonal plane-waves is also

smaller for high zonal wavenumbers than for low zonal wavenumbers. The increasing similarity

in the finite time amplification of orthogonal plane-waves with increasing wavenumber implies

that the amplification of the nearest (in terms of initial tilt) orthogonal plane-waves to the opti-

mally growing plane-wave will tend to the amplification of the optimally growing plane-wave, as

the zonal wavenumber tends to infinity. From a singular vector perspective one might expect that,

if plane-wave untilting explains much of singular vector growth, then the singular values associ-
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ated with singular vectors (other than the optimal vector) of small zonal scale will be larger. For

orthogonal plane-waves, it has been seen that, whilst the amplification of the optimal plane-wave

is the same for all zonal scales, the amplification of the plane-waves orthogonal to the optimal is

larger for smaller zonal scales. In fact as the zonal scale tends to infinity, the finite time ampli-

fication of plane-waves orthogonal to the optimally amplification plane-wave tends to that of the

optimally growing plane-wave, and hence a set of orthogonalplane-waves ordered by amplifica-

tion will be dominated by the smallest scales. However, the quasi-geostrophic equations which

define the Eady model only apply to small Rossby number flows. The need of small Rossby num-

ber limits the applicability of the Eady equations, for typical mid-latitude stability and Coriolis

parameters, to zonal scales greater than∼ 103km.

In our discussion so far, we have ignored the effect of the homogeneous component of the plane-

wave solution of Farrell (1984). Ignoring the homogeneous solution is essentially equivalent to

changing the boundary conditions. We shall now consider therelationship between the untilting

plane-waves and the homogeneous solution; i.e. we shall re-introduce the rigid upper and lower

boundaries. Firstly, it is noted that plane-waves are not orthogonal (with respect to streamfunc-

tion) to their corresponding homogeneous solution; Farrell (1984). This lack of orthogonality

means that, even if the homogeneous component of the solution is zero at the start of a finite time

interval, it will not be by the end of the time interval. Sincethe homogeneous solution does not

remain zero, the orthogonality condition for plane-waves given in Equation (3.11) cannot be ap-

plied to a set of perturbations in the regionz1 = 0 andz2 = Z at both the start and end of a finite

time interval. However, it is still possible that, for a region0 < z1 < z2 < Z, the plane-waves are

orthogonal to the homogeneous solution, and the orthogonality Equation (3.11) may be applied

to a set of perturbations at initial and final time.
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By considering the vertical structure of the normal modes, we can gain some insight into the

relationship between plane-waves and the corresponding homogeneous solution. First, we shall

remind the reader that the homogeneous component of the plane-wave solution of Farrell (1984)

has the same vertical structure as the normal modes, but differing temporal behaviour. It is rea-

sonable to assume that the effect of the homogeneous solution on the untilting mechanism will be

weak at heights where the normal modes have small amplitude.As was seen in Figures 2.3A and

2.3B, the amplitude of normal modes associated with wavelengths below the short-wave cutoff

resides primarily above (below) the upper (lower) boundarysteering level, with some amplitude

extending into a region just below (above) the upper (lower)boundary steering level. Since the

amplitude of the normal modes is small between the upper and lower boundary steering levels, we

can infer that the effect of the homogeneous solution will berelatively weak in this region. Since

the steering levels are further apart for the smallest zonalscales, we can further infer that the size

of the region in which the homogeneous solution has only weakeffect is larger for smaller scales.

We may therefore expect the behaviour of small zonal scales to be closer to that of the plane-wave

particular solution given in Equation (2.36), than the large scales. For the longer wavelengths, the

normal modes have significant amplitude throughout the domain, so it would be expected that the

homogeneous component of the solution has large effect throughout the domain.

3.3.3 Modal unmasking

We have so far considered the implications of the plane-waveuntilting to singular vectors. In

this section we shall consider the implications of modal unmasking. A significant difference be-

tween potential vorticity unshielding and modal masking/neutral mode resonance is that whilst

the former depends on the relative positions of an infinite number of potential vorticity waves
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to one-anotherthe later depends on the relative position of the potential vorticity waves to two

specific normal modes. The limitation to dependency on the two particular modes means that

perturbations which amplify via the neutral mode resonanceand modal masking growth mecha-

nisms can only account for a small fraction of the model phasespace. The same can be said of the

exponentially growing normal modes which account for only one phase-space direction for every

zonal wavenumber.

Morgan and Chen (2002) consider the effects of modal maskingon the first singular vector for a

representative wavelength above the short-wave cutoff anda representative wavelength below the

short-wave cutoff. For the leading singular vectors presented by Morgan and Chen (2002), the

effect of modal masking is found to be very significant. In thecase of the singular vector below

the short-wave cutoff, Morgan and Chen (2002) point out thatthe amplitude of the normal mode

is masked by a relatively small number of the continuum modes. For this short-wave singular

vector, the potential vorticity associated with these continuum modes is a found to be plane-

wave perturbation located in a small region either side of the steering level. In the unmasking

mechanism described by Morgan and Chen (2002) the normal mode is revealed because of the

net cancellation of the continuum mode boundary potential temperature anomalies associated with

the potential vorticity anomalies above and below the steering level. Interestingly, despite the fact

that the largest amplitude potential vorticity waves reside on nearest discrete vertical levels to the

steering level, no linear amplification due to resonance is apparent, when the singular vector is

evolved far beyond the integration length used in the singular vector computation.
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De Vries and Opsteegh (2005) note that, for a single potential vorticity wave, the modal masking

effect is maximised if the potential vorticity wave residesat a distance

δz =
π

knΛτ
(3.12)

below (above) the upper (lower) boundary steering level. The motivation for the definition of

this expression lies in the fact that, if the potential vorticity resides at this height, the difference

in phase speeds between the normal mode and the continuum mode will lead to a change in

the relative phase of the continuum and normal mode of magnitudeπ. We shall call this the

optimal (modal) masking height. De Vries and Opsteegh (2005), however, do not consider the

implications for different zonal scales of this expression. From Equation (3.12) it is evident that

the distance of the optimal masking height from the steeringlevel is inversely proportional to the

integration lengthand to the wavenumber. The results of this inverse proportionality are three-

fold; firstly the distance from the steering level is smallerfor higher wavenumbers; secondly

the optimal masking height tends to the steering level height as the integration length increases;

thirdly the optimal masking height approaches the steeringlevel with increasingτ at a faster

rate at small zonal scales than large zonal scales. De Vries and Opsteegh (2005) find that the

optimal location of the single potential vorticity wave resides nearer to the steering level than

this optimal height for all integration lengths and conclude that resonance plays a greater role

than modal masking in the perturbation amplification. However, the findings of De Vries and

Opsteegh (2005) must be qualified by the fact that the perturbation is limited to initially have zero

potential temperature at the boundary.

Another point that is not discussed by De Vries and Opsteegh (2005) is that the amplification

achievable via modal masking by a potential vorticity wave residing at the optimal masking height
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will only lead to large amplification if the optimal masking height coincides with a height at which

the continuum mode can have large projection onto the normalmode. We can gain some insight

into the locations at which this may occur by considering theanalysis of Morgan and Chen (2002).

Morgan and Chen (2002) find that for small zonal scales ’only alimited number of (continuum)

modes (located near the steering level) are needed to mask the large amplitude of the neutral

edge modes’; whereas for large scales a ’broad distributionof continuum modes and the decaying

normal mode are required to mask the initially large amplitude of the growing normal mode. This

statement does not however preclude the possibility that a ’broad spectrum of continuum modes’

may also be used to mask an initially large amplitude normal mode.

Further insight can be gained by considering the structure of the continuum modes. Figures

3.4A to 3.4C show, for three representative wavelengths, the vertical profile (y-axis) of the

streamfunction-squared amplitude [Equation (2.32)] as a function of the height of the associ-

ated potential vorticity wave (x-axis). These figures were obtained from vertically discretising

the continuous continuum modes defined in Pedlosky (1964). For low wavenumbers (Figure

3.4A) the continuum modes always have large amplitude on theupper and/or lower boundaries

so modal masking can potentially occur if the optimal masking height is located anywhere in

the domain. For small scales (Figure 3.4C) the amplitude is large on the boundaries only if the

potential vorticity wave is located close to or above (below) the upper (lower) boundary steering

level. For intermediate scales (Figure 3.4B) the behaviourlies somewhere between that of large

and small scales. From this we may infer that modal masking can be an effective streamfunction

amplification mechanism for small zonal scales only when theoptimal masking height lies in this

region near the steering level. As we shall see later, in our analysis of the singular vectors, the

requirement that the optimal masking height coincides withthis near steering level region defines
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Figure 3.4 Vertical profile (y-axis) of the streamfunction-squared amplitude [Equation (2.32)] of

continuum modes, as a function of the height of the associated potential vorticity wave (x-axis).

A: For wavenumbern = 2. B: For wavenumbern = 4. C: For wavenumbern = 7.
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the finite time integrations over which the modal masking mechanism is significant. Furthermore

we shall see that due to the inverse proportionality of the optimal masking height to the zonal

wavenumber, the modal masking mechanism becomes significant at shorter integration lengths

for small zonal scales whereas the integration length must be longer for the same effects to be

seen at large zonal scales.

3.3.4 Summary

In this section we have considered the implications of the plane-wave untilting solution of Farrell

(1984), and the modal unmasking growth mechanism to singular vectors.

The main points of the discussion of the plane-wave solutionof Farrell (1984) can be summarised

thus. As in Mukougawa and Ikeda (1994) we consider the plane-waves in the absence of the

homogeneous boundary wave component of the solution; i.e considering only Equation (2.36).

Many things can be inferred from the functional form of the plane-wave solution. Firstly, consid-

ering the optimally amplifying plane-wave, it is noted thatthe maximum amplification depends

only on the initial tilt of the plane-wave and is independentof the zonal wavenumber. This in-

terpretation is contrary to that of Mukougawa and Ikeda (1994) who attribute the variation of

the amplification of singular vectors in the3−dimensional Eady model to a zonal wavenumber

dependence inherent in the plane-wave untilting mechanism. We shall see later, in our investi-

gation of the singular vectors themselves, that variationsin the amplification of plane-wave-like

perturbations with zonal wavenumber are more likely causedby differences in the interaction

between the homogeneous boundary waves and plane-waves at different zonal scales. A second

point that is brought out by examination of the plane-wave particular solution given in Equation

(2.36) is that the initial tilt of the optimally amplifying plane-wave is always greater than the ’Orr
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initial tilt’. The fact that the optimal initial tilt is greater than the Orr tilt means that the optimally

amplifying plane-wave will continue to grow via untilting for a longer period of time than the in-

tegration length. The difference between the optimal initial tilt and Orr tilt is found to be greater

for short integrations than for long integrations.

The plane-wave particular solution of Farrell (1984) can beused to define a set of orthogonal

perturbations which remain orthogonal when evolved in time. For high zonal wavenumbers

the difference in tilt between orthogonal plane-waves is smaller than is the case for low zonal

wavenumbers. The similarity of the tilt of orthogonal high wavenumber plane-waves means that

the difference in finite time amplification between orthogonal plane waves is smaller for high

wavenumbers than small wavenumbers. However the plane-waves (unlike singular vectors) do

not form a complete set as the contribution to the phase spacefrom the homogeneous component

of the solution of Farrell (1984) must be taken into account.For high wavenumbers the structure

of the continuum modes associated with potential vorticitywaves in the region of the domain be-

tween the upper and lower boundary steering levels is similar to that which would be expected on

an infinite domain and it is inferred that plane-wave untilting can be used to entirely characterise

the stability properties of this region.

Whilst plane waves can account for a large number of phase space directions, perturbations that

lead to growth by modal unmasking are constrained to point only in phase space directions for

which the streamfunction field associated with the continuum modes can mask the streamfunction

field associated with the normal modes. It might be expected,therefore that modal unmasking will

be present in only as small number of the singular vectors.

It is hypothesised, that for the modal unmasking mechanism to lead to significant amplification,
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the optimal masking height [De Vries and Opsteegh (2005)] must reside in the region near to

the steering level. It is further hypothesised that, since this optimal masking height is inversely

proportional to the zonal wavenumber, modal unmasking willlead to significant growth in small

zonal scales at shorter integration lengths than is the casefor large zonal scales.

3.4 The singular vectors of the Eady model

3.4.1 A note on the indexing convention of the singular vectors

In the previous section, we examined the potential implications of different amplification mech-

anisms to the singular vectors of the Eady model. In this section we shall apply the information

outlined in the previous section to the singular vectors of the Eady model. We shall focus our

attention on the singular vectors computed for a12h and a48h integration.

Before this, to avoid confusion, we shall outline the singular vector indexing conventions that

we shall adopt throughout this section. In our discussions of the singular vectors, we shall adopt

the following conventions: we shall index the singular vectors of different zonal wavelengths

separately; each zonal wavelength/wavenumber shall be labelled by the wavenumber indexn,

where the wavenumber is given bykn = 2nπ/X; we shall label the singular vectors withi, with

i = 1 referring to the singular vector associated with largest singular value,i = 2 the second

largest; as an example, the firstn = 7 singular vector is the singular vector with wavenumber

indexn = 7 that is associated with the largest singular value.
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3.4.2 12h integration

Figures 3.5A to 3.5F show the right and left singular vectorsfor the first three wavenumber-index

seven singular vectors; i.e. the three largest amplifying singular vectors with zonal wavelength

X/7. These singular vectors form a regular structural pattern.The first singular vector is a

tilted plane wave structure with amplitude concentrated inthe centre of the domain. The second

comprises two tilted structures one on top of each-other andapproximatelyπ/2 out of phase.

The third has three tilted structures one on top of the other;the top and bottom structures are

anti-phased and the central structure is∼ π/4 out of phase. All the leading right singular vectors

have amplitude minima at the upper and lower boundaries. Thefourth, fifth etc singular vectors

(not shown) continue this pattern; the fourth having four plane wave structures, the fifth five

plane-wave structures etc. The corresponding left singular vectors follow this pattern but the tilt

is reduced and the amplitude on the upper and lower boundaries has increased relative to the rest

of the domain. This pattern qualitatively describes the structure of the leading singular vectors

at all wavelengths. There are, however, quantitative differences between the tilts and the vertical

structures. In what follows we shall outline these difference and how they are reflected in the

growth rates of the singular vectors.

Firstly, we consider the tilt of the potential vorticity field associated with the singular vectors. Fig-

ure 3.6A (blue line) shows the tilt of the leading singular vector for each zonal wavenumber. For

reference the black dotted line shows the Orr initial tilt and the black dashed line shows the opti-

mal initial tilt. The slight reduction in the optimal and Orrat high wavenumbers occurs because

the numerical phase speed (see Section 3.2.2) was used to calculate these tilts. At low wavenum-

bers, the initial tilt of the singular vectors is much largerthan the optimal tilt, but asymptotes to

the optimal tilt as the wavenumber increases. To understandthe effect of the initial tilt on the
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Figure 3.5 The leading three right and left12h singular vectors, for wavenumber indexn = 7.

A and B first right and left singular vector respectively. C and D second right and left singular

vector respectively. E and F third right and left singular vector respectively.
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amplification, Figure 3.6B shows the amplification of the singular vectors (singular values, black

line) and the theoretical amplification of a plane-wave (neglecting the effect of the homogeneous

solution, blue line) with the same initial tilt as the singular vector. For reference the black dashed

and dotted lines show the theoretical plane-wave amplification for the optimal and Orr initial tilts

respectively. Several things are noticeable from in Figure3.6B. Firstly, the amplification of all

the singular vectors (solid black line) is less than the maximum amplification implied by the op-

timal initial tilt (dashed black line). Since the singular vector amplification is less than that of

the optimal plane-wave it may be inferred that untilting is aless effective growth mechanism in

the presence of rigid upper and lower boundaries than in an infinite domain. Furthermore, since

the discrepancy is greater for small wavenumbers than high wavenumbers, it is possible that the

reduction in plane-wave amplification due to the homogeneous solution gets smaller as the space

between the steering level increases and the interaction between the interior potential vorticity

and the homogeneous components of the solution decreases. This hypothesis is partially born out

by the fact that the initial tilt of the singular vectors tends to that of the optimal plane-wave as the

wavenumber increases, suggesting that untilting is major factor in the amplification.

Further evidence can be gained by considering the distribution of streamfunction amplitude in the

vertical at initial (right singular vector) and final (left singular vector) time. Figures 3.7A and 3.7B

show the vertical distribution of streamfunction mean-squared amplitude (y-axis) for the leading

singular vectors of wave-indices one to ten (x-axis). Noticeably, at initial time, the amplitude is

largest in the central region of the domain for all wavenumbers. At final time, however, the long

wave singular vectors have amplitude distributed fairly evenly throughout the domain, whereas

for the shortest wavelengths the final time amplitude is still concentrated in the centre of the

domain. Figure 3.7C shows the potential vorticity squared amplitude for the leading singular
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Figure 3.6 A: blue line shows the initial tilt (y-axis) of the potentialvorticity field associated with

the first singular vectors against zonal wavenumber index (x-axis). B: black solid line shows the

leading singular values (y-axis) as a function of zonal wave-index (x-axis); the blue solid line

shows the values obtained by substituting the singular vector initial tilt into the plane-wave am-

plification Equation (3.9). In both A and B, the dashed and dotted lines indicate values associated

with the optimal and Orr initial tilts, respectively.
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vector as a function of height and zonal wavenumber. For reference the blue dashed and solid lines

show the optimal masking height for the upper and lower boundaries respectively. The optimal

masking height is calculated using Equation (3.12). As withthe initial streamfunction field, the

potential vorticity field has maximum amplitude in the centre of the domain. For all wavenumbers

the optimal masking height does not lie in regions where it isexpected that the masking of the

normal modes by continuum modes will be large; in fact for thelowest wavenumbers the optimal

masking height lies outside of the domain. Since the optimalmasking height does not lie in

regions associated with potentially large masking of the normal modes by the continuum modes,

it may be inferred that modal masking is not the dominant amplification mechanism; that is not to

say that modal masking does not occur, but merely that its effect has not reached its full potential.

The fact that for small wavelengths the initial and final amplitude are both concentrated in the

centre in the domain indicates that the amplification is dominated by untilting of plane-waves

with high zonal wavenumbers; i.e. the amplification occurs in the locality of the of the potential

vorticity waves rather than on the boundaries.

We have already seen that for ’pure’ untilting plane-waves,the condition for orthogonality im-

plies that the plane-waves orthogonal to the optimally amplifying plane-wave will achieve larger

amplification for small zonal wavelengths than for large. Tosee if this property is also reflected

in the singular vectors we shall now consider the tilt of the singular vectors other than the first

singular vector. Figure 3.8A shows the initial tilts (y axis) of the first ten (right) singular vectors

(x axis) for different zonal wavenumbers. For ease of viewing only wave-indicesn = 1, 3, 5, 7, 9

(purple, light blue, red, green, dark blue respectively) are shown. As would be expected from

the orthogonality condition for plane-waves the tilt of thesingular vectors varies more rapidly

with singular vector index for low wavenumbers than for highwavenumbers. Figure 3.8B (blue
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Figure 3.7 A: Streamfunction squared amplitude as a function of height(y-axis), for the first right

singular vectors of differing wavenumbers (x-axis shows wavenumber index); The black solid and

dashed lines show the lower and upper boundary steering levels respectively. B: Same as A, but

for left singular vectors. C: Same as A, but for potential vorticity, blue solid and dashed lines

show the optimal masking height for the lower and upper boundary steering levels respectively.
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line) shows the mean rate of increase in the initial tilt withsingular vector index as a function

of wavenumber. For reference the black line in Figure 3.8B shows the difference in tilt between

orthogonal plane-waves implied by Equation (3.11). It is noticeable in Figure 3.8B that these two

lines are closer together for high wavenumbers than for low indicating again that the behaviour of

singular vectors appears to be much closer to that of plane-waves at high wavenumbers than low

wavenumbers. Since the initial tilt of the singular vectorsvaries less rapidly with singular vector

index for high zonal wavenumbers, it would be expected that,due to the link between initial tilt

and amplification, the singular values also vary less rapidly. To see if this is the case, we con-

sidered the normalised ‘additive’ amplification of the singular vectors. The normalised additive

amplification is defined

‖Lvi‖ − ‖vi‖

‖Lv1‖ − ‖v1‖
=
σi − 1

σ1 − 1
(3.13)

, and can be used to indicate the rapidity of descent of the singular value spectrum from the largest

singular value(σi − 1)/(σ1 − 1) = 1 to neutrality(σi − 1)/(σ1 − 1) = 0. Figure 3.9A shows

‘additive’ amplification of the12h singular vectors, as a function of singular vector index, for

each zonal wavenumber (for reference Figure 3.10 shows the actual singular values). From Figure

3.9A it is clear that the magnitude singular values decay less rapidly at higher wavenumbers than

at lower wavenumbers. As an example the blue line of Figure 3.9B shows the singular values

for n = 7 and the black line shows amplification inferred by substituting the initial tilts of the

singular vectors into the plane-wave amplification Equation (3.9). There is a striking similarity

in the shape of the black and blue lines in Figure 3.9B indicating that the reduction in singular

values with increasing ’i’ is due to the increasing initial tilt.
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Figure 3.8 A: Variation of initial tilt (y-axis) of the12h singular vectors, with singular vector

index (x-axis); each line corresponds to a different zonal wavenumber. B: The blue line show

the variation of the rate of change with respect to singular vector index (y-axis), with varying

wavenumber (a-axis); i.e. the blue line shows the gradientsof the lines in A; the black line shows

the value inferred from the condition for orthogonality forplane-waves Equation (3.11).
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Figure 3.9 A: The normalised additive amplification of the singular vectors, as a function of

singular value index, for a12h integration. Each line represents a different zonal wavenumber.

B: Black line shows the singular values for the first tenn = 7 singular vectors; blue line shows the

amplification inferred by substituting the initial tilts ofthe singular vectors into the plane-wave

amplification Equation (3.9).
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Figure 3.10 The singular values for the12h singular vectors; each line corresponds to a different

wavenumber. For ease of viewing only then = 1, 3, 5, 7 and9 wavenumbers are shown.

3.4.3 48h Singular Vectors

Figures 3.11A to 3.11F show the first three initial (right) and final (left) n = 7 singular vectors

for the 48h integration. The structural pattern is somewhat similar tothat of the12h singular

vectors. The first singular vector having one plane-wave structure, the second two plane-wave

structures etc. Despite their similarities there are difference in the vertical structures of the two

sets of singular vectors. From an untilting perspective themain difference lies in the increased tilt

of the singular vectors. For the48h singular vectors, modal masking has a much more significant

effect on the structure of the singular vectors.

Unlike the 12h singular vectors, for the48h singular vectors modal masking has become an

important growth mechanism, causing significant differences between the vertical structure of the

12h and48h singular vectors. Although the singular vectors still havetilted structure, tilting alone

cannot be used to explain the amplification. To see this Figures 3.12A and 3.12B show the initial

tilt and amplification of the leading singular vectors of each zonal wavenumber. As in Figures
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Figure 3.11 The leading three right and left48h singular vectors, for wavenumber indexn = 7.

A and B first right and left singular vector respectively. C and D second right and left singular

vector respectively. E and F third right and left singular vector respectively.
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3.6A and 3.6B the black dashed and dotted lines give theoretical tilt and amplification values for

the optimal initial tilt and the Orr initial tilt respectively. Since for the high wavenumbers the

first singular vectors have two distinct tilted regions withdiffering tilts there are two blue lines

plotted: the sold blue line refers to the tilt of the potential vorticity in the centre of the domain

and the dash-dot line refers to the tilt of the maxima near optimal masking height. Looking first

at Figure 3.12A it is noticeable that the initial tilts of thesingular vectors both in the centre and at

the optimal masking height (blue lines) are significantly smaller than that implied by the optimal

and Orr initial tilts. In Figure 3.12B the blue lines denote the theoretical amplification obtained

by plane waves with same initial tilts as the singular vectors. The black solid line of Figure

3.12B gives the actual amplification achieved by the singular vectors; i.e. the black solid line

shows singular values. It is immediately apparent that the amplification of the singular vectors

far exceeds that suggested by their initial tilts. However it must be emphasised that this does not

imply that untilting makes no contribution to the overall amplification of the first singular vectors.

After-all there is still a relatively large amplitude tilted structure in the centre of the domain which

can have little impact on the evolution at the boundaries. What can be said however is that the

untilting mechanism no longer has as significant an impact onthe leading singular vector structure

as was the case for the12h singular vectors.

Figure 3.13 shows the vertical distribution of potential vorticity squared amplitude as a function

of wavenumber for the leading singular vectors. The blue line shows the optimal masking height

for upper and lower steering levels. In contrast to the12h integration the optimal masking height

for wavenumbers below the short-wave cutoff lies in the region which may lead to a large masking

effect. For the first singular vectors below the short-wave cutoff the potential vorticity has maxima

just below the upper boundary optimal masking height. For the lower boundary the potential vor-
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Figure 3.12 As in Figure 3.6, but for the48hsingular vectors. A: blue line shows the initial tilt

(y-axis) of the potential vorticity field associated with the first singular vectors against zonal

wavenumber index (x-axis); the solid blue line shows the tilt in the centre of the domain, the

dashed blue line shows the tilt at the height the potential vorticity is maximised. B: black solid

line shows the leading singular values (y-axis) as a function of zonal wave-index (x-axis); the

blue solid line shows the values obtained by substituting the singular vector initial tilt into the

plane-wave amplification Equation (3.9). In both A and B, thedashed and doted lines indicate

values associated with the optimal and Orr initial tilts, respectively.

93



Chapter 3 The Singular Vectors of The 2D Eady model

ticity maxima lies just above the optimal masking height. The link between modal masking and

concentrations of Eady model singular vector potential vorticity near the steering level has been

discussed previously by Morgan and Chen (2002). By contrastDe Vries and Opsteegh (2005)

stress the importance of neutral mode resonance since they find that the singular vector potential

vorticity is always maximised nearer the steering level than the optimal masking height. What is

evident from the work presented here is that the importance of modal masking is dependent on

the relative sizes of the spatial scales and integration lengths considered. For example the poten-

tial vorticity structure of the leading12h singular vectors (Figure 3.7C) does not have maxima

near the optimal masking height. This lack of maxima is attributable to the fact that the optimal

masking height lies too far from the steering level for thereto be significant projection of the

continuum modes associated with potential vorticity at that height onto the normal modes. The

lack of such potential vorticity maxima does not mean that modal masking does not occur, only

that its effects are not large enough to cause significant deviation of the leading singular vector’s

structure from that of untilting plane-waves concentratedin the centre of the domain. By contrast,

the48h integration is long enough that the optimal masking height lies sufficiently close to the

steering level for the effects of modal masking on the leading singular vectors to be large. It must

be pointed out that the optimal masking height is dependent on both time and wavenumber. The

fact that strong effects of modal masking on leading singular vector structure are not seen for the

12h integration is in part attributable to the fact that only scales larger than800km are contained

in the spectrum. For smaller scales the optimal masking height will be (theoretically) closer to

the steering level and modal masking may be significant even for short integration lengths.

Figures 3.14A and 3.14B show the normalised additive amplification of the leading ten singular

vectors and the first twenty-five singular values for the48h integration, respectively. For ease
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Figure 3.13 The vertical distribution of potential vorticity squared-amplitude of the first singular

48h singular vectors. The y-axis shows height, the x-axis showszonal wavenumber index. The

black and blue lines show the steering level and optimal masking heights respectively.

of viewing only then = 1, n = 3, n = 5, n = 7 andn = 9 singular values are shown in

Figure 3.14B. Several things are evident from these figures.Firstly, it can be seen in Figure

3.14A that the magnitude of the singular values descends less rapidly at high wavenumbers than

low wavenumbers, as was the case for the12h singular values (although the behaviour is slightly

more complex for wavenumbers smaller than the short-wave cutoff value). However, from Figure

3.14B it can be seen that, unlike the12h integration, the magnitude of the leading singular value

is not largest in the smallest scales. There are two possibleexplanations for this change in the

dependence of optimal amplification on zonal scale. Firstlythis may be attributable to the limited

vertical resolution of the model. Essentially since the model has limited vertical resolution the

resolvable tilts are also limited and for small zonal wavenumbers the limitations on tilt are more

severe; Mukougawa and Ikeda (1994). The fact that the optimal amplification is lower at the

smallest scales may be attributable to a reduction in the amplification attributable to the untilting

mechanism. A second explanation for this difference between optimal amplification over a12h

and48h integration is the variation in the structure of the continuum and normal modes with
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Figure 3.14 A: The normalised additive amplification of the singular vectors, as a function of

singular value index, for a12h integration. Each line represents a different zonal wavenumber.

B: The48h singular values. Each line corresponds to a different zonalwavenumber.

zonal wavenumber. For high wavenumbers the normal and continuum modes are more confined

in the vertical and therefore interact in a smaller region. By contrast at lower wavenumbers there

structure is more ’spread out’ in the vertical so interact over a larger part of the model domain.

The limitation of the interaction at smaller scales to a smaller region of the domain may also lead

to a limitation in the maximum amplification. Which, if either, of these explanations is correct

will not be answered in the present work. What can be said however is that the difference in

optimal amplification between the different wavenumbers (apart from the lowest) is small relative

the magnitude of the amplification. Furthermore it shall be seen in the next chapter, that due to the

less rapid decent of the singular values associated with small scale singular vectors the cumulative

effect of all the singular vectors is still greater at smaller scales.

To gain further insight into the48h growing singular vectors as a whole we shall look more closely

at then = 7 singular vectors. Figures 3.15A and 3.15B show the streamfunction squared ampli-
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tude of the first ten initial (right) and final (left) singularvectors respectively. In Figure 3.15B the

singular vectors have been weighted by the singular values.Several things are noticeable from

Figures 3.15A and 3.15B. Firstly the leading few singular vectors are associated with a transfer

of amplitude from below the steering level to the upper and lower boundaries. By contrast the

streamfunction amplitude of the lower order singular vectors is similarly distributed throughout

the domain at both initial and final time. Whilst the leading few singular vectors have large am-

plitude maxima in the region just below the steering level the lower order singular vectors show

a slight weakening of amplitude in this region relative to the rest of the domain. For reference

Figure 3.15C shows the potential vorticity squared amplitude. In Figure 3.15C it can also be seen

that whilst the leading few singular vectors have large potential vorticity amplitude in the region

associated with unmasking effects the lower order singularvectors have a weakening of potential

vorticity in the ’unmasking region’. This difference structure in the unmasking region of the lead-

ing few and lower order singular suggests that the modal masking/unmasking mechanism leads

to amplification in only the few leading singular vectors.

Figure 3.16A shows the initial tilts of the first tenn = 7 singular vectors. The ’behaviour’ of

the tilts differs from that of the12h singular vectors in that the tilts do not increase linearly with

the initial tilt of the first singular vector being close to the optimal initial tilt. The tilts of the first

two singular vectors are similar and significantly smaller than the optimal initial tilt. After the

first two singular vectors the initial tilt increases linearly with at a rate similar (∼ 0.8f0/N0) to

the12h, untilting dominated, singular vectors. Figure 3.16B shows the singular values and the

value obtained from substituting the associated initial tilts of the singular vectors into the untilting

amplification equation. For the leading few singular vectors the singular values differ radically

from the amplification inferred from the untilting mechanism. For the lower order singular vectors
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Figure 3.15 A: The streamfunction squared-amplitude as a function of height (y-axis) for the first

tenn = 7 right singular vectors. B: The streamfunction squared-amplitude as a function of height

(y-axis) for the first tenn = 7 left singular vectors, weighted by singular value squared.C: The

potential vorticity squared-amplitude as a function of height (y-axis) for the first tenn = 7 right

singular vectors; blue and black lines show the locations ofthe optimal masking height and the

steering level respectively.

98



Chapter 3 The Singular Vectors of The 2D Eady model

1 2 3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

i

a 0f 0/N
0

A

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

i

σ i

B

Figure 3.16 A: The initial tilts (y-axis) of the48h n = 7 singular vectors; x-axis shows the singular

vector index; the dotted and dashed black lines show the Orr and optimal initial tilts respectively.

B: The black line shows the48h n = 7 singular values, the blue line shows the amplification

implied by substituting the initial tilts of the singular vectors into the plane-wave amplification

Equation (3.9).

the behaviour is qualitatively more similar to that suggested by the untilting mechanism. The

fact that the lower order singular vectors do not lead to disproportionately large amplification

on the boundaries and that aside from the leading few singular vectors the initial tilt follows a

similar pattern to that of the12h singular vectors suggests that modal unmasking does not play a

significant role in any but the leading few singular vectors.

3.5 Summary

In this chapter we have examined the singular vectors of the 2D Eady model. Roughly speaking

we can infer the existence of two dynamical regimes for singular vectors. For short integration

lengths the untilting mechanism dominates the amplification. For the intermediate integration
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lengths, the modal unmasking mechanism is the dominant cause of amplification. In the next

chapter we shall discuss the implications of these two dynamical regimes to singular vector tar-

geting, but first we shall summarise the main characteristics of the two regimes.

In the untilting regime, the properties of the singular vectors may be summarised thus. The max-

imum amplification occurs at the shortest wavelengths. Additionally, the rate with which the

amplification decreases with increasing singular vector index is slower at smaller zonal wave-

lengths. The net result of this is that the ‘average’ amplification of smaller zonal scales is greater

than longer scales. For the untilting mechanism both the initial and final amplitudes tend to con-

centrated in the central vertical levels of the domain.

During the modal unmasking regime, the maximum amplification is not necessarily achieved by

the smallest zonal wavenumber. For singular vectors which amplify via modal unmasking the ini-

tial amplitude is concentrated near the steering level and the final amplitude is concentrated on the

boundaries. The transition from an untilting to a modal masking regime occurs when the integra-

tion length is sufficient for aπ phase change to occur in the relative phases of the normal modes

and the continuum modes near the steering level. This requirement implies that modal unmasking

will become significant more rapidly at small zonal scales than at large zonal scales. However,

since the modal masking regime relies on the normal modes, itcannot explain the growth of more

than a few singular vectors. Consequently even though modalunmasking is significant in de-

termining the structure of the leading singular vectors, during the modal unmasking regime the

untilting mechanism is still important to the singular vector amplification as a whole.
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CHAPTER 4

Identification of the location of greatest sensitivity using Singular

Vectors

4.1 Introduction

In the last chapter we discussed the dynamics of the singularvectors in the Eady model. In this

chapter we shall examine the relationship between these singular vectors and the singular vector

targeting method of Buizza and Montani (1999). The method ofBuizza and Montani (1999) uses

the singular vectors to identify regions which are deemed ’sensitive’ to small changes in the at-

mospheric state. Essentially, these ’sensitive regions’ are those in which small perturbations in

the model state at an observation time,t1, are likely to grow into large perturbations within a

local ’verification region’ at a later ’verification time’,t2. In singular vector targeting, sensitivity

maps are produced. These sensitivity maps attribute numeric sensitivity values to each geographic

location, and the observations are targeted to regions in which these numeric sensitivity values

are large. The sensitivity maps are produced in ’plan view’ by integrating the sensitivity in the

vertical, to attribute a sensitivity value to each latitude-longitude location. In the present chapter,

as well as looking at the vertically integrated sensitivity, we shall look at the zonally integrated

sensitivity and sensitivity maps produced for the zonal-height and spectral-height planes; i.e. at-

tributing each longitude-height location and each zonal wavenumber-height location a sensitivity

value. Whilst singular vectors themselves have been considered in vertical cross-section [e.g.
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Hoskins et al. (2000), Montani and Thorpe (2002)], the linksbetween these singular vectors and

the calculation of sensitive regions have not been explicitly considered. By considering the sensi-

tivity in these different phase-planes we shall infer several points about the relationship between

the singular vector dynamics and the sensitivity in different locations.

Here it is worth re-iterating that the streamfunction norm used to compute the singular vectors

yields singular vectors identical to those that would result from a kinetic energy norm; Kim and

Morgan (2002). Since the streamfunction and kinetic energynorms give rise to identical singular

vectors all results in this chapter are consistent with either choice of norm; essentially by replacing

the word streamfunction with the word velocity throughout the chapter one can read the equivalent

analysis for kinetic energy. Since the structure of total energy and kinetic energy singular vectors

are found to be very similar in both the Eady model [Kim and Morgan (2002)] and more complex

models [Palmer et al. (1998)], it can be inferred that the streamfunction based sensitivity maps

considered in this chapter are consistent (in terms of the norm) with the total energy singular

vectors commonly employed in singular vector targeting.

As in the previous chapter, we shall constrain our discussions to only a12h and48h integra-

tion. We shall consider first sensitivity calculated for thenon-locally projected singular vectors

discussed in the previous chapter. We shall then turn our attention to sensitivity calculated for a

local ‘verification region’, using locally projected singular vectors. We shall see that the differ-

ence in the dominant dynamical mechanisms of these two integrations leads to differences in the

distribution of ‘sensitivity’ at the initial time. For the non-locally projected singular vectors, these

difference manifest themselves in the vertical distribution of sensitivity. For the12h integration

which is dominated by untilting, the sensitivity is maximised in the central vertical levels of the

domain. By contrast, for the modal unmasking dominated48h integration, the sensitivity is max-
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imised in two peaks close to the upper and lower boundary steering levels. In both cases however

the sensitivity remains greatest at shorter wavelengths. For the locally projected singular vectors

we shall see that the transition from the untilting regime tothat modal unmasking regime is also

associated with changes in the zonal distribution of sensitivity.

4.2 Sensitivity based targeting function

The use of singular vectors in targeting has usually been motivated from the perspective of sensi-

tivity or instability of the dynamical model in a particularregion. The motivation being that, by

correcting the initial conditions in the region in which thesubsequent forecast is most sensitive to

random excitation, it is expected that the forecast error will be maximally reduced. To be more

explicit the observations are deployed in regions where it is expected that randomly perturbing

the initial conditions will cause the greatest difference between the ’perturbed’ and ’unperturbed’

forecasts. For clarity, the term random perturbation in this context refers to a vector who’s ele-

ments are drawn from a symmetric statistical distribution with zero mean, and varianceγ. In this

section, we shall introduce a useful version of the ’typical’ implementation of singular vector tar-

geting which will be applied to the Eady singular vectors computed in the previous chapter. Here

we use the word ’typical’ since the implementation of ’singular vector targeting’ varies somewhat

between publications.

Given a localised random perturbation,T1δχ1, to the model state att1, we define the evolved

perturbation to be

δχ2(T1) = MT1δχ1. (4.1)
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δχ1 is a random vector whose elements are drawn from a zero mean symmetric statistical distri-

bution with varianceγ. The vectorT1δχ1 has random elements in the region defined by the local

projectionT1 and is zero outside this region. The evolved perturbationδχ2(T1) is defined as a

function of the local projectionT1 since it varies withT1 althoughδχ1 does not vary withT1.

With the above definitions the expected norm-squared amplitude of the perturbationT2δχ2(T1)

is given by

E
[

‖T2δχ2(T1)‖
2
E2

]

= γ

Ng
∑

i=1

σ2
i v

T
i T1vi, (4.2)

wherevi andσi are theith right singular vector and singular value ofE
1

2

2 T2ME
− 1

2

1 respectively.

Equation (4.2) is essentially a prediction of the response in the region defined byT2 to randomly

perturbing the initial conditions in the region defined byT1. In singular vector targeting, the aim

is to identify the local projectionT1 from some restricted set that maximises Equation (4.2). The

use of such an expression to define a region for supplementaryobservations can be motivated

by suggesting that, if the inner product att1 used to define the singular value decomposition is

consistent with the initial condition errors, then Equation (4.2) is a prediction of the expected

error variance in the regionT2 at t2 that has its source inT1 at t1; Palmer et al. (1998). The idea

being that by placing observations in the region for whichE
[

‖T2δχ2(T1)‖
2
E2

]

is maximised, the

reduction in the initial condition errors will lead to the greatest reduction in the forecast error

variance in the verification region.

The singular vector targeting found in publications such asBuizza and Montani (1999) and Leut-

becher et al. (2002) can be interpreted in terms of Equation (4.2). In these typical implementations

of singular vector targetingT1 is a projection onto all the grid points in the vertical column at a

particular latitude-longitude location. The targeting method is implemented by first calculating
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the values of Equation (4.2) for every such latitude-longitude location to produce a ’plan-view’

map of the sensitivity. The targeting region is then defined to include all latitude-longitude lo-

cations for which Equation (4.2) is greater than a certain fraction of the maximum; Buizza and

Montani (1999). One point to note is that the targeting described by Buizza and Montani (1999)

and Leutbecher et al. (2002) does not conform precisely to Equation (4.2). For example in some

cases Buizza and Montani (1999) define a sum the absolute amplitudes of the singular vectors in

the regionT1; and Leutbecher et al. (2002) sum over the elements singularvectors transformed

to ’total energy variables’ regardless of the inner productused in the singular vector computation.

Furthermore it must stated that whilst Equation (4.2) has a precise mathematical interpretation, it

is not necessarily the case for the singular vector targeting as implemented in publications such as

Buizza and Montani (1999) and Leutbecher et al. (2002). We have chosen to formulate the sin-

gular targeting method using Equation (4.2) because it has aprecise mathematical meaning and

enables a clear interpretation of the results of the idealised experiments contained in this work.

4.3 Sensitivity determined using non-locally-projected singular vec-

tors

4.3.1 12h integration

Firstly we consider the twelve hour integration. Figure 4.1shows a sensitivity map for the height

spectral phase plane. In order to produce this sensitivity map all the singular vectors were included

in Equation (4.2). Several things are evident from Figure 4.1. Firstly high zonal wavenumbers

have far greater sensitivity than low wavenumbers. This canbe seen more clearly in Figure
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Figure 4.1 The sensitivity plotted in the height-wavenumber phase plane, for the12h integration.

4.2A which shows the sensitivity map integrated in the vertical. This increased sensitivity in the

smallest zonal scales can be interpreted in terms of the singular vectors discussed in Chapter 3.4.2.

In terms of the singular vectors there are two contributing factors to the increased sensitivity at

small zonal scales. The first is that the amplification of the optimally amplifying singular vector

is larger for high wavenumbers than low wavenumbers. The second contributing factor is that the

singular values decrease in amplitude less rapidly at smaller zonal scales. Both these points were

highlighted in the previous chapter.

The second thing that is evident in Figure 4.1 is that the model is most sensitive in the region

approximately bounded by the steering levels. Since the distance between the upper and lower

boundary steering levels increases with wavenumber, for high wavenumbers the sensitive area is

of greater vertical depth. Figure 4.2B shows the sensitivity as a function of height. From Figure

4.2B it can be seen that the sensitivity is maximised in a nearly uniform region spanning the

central half of the domain.
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Figure 4.2 A: The sensitivity as a function of zonal wavenumber, for a12h integration (the integral

of Figure 4.1 with respect to height). B: The sensitivity as afunction of height (the integral of

Figure 4.1 with respect to n), for a12h integration .

4.3.2 48h integration

Figure 4.3 shows the wavenumber-height sensitivity map forthe48h integration. The effects of

modal masking on Figure 4.3 are clear. The fact that the sensitivity peaks in the region just below

(above) the upper (lower) boundary steering levels can be understood in terms of the structure of

the leading singular vectors. Since the steering level height varies with wavenumber, the zonal

scale of perturbation to which the model is most sensitive varies with height. The central vertical

levels are dominated by the intermediate scales, whereas the lower and upper levels are domi-

nated by the small scales. Since the appearance of these areas of high sensitivity near the steering

level is associated with unmasking of the normal modes, at the end of the integration period the

variance resides predominantly at the upper and lower boundaries. However it must be noted that

although the sensitivity is dominated by the modal unmasking mechanism, there is still significant

sensitivity to high wavenumber perturbations on the central vertical levels of the domain. This

sensitivity to high wavenumber perturbations in the centreof the domain indicates that untilting
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Figure 4.3 The sensitivity plotted in the height-wavenumber phase plane, for the48h integration.

is still of significance. Whilst the sensitivity of the central vertical levels is peaked at the interme-

diate zonal scales, it must be noted that the cumulative contribution to the sensitivity in the centre

of the domain from the untilting of small scales is of similarmagnitude to that the intermediate

scales.

Figures 4.4A and 4.4B show the sensitivity as a function of wavenumber and height respectively.

From Figure 4.4A one can see that the sensitivity is peaked inthe smallest zonal scales. From

Figure 4.4B one can see that the result of the transition froman untilting regime to a modal

unmasking regime is the appearance of two distinct peaks in the vertical sensitivity distribution.

In the next section we shall see that for sensitivity computed using zonally localised singular

vectors, this change in vertical sensitivity distribution, results in a change in the zonal sensitivity

distribution.
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Figure 4.4 A: The sensitivity as a function of zonal wavenumber (the integral of Figure 4.3 with

respect to height), for a48h integration. B: The sensitivity as a function of height (theintegral of

Figure 4.3 with respect ton), for a 48h integration.

4.4 Sensitivity determined using locally projected singular vectors

4.4.1 Singular value decomposition

Previously we have computed the singular value decomposition of the Eady model integral prop-

agator without any local projection operator. In this section we shall be computing the singular

vectors with a final time local projection operator. Our mainpurpose is to demonstrate the effect

of the local projection on the sensitivity measure discussed earlier in the present chapter. How-

ever, prior to this we shall define the mathematical formalism of the singular value decomposition

and discuss briefly the character of the computed singular vectors.

As with the non-locally projected singular vectors we shalluse the matrixL ∈ R
Ng×Ng to de-

note an the integral propagator of an initialgrid-point streamfunction field to the corresponding

final grid-point streamfunction field. The final time local projection is performed by the matrix

P ∈ R
Nr×Ng . In addition to these two matrices, an additional initial time Fourier filter matrix
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F ∈ R
2Nk×Ng is used to prevent the inclusion of wavenumbers lower thankn = 10. This addi-

tional matrix is necessary since the grid-point resolutionof the model is higher than that implied

by the spectral space spanned by the first ten wavenumbers. Whilst the unprojected singular vec-

tors all contain a single zonal wavenumber, the locally projected singular vectors are comprised of

multiple zonal wavenumbers. For the unprojected singular value decomposition the Fourier filter

matrix was also used, however it made no difference to the structure the singular vectors, other

than to set the singular values associated with shortwave singular vectors to zero. The locally pro-

jected singular vectors, however, have multiple zonal wavenumbers in individual vectors. Since

the singular vectors contain multiple zonal wavenumbers, the structure of the singular vectors

differs from those computed without the Fourier filter. Utilising both the initial Fourier filter and

the final local projection singular value decomposition is defined

PLF TF =

rank(PLF T F )
∑

i=1

σiuiv
T
i . (4.3)

Detailed discussion of the structure of the locally projected singular vectors will not be given. We

shall however summarise the basic properties here. The local projection matrix is used to define

the verification region. For all numerical experiments presented in this thesis the verification re-

gion shall be a region of zonal extentNZ/f0 and heightZ; i.e. a region of one Rossby radius

zonally which occupies the full height of the domain. For reference, Figure 4.5A shows the first

right locally projected singular vector for the12h integration. The vertical black lines denote the

boundaries of the verification region. Figure 4.5B shows thefirst right locally projected singular

vector for the48h integration. From Figures 4.5A and 4.5B the effects of the final local pro-

jection on the singular vector structure can be seen. The amplitude of the singular vectors are

concentrated in a tilted region of similar width to the verification region. The tilt of the region
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Figure 4.5 Examples of first right locally projected Eady model singular vectors. Black vertical

lines denote the boundaries of the verification region. A:12h integration. B:48h integration.

is larger for longer integration lengths. From a dynamical point of view this is not particularly

surprising since, as was seen in the previous chapter, the streamfunction field of the singular vec-

tors is strongly connected to the potential vorticity field.Due to the conservative advection of

the potential vorticity by the sheared mean zonal wind, the potential vorticity perturbations in the

tilted region will be advected into the vicinity of the verification region by the end of the integra-

tion. Consequently the streamfunction field is also concentrated in the vicinity of the verification

region at the end of the integration. Since for longer integration lengths the potential vorticity will

travel further over the integration, the tilt of the region is larger. Another property of the locally

projected singular vectors that differs from that of the unprojected singular vectors is that the lo-

cally projected singular vectors contain multiple zonal wavenumbers. As an example Figure 4.6A

shows the streamfunction-squared amplitude of the first right 12h singular vector as a function

height and wavenumbers.
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Figure 4.6 A: The streamfunction squared-amplitude of the first right locally projected12h sin-

gular vector. B: The sensitivity in the height-wavenumber phase plane computed from the12h

locally projected singular vectors.

4.4.2 Invariance of the spectral-height phase-plane sensitivity, to zonal localisa-

tions

The local projection defined in the previous section localises only the zonal coordinate, and not

the vertical coordinate. It has already been seen that the localisation changes the structure of

the singular vectors. Despite the change in singular vectorstructure, zonal localisation does not

alter the sensitivity of the model when viewed in the spectral-height phase plane. To illustrate

this point, Figure 4.6B shows the sensitivity computed fromthe 12h locally projected singular

vectors plotted in the spectral-height phase plane. Comparing Figure 4.6B to the equivalent com-

puted with unprojected singular vectors (Figure 4.1) it is apparent that the two are identical up

to a multiplicative constant. This multiplicative constant is related to the zonal extent (measured

in grid-points) of the verification region, and is given byNv/Nx, whereNv is the number of

gridpoints in the verification region.
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Since the locally projected singular vectors and non-locally projected singular vectors produce

identical sensitivity patterns in the spectral-height plane, we can infer that the dynamical proper-

ties of these two singular vector spectraas wholeare identical, even if individually the singular

vectors differ in a appearance. Due to this similarity, whenconsidering the dynamics from a

wave perspective, we may utilise the analysis of the dynamical properties of Eady model singular

vectors given in the previous chapter in discussions of the sensitivity patterns generated by the

locally projected singular vectors. It should also be notedthat when considering the sensitivity

as a function of wavenumber, and as a function of height, the sensitivity pattern obtained with

the locally projected singular vectors is also identical (up to a multiplicative constant) to those

obtained using the unprojected singular vectors shown in Figures 4.2A and 4.2B respectively.

4.4.3 Introduction of height-zonal correlation by zonal localisation

In this section we shall look at the sensitivity computed using the locally projected singular vectors

in zonal-height plane. Firstly we shall look at some of the general properties of the sensitivity

patterns in the zonal-height plane. Figures 4.7A and 4.8A show the zonal-height plane sensitivity

pattern, computed for a12h and48h integration respectively. For both integrations the sensitivity

lies in a tilted region of width approximately equal to the width of the verification region. From

a potential vorticity dynamics perspective, the sensitiveregion lies in the region from which the

potential vorticity will have been advected into the verification region at the end of the integration.

In a sense one could say that the sensitivity is ’untilted’ over the integration length.

As a result of the tilted structure of the sensitive region different zonal locations are colocated

with regions of sensitivity at different heights. For example looking at Figure 4.8A, one can

say that atxf0/N0H = 4 the sensitivity occurs at the central height of the domain, whereas at
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xf0/N0H = 2 the sensitivity occurs atz/Z ∼ 0.8. In this way we can attribute zonal variations

in sensitivity to vertical changes in the sensitivity, and hence attribute the sensitivity at different

zonal locations to different growth mechanisms and zonal scales. Here it is worth emphasising

that we use the term scale rather than wavelength/wavenumber since by definition the variations

in sensitivity we are referring to must be constructed of multiple wavelengths. To illustrate this,

Figures 4.7B and 4.8B show the sensitivity as a function of zonal coordinate for the12h and

48h integrations respectively. For the12h integration, there is a single peak corresponding to the

sensitive region at the central height of the domain. The fact that the greatest sensitivity occurs

in the centre of the domain is attributable to the fact that potential vorticity unshielding is the

dominant growth mechanism for the singular vectors. By contrast, for the48h integration (Figure

4.8B) there are two peaks. These two peaks correspond to the sensitive regions near the upper and

lower boundary steering levels of the shortest wavelengths. The two peaks are therefore associated

with the modal unmasking of the shortwave normal modes. To see this explicitly Figure 4.9 shows

the sensitivity plotted with the shortwaves filtered out viaa Fourier filter. Each line in Figure 4.9

gives the sensitivity calculated with the the scales smaller than wave indexn filtered from the

singular vectors; for example then = 1 line contains only the longest wave, whereas then = 10

line contains all ten wavenumbers and is identical to that shown in Figure 4.8B. From Figure 4.9

it can be seen that the longest zonal wavelengths are associated with sensitivity between the two

peaks in Figure 4.8B and the double peak does not appear untilthe smaller scales are added to the

sensitivity calculation. The implication is that the location of the peaks corresponds to a region

where the verification region forecast is highly sensitive to changes in the small scales close to

the upper and lower boundary steering level. Between the peaks the forecast in the verification

region is less sensitive to changes in the small scales, but is however more sensitive to changes in

the large scales than at the peaks.
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Figure 4.7 A: The sensitivity in the height zonal plane computed using the12h locally projected

singular vectors. B: The sensitivity as a function of the zonal coordinate, computed using the12h

locally projected singular vectors.

Another noticeable feature of Figure 4.9 is that the peaks insensitivity gradually separate as

smaller and smaller scales are added to the sensitivity calculation. This separation is attributable

to the fact that peak in sensitivity for each wavenumber resides close to the steering level. Since

the separation between the two steering levels increases with wavenumber, so does the vertical

separation of the sensitivity peaks. Due to the tilted structure of the sensitivity, these changes in

vertical separation also lead to changes in zonal separation. This behaviour marks a difference

between the untilting and modal unmasking regimes. For the untilting regime, since the sensitivity

is maximum in roughly the central vertical levels, the zonallocation of greatest sensitivity is

roughly the same for all zonal scales. By contrast, the modalunmasking regime is characterised

by variations in the zonal location of greatest sensitivitywith zonal scale.
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Figure 4.8 A: The sensitivity in the height zonal plane computed using the48h locally projected

singular vectors. B: The sensitivity as a function of the zonal coordinate, computed using the48h

locally projected singular vectors.

4.5 Summary

In this chapter we have considered the sensitivity based singular vector targeting function of

Buizza and Montani (1999) in the context of the Eady model singular vectors computed in the

previous chapter. In the next chapter we shall introduce an extension to the singular vector tar-

geting method, that takes account of the data assimilation process, and the dynamical evolution

of errors prior to the forecast initialisation timet1. Firstly, we shall summarise the findings of the

present chapter.

The difference between the dynamical regimes of the short12h and intermediate48h integrations

leads to difference in the vertical distribution of sensitivity. In the case of the short integration,

untilting is the dominant growth mechanism, and consequently the sensitivity is concentrated in

the central vertical levels of the domain. By contrast for the intermediate integration the modal
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Figure 4.9 The sensitivity as a function of the zonal coordinate, computed using the48h locally

projected singular vectors. The sensitivity is computed with the small zonal wavenumbers filtered

out. Each line corresponds to a different level of filtering,so for example, then = 1 line contains

only the longest zonal wavelength and then = 10 line contains all zonal wavelengths. N.B. the

n = 10 line is identical to Figure 4.8B.
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unmasking is the dominant growth mechanism, and consequently the sensitivity is concentrated

in two peaks near the upper and lower boundary steering levels of the shortest resolved zonal

wavelengths.

When the sensitivity to initial perturbations of a zonally localised verification region is consid-

ered, the difference between the two dynamical regimes of the short and intermediate integration

leads to differences in the zonal distribution of the sensitivity. These differences occur because

the sensitivity at a particular zonal location correspondsto the sensitivity of a small number of

vertical levels. Essentially this means that, when untilting is the dominant mechanism and the

sensitivity is greatest in the central vertical levels, thesensitivity is greatest at the zonal loca-

tion whose sensitivity depends the sensitivity of the central vertical levels. By contrast when the

modal unmasking regime is entered, the sensitivity is greatest at zonal locations whose sensitivity

depends the sensitivity of the vertical levels near to the upper and lower boundary steering levels.

Consequently for the untilting regime there is a single peak, whereas, when the modal unmasking

regime is entered, this peak separates into two zonally separated peaks.
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CHAPTER 5

A singular vector targeting method that introduces dynamic

estimates of the initial condition errors

In this chapter we shall define an A-optimal [Berliner et al. (1999)] targeting method which

utilises singular vectors to obtain a reduced rank prediction of the observation locations that will

be of greatest benefit to the accuracy of the subsequent forecast. Rather than rely on the initial

normalising matrixE1, (following Berliner et al. (1999)) we shall approximate the initial con-

dition error statistics at timet1 by a transformation of a dynamically evolved background error

covariance matrix. Unlike Berliner et al. (1999), however,we shall define this transformation to

be consistent with the operational data assimilation system, and not an ensemble Kalman filter.

This difference in choice of transformation, leads to a significantly different final result.

By assuming an operational Kalman Filter, Berliner et al. (1999) arrive at a targeting function

that models the response obtained if the operational data assimilation were able to spread infor-

mation along the eigenvectors of the dynamically evolved background error covariance matrix.

By contrast, in the analysis presented in this chapter, we shall assume that the data assimilation

system contains a pre-specified model of the background error covariance which is not generally

consistent with the estimated actual covariance matrix. Making this assumption we shall define

a targeting function, the operation of which is summed up by Equation (5.18). The method es-

sentially finds the difference between the predicted forecast error variance, with and without the

observations, allowing for the fact that observations may increase or decrease the forecast error.
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This work can be motivated by Bergot (2001), in which it is found that the impact of the targeted

observations is highly dependent on the quality of the background field. It is important therefore

that any targeting method should incorporate information about the background errors. Bergot

(2001) also find that only in cases where the observations were collocated with regions in which

the singular vectors used in targeting had non-negligible amplitude, do they have an effect on the

forecast error. This requirement of collocation with the region spanned by the targeted singular

vectors indicates that observations should not be placed outside this region. It is important to

note however that requiring observations to be collocated with the targeted singular vectors is

not the same as requiring that observations be located at thelocations where the singular vectors

have maximum amplitude; i.e. it is not a statement that the singular vector method described

in the previous chapter is the best means of selecting observation locations. It is simply that

regions where the singular vectors have negligible amplitude are dynamically disconnected from

the verification region. Bergot (2001) also find that the effectiveness of targeted observations

depends on the data assimilation system. It is therefore likely that consistency of the targeting

method with the operational data assimilation system is important.

In this chapter we shall first outline the statistical formulation of the targeting method. We shall

then consider how this targeting method may be approximatedusing singular vectors. Then we

shall consider the means by which the targeting method may bemade consistent with a hypothet-

ical operational data assimilation system. In the final section of this chapter we shall demonstrate

a simplified implementation of this targeting method in the Eady model, and discuss the connec-

tion between the target locations calculated and the dynamical analysis of the contained in the

previous chapters.
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5.1 Basic formulation of a targeting method

In this section we define the basis for a targeting method. To form the basis of the method we

make the assumption that the expected background error covariance matrix att1 evolves from

the identity matrix at an earlier timet0, and that the error evolution fromt0 to t2 is linear. With

these assumptions a basic statistical formulation for the targeting method follows in a similar

fashion to that of Berliner et al. (1999). There is one significant difference between the statistical

formulation of Berliner et al. (1999) and that which we outline here. This difference is that

whilst Berliner et al. (1999) make the assumption that the observations are assimilated using

an (extended) Kalman filter, we make no such assumption. Rather than use the Kalman filter

equations, we define a matrix which is assumed in some way to approximate the gain matrix

(response function) of the operational data assimilation system.

We shall start our discussion by defining the background error covariance matrix att1. We make

the assumption that the background error covariance matrixat t1 is given by

B1 = M̂E−1
0 M̂T , (5.1)

whereM̂ is the linear integral propagator for the intervalt0 to t1, andE−1
0 is a normalising matrix.

AssumingB1 takes this form is equivalent to assuming that the background error covariance

matrix evolves from a uniform, non-covariant, zero-mean distribution (with respect to theE0

inner product) att0; Berliner et al. (1999). Whilst we have defined̂M to be simply the linear

integral propagator, it is worth noting here thatM̂ could in theory incorporate additional periodic

transformations to represent analysis cycles occurring betweent0 andt1.

The second component required for the targeting method is a means of transforming the back-
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ground error covariance matrix att1 into the analysis error covariance matrix due to thepth

possible deployment of observations. For this purpose we define the matrixGp such that

A1(Gp) = GpB1G
T
p = GpM̂E−1

0 M̂TGT
p . (5.2)

The matrixGp is some approximation to the gain matrix (response function) of the data assimi-

lation system. The properties ofGp will be discussed in Section 5.3, but it is worth noting here

that in this definition ofA1 we have pre-emptively assumed that the effects of observation errors

on the analysis errors are small enough to be neglected.

Finally we require a means of evolving the analysis error covariance matrix att1 to the covariance

matrix of forecast errors in the verification region defined by the local projection operatorT2, at

t2. To produce this evolved covariance matrix we employ the matrix T2M , whereM is the linear

integral propagator for the intervalt1 to t2. The locally projected forecast error covariances are

then given by

T2B2(Gp)T2 = T2MGpB1G
T
pM

TT2 = T2MGpM̂E−1
0 M̂TGT

pM
TT2, (5.3)

where

B2(Gp) = MA1(Gp)M
T (5.4)

is the predicted forecast error covariance matrices att2 for thepth deployment of observations.

Having defined the expected background errors due to thepth deployment of observations, the

next step is to define the metric by which the favourability ofthe deployment may be determined.

For this purpose we use the A-optimal measure of the expectedforecast error variance att2 as
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measured with the norm induced by theE2 inner product. Following Berliner et al. (1999) we

note that the expected forecast error variance att2 is equal to the trace (sum of the elements on

the main diagonal) of the forecast error covariance normalised byE
1

2

2 . The expected reduction in

forecast error variance due to thepth possible deployment of observations att1 is then given by

the reduction in the trace of the background error covariance matrix; i.e.

E
[

‖T2ǫ2‖
2
E2

− ‖T2ǫ2(Gp)‖
2
E2

]

= trace{E
1

2T2B2(I)T2E
1

2} − trace{E
1

2T2B2(Gp)T2E
1

2 }

(5.5)

whereǫ2(Gp) andǫ2 denote the vector of forecast errors att2 obtained with thepth possible

deployment of observations and with no observations, respectively, and

B2(I) = MB1M
T (5.6)

denotes the forecast error covariance matrix att2 when no observations are taken att1; i.e. if

Gp = I.

Here we have written the background error variance as the expectedE2-norm-squared amplitude

to facilitate comparison with the singular vector targeting criterion given in Equation (4.2) of

Chapter 4. As we shall see later, ift0 = t1 (i.e. M̂ = I) and if a particularly simple choice of the

form ofGp is made, Equation (5.5) reduces to Equation (4.2).

Equation (5.5) defines the basis of the targeting method, however due to the high dimension of the

matrices involved, direct calculation ofE
[

‖T2ǫ2‖
2
E2

− ‖T2ǫ2(Gp)‖
2
E2

]

for a singleGp is compu-

tationally expensive. The computational expense of calculating E
[

‖T2ǫ2‖
2
E2

− ‖T2ǫ2(Gp)‖
2
E2

]

for multiple Gp would be extreme. Evidently Equation (5.5) requires significant simplification

before it may be used in practical targeting applications. In the next section we discuss the reduc-
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tion of the dimension of the problem using singular vectors.In Section 5.3 we shall discuss the

properties of the matrixGp.

5.2 Using singular vectors to reduce the rank of the targeting prob-

lem

In the previous section we defined the basis of our A-optimal targeting method. The method re-

quires several high dimensional matrix operations to be performed recursively for different obser-

vational deployments. Such recursive calculations incur avast computational expense, therefore

a means of reducing the ’size’ of the problem is required. In this section we shall demonstrate

how singular vectors may be used to approximate the dynamical evolution of the errors leading,

to a large reduction in the computational cost.

We shall start by substituting into the definition ofE
1

2

2 T2B2(Gp)T2E
1

2

2 , the singular value decom-

position

E
1

2

2 T2ME
− 1

2

1 = UΣV T , (5.7)

whereU , V andΣ are matrices containing the left and right singular vectorsand the singular

values respectively. With this substitutionB2(Gp) becomes

E
1

2

2 T2B2(Gp)T2E
1

2

2 = UΣV TE
1

2

1 A1(Gp)E
1

2

1 V ΣUT (5.8)

We are however not interested in computation ofE
1

2

2 T2B2(Gp)T2E
1

2

2 . We are only interested in

calculation of the trace ofE
1

2

2 T2B2(Gp)T2E
1

2

2 . We can make use of the fact that the trace of a
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matrix is invariant to similarity transformations (Golub and Van Loan (1983)) and write the trace

of E
1

2

2 T2B2(Gp)T2E
1

2

2 as

trace{E
1

2

2 T2B2(Gp)T2E
1

2

2 } = trace{ΣV TE
1

2

1 A1(Gp)E
1

2

1 V Σ}. (5.9)

Here we have made use of the fact that sinceU is an orthogonal matrix (Golub and Van Loan

(1983)), U−1 = UT , and hence pre and post multiplication byU andUT respectively is a

similarity transformation. Writing the trace as the summation over the diagonal elements of

ΣV TE
1

2

1 A1(Gp)E
1

2

1 V Σ and using index notation for the matrix multiplications yields

trace{E
1

2

2 T2B2(Gp)T2E
1

2

2 } =

Ng
∑

i=1

[ΣV TE
1

2

1 A1(Gp)E
1

2

1 V Σ]i,i

=

Ng
∑

i=1

Ng
∑

j=1

Ng
∑

k=1

[ΣV T ]i,j[E
1

2

1 A1(Gp)E
1

2

1 ]j,k[V Σ]k,i

, (5.10)

where the notation[A]j,k denotes thejth element of thekth column of the matrixA. Noting that

theith row (column) ofΣV T (V Σ) is σiv
T
i (σivi), we replace the summations overj andk with

matrix vector multiplications yielding

trace{E
1

2

2 T2B2(Gp)T2E
1

2

2 } =

r
∑

i=1

σ2
i v

T
i E

1

2

1 A1(Gp)E
1

2

1 vi, (5.11)

wherer = rank{E
1

2

2 T2ME
− 1

2

1 }

The next step is to simplifyA1(Gp). We start by noting that components ofA1(Gp) which lie

in the null-space (Golub and Van Loan (1983)) ofT2E
1

2

2 M make no contribution to the trace of

E
1

2

2 T2B2(Gp)T2E
1

2

2 . Essentially this means that in regions which lie far from, or are ’dynamically

disconnected’ from the regionT2 att1, can be removed from the search for the optimal observation

locations. We define the local projection operatorT̂1 to contain all the geographical locations
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which are to be included in the search.T̂1 is defined such that

T2MGpT̂1M̂ = T2MGpM̂, (5.12)

for all potentialGp and consequently the trace ofE
1

2

2 T2B2(Gp)T2E
1

2

2 is unaffected by the pres-

ence ofT̂1; i.e.

trace{E
1

2

2 T2B2(Gp)T2E
1

2

2 } = trace{E
1

2

2 T2MGpM̂E−1
0 M̂TGT

p M
TT2ME

1

2

2 T2}

= trace{E
1

2

2 T2MGpT̂1M̂E−1
0 M̂T T̂1G

T
p M

TT2ME
1

2

2 T2}

(5.13)

With this in mind we define the singular value decomposition

E
1

2

1 T̂1M̂E
− 1

2

0 =

r̂
∑

j=1

σ̂jûj v̂
T
j , (5.14)

wherer̂ = rank{T̂1E
1

2

1 M̂E
− 1

2

0 }.

Making use of the orthogonality of the right singular vectors we may write

E
1

2

1 T̂2M̂E−1
0 M̂T T̂2E

1

2

1 =

r̂
∑

j=1

r̂
∑

k=1

σ̂jσ̂kûjv̂
T
j v̂kû

T
k =

r̂
∑

j=1

σ̂2
j ûjû

T
j . (5.15)

Substituting the above into the trace ofE
1

2

2 T2B2(Gp)T2E
1

2

2 yields the expression

trace{E
1

2

2 T2B2(Gp)T2E
1

2

2 } =
r

∑

i=1

r̂
∑

j=1

σ2
i σ̂

2
jv

T
i E

1

2

1 GpE
− 1

2

1 ûjû
T
j E

− 1

2

1 GT
p E

1

2

1 vi. (5.16)

Noting that this expression is the product of two identical inner products, we may write the trace
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of E
1

2

2 T2B2(Gp)T2E
1

2

2 as

trace{E
1

2

2 T2B2(Gp)T2E
1

2

2 } =

r
∑

i=1

r̂
∑

j=1

σ2
i σ̂

2
j (v

T
i E

1

2

1 GpE
− 1

2

1 ûj)
2. (5.17)

Finally, using Equation (5.17), we may writeE
[

‖T2ǫ2‖
2
E2

− ‖T2ǫ2(Gp)‖
2
E2

]

in terms of the sin-

gular vectors as

E
[

‖T2ǫ2‖
2
E2

− ‖T2ǫ2(Gp)‖
2
E2

]

=

r
∑

i=1

r̂
∑

j=1

σ2
i σ̂

2
j

[

(vT
i ûj)

2 − (vT
i E

1

2

1 GpE
− 1

2

1 ûj)
2

]

. (5.18)

The (vT
i ûj)

2 term comes about by noting that in the absence of observations Gp = I. By

rewriting in terms of the singular vectors we have reduced the computation expense to that of

r × r̂ inner products for each possible deployment of observations. However the computational

expense will be reduced even further if Equation (5.18) is computed only approximately using

fewer thanr and r̂ singular vectors. By computing Equation (5.18) with fewer singular vectors

we also reduce significantly the initial expense of computing the singular vectors.

We can interpret Equation (5.18) by considering the meanings of the two terms in the square

bracket. The first term,(vT
i ûj)

2, is a measure of the projection of the errors in the back-

ground field onto the ‘growing phase-space’ of the forecast error. It is by reducing this projection

that the assimilation of observations is expected to reducethe forecast error. The second term,

(vT
i E

1

2

1 GpE
− 1

2

1 ûj)
2 is a measure of the projection of the analysis errors associated with thepth

deployment of observations onto the growing phase-space ofthe forecast trajectory. If the first

term is larger than the second, then the Equation (5.18) is positive andpth deployment of observa-

tions is expected to be beneficial to the forecast accuracy. Conversely, if the second term is larger,

then Equation (5.18) is negative and the additional observations are likely to be detrimental to the
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forecast accuracy. The idea that adding additional observational data will be detrimental to the

forecast may seem a little counterintuitive, but if one considers that reducing the errors in alocal

region acts as a rotation of theglobal error structure in phase-space rather than a simple global

reduction in error amplitude, it makes more sense. As a crudeexample one could consider simply

correcting the background error to the observation withoutany smoothing. Whilst this simple

correction procedure may reduce the initial condition error amplitude, it is likely create a ‘jagged’

error structure which may lead to greater error amplification than occurs in the uncorrected field. It

is the belief that the data assimilation process ’rotates’ the initial condition errors towards smaller

scales that in part motivates the type of singular vector based observation targeting described in

the previous chapter; Palmer et al. (1998). For our purposes, it is partly the possibility of obser-

vations causing ’unfavourable’ phase-space rotation of the errors that motivates both the desire

for Gp to be an approximation to the gain matrix of the operational data assimilation system, in

the evaluation of Equation (5.18). We shall show that this increase in forecast error would not be

predictable if the targeting method assumed the existence of an operational Kalman filter, as is

the case in methods such as the ensemble transform Kalman filter method. The desired properties

of Gp will be discussed more fully in the next section.

5.3 Approximation of the data assimilation response

In the previous sections of the current chapter we proposed amethodology for observation tar-

geting, and demonstrated how the computational expense of the method may be reduced. One

component of the methodology is the matrixGp, which is a transformation of the estimated back-

ground error covariance att1 to the predicted analysis error covariance matrix att1 due to thepth
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possible deployment of observations. We have so far said very little about the desired properties

of Gp other than the fact it should approximate the response of theoperational data assimilation

system. Bergot (2001) find that the efficiency of targeted observations depends on the assimila-

tion scheme, noting several cases where the assimilation oftargeted observations by the 3D-Var

and 4D-Var schemes lead to significant differences in the change in accuracy of the subsequent

forecast. Bergot (2001) find that in some cases assimilationof observations with 4D-Var leads

to forecast improvement, whereas if 3D-Var is used, the assimilation of the same observations

degrades the accuracy of the subsequent forecast. The targeting methodologies of Bishop and

Toth (1999) and Hamill and Snyder (2002a) define the target region which would be beneficial

to forecast systems utilising ensemble Kalman filter based assimilation systems. At present me-

teorological centres typically employ 3D-Var and 4D-Var assimilation systems. The underlying

assumption of the existence of a Kalman filter may lead to miscalculations in the expected forecast

correction obtained from a given deployment of observations. Such mis-calculations have been

noted by Majumdar et al. (2001) who find the benefits of targeted observations are overestimated

by the Ensemble Transform Kalman Filter.

How Gp should be defined so that it is consistent with the operational data assimilation scheme

is a complex question. This question is further complicatedby the requirement that the gener-

ation of multipleGp and the subsequent calculation of the inner products in Equation (5.18) be

computationally inexpensive. We shall not attempt to tackle this question in full within this the-

sis. We shall instead demonstrate an inexpensiveGp for a simple 3D-Var assimilation system.

But prior to this we shall discuss some of the potential similarities and differences between the

effects of different assimilation schemes. We shall discuss first the properties of the 3D-Var and

4D-Var assimilation schemes that are used operationally inweather forecasting centres. We shall

129



Chapter 5 A singular vector targeting

also discuss the Kalman Filter. Although the Kalman Filter is not used operationally, Kalman

Filter theory is of particular importance to the targeting methods such as the Ensemble Transform

Kalman Filter.

In the 3D-Var assimilation scheme all observations within apre-specified finite time period (as-

similation window) are assumed to have been made at a single point in time. For example, if

we generate an analysis of the atmospheric state at the analysis timeta, in 3D-Var we treat all

observations made within a few hours ofta as if they were made atta. The cost function

J (χ) =
1

2

(

χb − χa
)T

B−1
(

χb − χa
)

+
1

2
(y −Hχ)T R−1 (y −Hχ) , (5.19)

which was introduced in Chapter 11 is then minimised (usually approximately) using an iterative

algorithm. In 3D-Var analysis schemes, the background error covariances are usually modelled

as separable in the horizontal and vertical directions, with the horizontal correlations assumed to

be homogeneous. The correlations between the errors in different variables and different hori-

zontal wavenumbers are often neglected. Due to the simplicity of the assumed background error

statistics, the 3D-Var assimilation scheme is effectivelyblind to the day to day variations in the ac-

curacy of the background field. In particular due to the homogeneity of the modelled background

error covariance 3D-Var ’spreads’ observational information evenly in all directions regardless of

any asymmetries in the correlations in the background errorstatistics.

The 4D-Var analysis scheme differs from the 3D-Var in that a linear integral propagator is in-

corporated into the definition of the forward model so thatH is replaced byHM̃(ta, to) where

M̃(ta, to) is the linear integral propagator from the analysis time,ta, to the observation time,

to. In the 4D-Var scheme the background error covariance matrix, B, is usually contains simi-

1For the definition in this chapter we have assumed that the observation operator/forward model is linear
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lar approximations to those used in 3D-Var schemes. In 4D-Var, however, the inclusion of the

linear integral propagator means that observational information is spread in a manner more con-

sistent with the current atmospheric flow. In particular, due to the iterative solution methods used

to approximately minimise the cost function, 4D-Var preferentially adjusts the background field

along the leading singular singular vectors of the matrixM̃(ta, to). Essentially this means that

the change in the background field induced by observations isexpected to effect the structures

which amplify the most over the time intervalta to to. This picture is not so clear-cut, however,

since the degree to which the current dynamics affect the spreading of observational information

is dependent on the time intervalta to to. If the observations are made close to the analysis time

then the influence of the dynamics will be much lower than if the observations are made far from

the analysis time. For the former case, that of observationsbeing made close tota, the differences

between the response of a 4D-Var and a 3D-Var assimilation scheme with identicalB matrices

may be small.

In contrast to the 3D-Var and 4D-Var assimilation schemes, the Kalman Filter scheme does not

make assumptions of homogeneity of theB matrix. In the Kalman Filter scheme theB matrix is

continually evolved using the linearised dynamical model.Due to this continuous evolution of the

error statistics the Kalman Filter assimilation scheme takes account of large scale inhomogeneous

statistical correlations in the background errors which accumulate over time intervals longer than

the analysis windows used in 3D-Var and 4D-Var. For example the Kalman Filter may spread in-

formation along dynamical features such as fronts and cyclones; Majumdar et al. (2001). 3D-Var

and 4D-Var are only aware of these long range correlations inso much as they have been incorpo-

rated into the homogeneous model background error covariance matrix. Whilst the Kalman Filter

assimilation scheme is at present too expensive to be used inoperational weather forecasting it is
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still relevant to targeted observations. This relevance isdue to the fact that targeting methods such

as the Ensemble Transform Kalman Filter and the ensemble method of Hamill and Snyder (2002a)

predict the forecast correction that would be obtained if the observations were assimilated using

Kalman Filter based data assimilation schemes. Essentially, these Kalman filter based methods

have the underlying assumption that the data assimilation scheme is ’aware’ of long range dy-

namical correlations specific to the current flow regime, when in actual fact the operational data

assimilation scheme may well be unable to account of such information. It is important to note

here that the fact the data assimilation scheme does not utilise information about long range dy-

namical error correlations does not mean such correlationsdon’t exist, merely that they do not

effect the ’spreading’ of observational information during the assimilation process. A targeting

method that does not make use of Kalman Filter theory may therefore give a more accurate pic-

ture of the response to the placement of observations in a given location. A targeting method

that assumes a 3D-Var or 4D-Var assimilation system may givea more accurate prediction of the

optimal observation locations. Consistency with the 3D-Var assimilation scheme may be more

easily achievable than consistency with the more complex 4D-Var scheme, but as has been noted

when the observation time is close to the analysis time thesetwo assimilation systems may be

relatively similar in their response. In the remainder of this section we shall define aGp which is

both consistent with a simple 3D-Var type assimilation scheme and computationally inexpensive.

We shall commence our definition ofGp by defining the analysis,χa, as the zero point of the

Jacobian (first derivative with respect toχ) of the cost function Equation (5.19). Taking the first

derivative and equating to zero yields

∂

∂χ
J (χa) =

1

2
B−1

(

χb − χa
)

+
1

2
HTR−1 (y −Hχa) ≡ 0. (5.20)
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We define the analysis, observation and background errors tobe the vector deviationsǫa = χt −

χa, ǫo = Hχt − y andǫb = χt − χb from the an imaginary perfect analysis (or ’truth’)χt.

Substituting these error definitions into Equation (5.20) and rearranging, we can write the analysis

errors

ǫa = (B−1 +HTR−1H)−1(B−1ǫb +HTR−1ǫo). (5.21)

From the above equation, we can see that the analysis errors are the sum of matrix transforma-

tions of the background and observation errors. If the observations are to be taken in regions with

large background errors, it is reasonable to assume that theamplitude of the background errors

will be larger than the observation errors, so we may simplify Equation (5.21) by lettingǫo = 0.

The effect of observation errors on the target selection could be included by adding an additional

term to the target selection Equation (5.18), however, for concision, discussion of this term will

not be included in this thesis. With this small observation error approximation, the analysis er-

rors are simply defined as a matrix transformation of the background errors. We can define the

transformation associated with thepth deployment of observations as

Gp = (B−1 +HT
p R

−1
p Hp)

−1B−1, (5.22)

whereHp andRp are the observation operator and observation error covariance matrix associated

with thepth deployment of observations. It is worth reminding the reader that the matricesR−1
p

andB−1 are the error covariances assumed by the data assimilation system and are not neces-

sarily the same as the ’actual’ error covariance. Using theSherman-Woodbury-Morrison formula
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(Golub and Van Loan (1983)) we may rewriteGp as

Gp = (B −BHT
p R

− 1

2

p (I +R
− 1

2

p HpBH
T
p R

− 1

2

p )−1R
− 1

2

p HpB)B−1

= I −BHT
p R

− 1

2

p (I +R
− 1

2

p HpBH
T
p R

− 1

2

p )−1R
− 1

2

p Hp

= I −BHT
p (R +HpBH

T
p )−1Hp

= I −G′
p,

(5.23)

where

G′
p = BHT

p (R+HpBH
T
p )−1Hp. (5.24)

Substituting the above definition ofGp into the targeting criteria given in Equation (5.18) and

rearranging, yields

E
[

‖T2ǫ2‖
2
E2

− ‖T2ǫ2(Gp)‖
2
E2

]

≃

≃

Nv≤r
∑

i=1
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1 ûj) − (vT
i E

1

2
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′
pE

− 1

2

1 ûj)
2

]

.

(5.25)

If Nv = r andNu = r̂, then this is exactly equal to Equation (5.18), but if fewer thanNv = r

andNu = r̂ singular vectors are used then the two equations are only approximately equal. After

the initial outlay of the singular vector computation, the computation of the target region requires

a singlecomputation of theNv × Nû inner products,vT
i ûj, plus the computation ofNv × Nû

inner products,vT
i E

− 1

2G′
pE

1

2 ûj , for every observational deployment to be tested. The expense

of the inner productsvT
i E

− 1

2G′
pE

1

2 ûj may be significantly reduced by exploiting the structure of

the matrix products which defineG′
p. For example the matricesBHT

p andHT
p Hp have the same

number of columns as there are observations. The number of non-zero elements in each column

will depend on the manner in which the observational information is spread by the data assimila-
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tion system and the relationship between the observations and the control vector. In the simplest

case, if the control and observed variable are identical andthe background and observation error

covariance matrices are diagonal, thenG′
p have only one non-zero element per observation. By

contrast, if the background and observation error covariance matrices are dense and the control

variable has a complicated relationship with the observed variable thenG′
p will have a large num-

ber of non-zero elements. The complexity ofG′
p determines the computational expense incurred

when testing each possible observational deployment. The simplerG′
p the greater number of ob-

servational deployments that can be tested in a given time period. In the next Section we shall

define a simple data assimilation system to be used in the Eadymodel and the correspondingG′
p.

5.4 Implementation of the targeting method in the Eady model

5.4.1 A simple definition ofGp

In this section we shall define a simple data assimilation system for the Eady model. We shall

then show the form of the correspondingGp based on the assumption that the observation errors

are small. We shall start by defining the control vector for the data assimilation system. We shall

define the control vector to be

χ = ψ̃ = Fψ , (5.26)

whereF is the reduced rank Fourier transform introduced in the Chapter 3, andψ̃ is the spectral-

space representation of the streamfunction field. Here is should be stressed that defining the

control vector in this way restricts the analysis increments to only contain the first ten zonal

wavenumbers. We shall further assume that all observationsare of streamfunction and collocate
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with model grid2. The observation operator is then defined as the inverse Fourier transformation,

F T ∈ R
Ng×2Nk , from the spectral control-space to the grid point space followed by a projection,

Q ∈ R
No×Ng onto the grid points at which observations are located; i.e.

H = QF T . (5.27)

Following the conventions of 3D-Var we shall define the data assimilation system’s background

error covariance matrix such that the zonal and vertical correlations are separable, the zonal cor-

relations are homogeneous and isotropic and there are no correlations between different zonal

wavenumbers. With these assumptions, the background errorcovariance matrix consists of an

Nz ×Nz block for each zonal wave component. For the time being we shall not discuss the prop-

erties of the vertical correlations. Finally we shall make the assumption that the errors in different

observations are not correlated. Without correlations between observations the observation error

covariance matrixR ∈ R
No×No is diagonal. From Equation (5.21) the analysis errors for the

Eady model data assimilation system are defined as

ǫa = (B−1 + FQTR−1QF T )−1B−1ǫb + FQTR−1ǫo, (5.28)

and it follows thatG′
p may be written

G′
p = BFQT

p (Rp +QpF
TBFQT

p )−1QpF
T . (5.29)

2N.B. the reader is reminded that sinceF is not full rank, the model grid is of higher dimension than the Fourier

space associated with the first ten zonal wavenumbers
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5.4.2 Simplification ofGp

Once the singular vectors have been computed, the only significant computational expense comes

from the inversion of the bracketed term(Rp +QpF
TBFQT

p ) for multiple possible deployments

of observational deployments. Making use of the following:the observation errors vary with

height only; the background error covariance matrix is zonally homogeneous and isotropic; and

by neglecting the vertical background error correlations within the bracketed term, we may write

G′
p

G′
p ≃ BFQT

pD(z)QpF
T , (5.30)

whereD(z) is a diagonal matrix whose elements depend on the height of the observation. Proof

of Equation (5.30) is given in Appendix C. Since, both(QF TBFQT )i,i and depend on height and

not the zonal location, the diagonal elements ofD depend only on the height of the corresponding

observation. The extent to which this approximation is valid depends on how close to being diago-

nalB actually is. Interestingly in ’typical’ 3/4d-Var assimilation schemes the vertical correlations

in B are strongest at low wavenumbers and on the upper and lower boundaries. By contrast, as

we shall see, the low wavenumbers and the upper and lower boundaries play only a minor role

in the selection of the target region using the method outlined above. Essentially this means that,

for typical assimilation schemes, the approximation ofB by its diagonal in the bracketed term is

likely to be most inaccurate in the regions of phase-space which are of least importance for the

target selection. That is not to say, however, that this in general a good approximation, merely

that the greatest inaccuracy occurs in the least significantregions.

At an even greater level of approximation, ifB andR are taken as uniform diagonal matrices (i.e.
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constant multiples of the identity matrix) throughoutG′
p then we may write

G′
p ≃ cHT

p Hp = cFQT
p QpF

T = cTp (5.31)

wherec is a constant andTp is a local projection operator that sets the model state to zero ev-

erywhere except at the observation locations. For this particularly simple definition ofG′
p, when

t1 − t0 = 0, the targeting criteria given in Equation (5.25) reduces tothe same mathematical

formulation of the targeting criteria given in Equation (4.2). However whent1 − t0 is not equal

to zero then Equation (5.25) and Equation (4.2) are not of thesame mathematical form. For this

simple choice ofGp, the targeting criteria given in Equation (5.25) can be interpreted as an ex-

tension to Equation (4.2) in which the effect of the evolution of the errors prior to the observation

time is taken into account. In the next section we shall demonstrate a simple implementation

of Equation (5.25) in whichG′
p = cTp and discuss the relationship to the results shown in the

previous chapter.

5.4.3 Computing the singular vectors

In this section we shall describe the implementation of the targeting method in the Eady model.

Firstly we need to define the singular vectors that will be used to compute the target region. As

in the previous chapter we shall define the singular value decomposition over the forecast period

from t1 to t2 thus,

P2LF
T =

∑

i=1

σiuivi. (5.32)

138



Chapter 5 A singular vector targeting

For this first set of singular vectors the local projection isa projection onto the verification region.

For all calculations in this section the verification regionis selected to be the same as that used in

the previous chapter.

The second set of singular vectors are defined, over the interval t0 to t1 as

P1L̂F
T =

∑

i=1

σ̂iûiv̂i, (5.33)

whereL̂ is the integral dynamical propagator for the intervalt0 to t1, andP1 is a local projec-

tion. The local projectionP1 is defined to include all grid locations in which the ‘sensitivity’ as

identified by using the singular vector method of Buizza and Montani (1999) has non-negligible

amplitude.

5.4.4 Examination and dynamical interpretation of the optimal observation loca-

tion

In this section we consider the dynamical effects which determine the target regions calculated in

the Eady model using the new targeting method. We shall consider how the target regions vary

as the time intervalt0 to t1 is increased from zero. Since the target calculation fort1 − t0 = 0

yields the same results as the targeting method of Buizza andMontani (1999), we may use the

results to compare the targets calculated with the new method to those which would be computed

using that of Buizza and Montani (1999). The main aim of this section is to demonstrate how the

use of an additional set of singular vectors to approximate the statistics of initial condition errors

affects the location of the target region, and how this relates to the dynamics of the Eady model.

We shall consider two observing scenarios. These two scenarios are that a single vertical column
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Figure 5.1 Predicted reduction in forecast error variance for a24h forecast as a function of (A)

zonal location, (B) height, for different values oft1 − t0.

is observed and that single vertical level is observed.

Figures 5.1A and 5.1B show the targets calculated for a24h forecast. Figure 5.1A shows the

variation in the predicted reduction of forecast error variance obtained by observing in a single

vertical column, with the zonal location of the column. Figure 5.1B shows the same but for a

single vertical level. The different coloured lines refer to the different values oft1 − t0. For

t1 − t0 = 0 (blue line) the results are proportional to those that wouldbe obtained using the

targeting method discussed in Chapter 4.

Two things are noticeable in Figure 5.1. Firstly, ast1 − t0 increases, two peaks occur in both

Figures 5.1A and 5.1B. Secondly, as the time intervalt1− t0 is increased, the expected correction

in forecast error variance first increases, then decreases.

The fact that, ast1−t0 increases, two peaks occur in both Figures 5.1A and 5.1B is consistent with

the transition from the ‘untilting/unshielding regime’ tothe ‘modal unmasking regime’ discussed
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in the previous chapter. For values oft1 − t0 of order one to two days it may be inferred that the

effect of dynamical evolution of the errors is to push the initial condition errors further into the

modal unmasking regime. One can infer from this, that as was the case in the previous chapter,

the two peaks are associated with the smaller zonal scales close to the upper and lower boundary

steering levels, and that the area between the peaks is associated with the untilting of smaller

scales and the modal unmasking of the larger scales.

For the12h forecast the dynamical effect of evolved initial conditionerrors is greater, than for

the24h forecast. However this effect only leads to a double peak when observing for observing

different vertical levels; i.e. equivalent to Figure 5.1B,not shown. When observing a single

column, the location of the peak does not vary significantly.To understand this lack of variation

in the location of the peak for the12h forecast, one can consider that the tilt of the sensitive region

(see Figure 4.7A) is small, and consequently the regions associated with modal unmasking and

those associated with untilting/unshielding are in roughly the same zonal location. The result of

the coincidence of the regions associated with different growth mechanisms is that transition from

the untilting/unshielding regime to the modal unmasking technique does not significantly effect

the zonal location of the target region. For longer forecasts (e.g.48h), since the transition from

the unshielding to modal masking regime has largely occurred, the effect of changingt1 − t0 on

the location of the peaks is small. To see this explicitly, Figure 5.2B shows the variation in the

predicted reduction of forecast error variance obtained byobserving in a single vertical column,

with the zonal location of the column. In Figure 5.2B one can see that there is a small increase in

the distance between the peaks ast1 − t0 is increased. This lack of zonal variation in the location

of the optimal observation location, for12h and48h forecasts indicates that there is a ‘window’ of

forecasts durations, somewhere around24h, during which the zonal location of the target region
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Figure 5.2 Predicted reduction in forecast error variance as a function of height for (A) a12h

forecast, (B) a48h forecast, for different values oft1 − t0.

is sensitive to short term dynamically evolved perturbations. However this statement must be

qualified by the fact that the Eady model background state lacks the inhomogeneities present in the

dynamics of models linearised about time evolving forecasts trajectories. These inhomogeneities

may well lead to greater spatial variations in the optimal observation location with differingt1−t0.

Results from other authors [e.g. Snyder et al. (2003), Hamill and Snyder (2002b)] suggest that the

effects of inhomogeneities in the background state can havea significant impact on the structure

of linearly evolving covariances, over short time periods.Further investigation into the effect of

such spatial inhomogeneities on this simplified dynamical picture of targeting is required.

The second thing that is noticeable in Figures 5.1A and 5.1B is that, as the time intervalt1 − t0 is

increased, the expected correction in forecast error variance first increases, then decreases. This

behaviour is also seen in Figures 5.2A and 5.2B. Here the reader is reminded that the target is

normalised by the trace of the predicted back ground error covariance matrix att1, so that the

spatially averaged initial error variance is the same for each value oft1 − t0. The implication of
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this increasing then decreasing expected reduction in error variance is that targeted observations

will be most effective if they correct errors that are dynamically evolved structures, but correcting

errors which are ‘too dynamically evolved’ will have lesserimpact. The implication is that there

is a value oft1 − t0 for which the impact of observations will be greatest. This value is likely

to vary with forecast length, so in order to make more generalcomments we have to consider

different forecast lengths. For this purpose, the dashed line of Figure 5.3 shows integral under the

curve (y-axis) of Figure 5.1A as a function oft1 − t0 (x-axis). The solid, dotted and dot-dashed

lines show the equivalent for12h 36h and48h forecasts respectively. Interestingly for all forecast

integrations, this increasing and decreasing effectiveness of observations with increasingt1 − t0

is observed. For longer forecasts the peak effectiveness occurs at smaller values oft1− t0, but for

all forecast lengths shown the peak occurs at a value oft1 − t0 greater than zero. Conversely, for

larget1 − t0 the effect of observations is smaller than for smallt1 − t0, implying that correction

of the long term evolved components of the forecast error mayhave lesser impact, than correcting

error components which are closer to random. However we muststress that this result comes

about because we have normalised the covariance att1. If we had normalised the error statistics

at t0, then the average error variance att1 would be larger for largert1 − t0, and the predicted

effectiveness of observations would increase with increasedt1 − t0.

5.5 Summary

In this chapter we have introduced a new singular vector targeting method and examined targets

produced using this new method using the Eady model singularvectors. This targeting method

gives a prediction of the reduction in forecast error variance that would be obtained from a given
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Figure 5.3 The variation of the predicted reduction in forecast error variance obtained by observ-

ing every location, as a function of the value oft1 − t0. Each line corresponds to a different

forecast lengtht2 − t1. For ease of viewing the values for the24h, 36h and48h forecasts have

been rescaled by factors1/2, 1/4, and1/8 respectively.

deployment of observations. The essential differences between this new method and previous

methods are that, it uses singular vectors to produce a dynamically determined estimate of the

initial condition errors, and that it utilises a linear transformation that can be made consistent

with the operational data assimilation system to approximate the effect of observations on the

initial condition errors.

In a simplified setting, the new targeting method is seen to coincide with the singular vector target-

ing of Buizza and Montani (1999). In this sense the new methodcan be interpreted as an extension

to ‘traditional’ singular vector targeting. In this chapter we examined the effect of including dy-

namically evolved initial condition error estimates into the singular vector targeting method. The

effect of including these evolved initial condition errorscan be interpreted dynamically as moving

the error evolution further into the modal unmasking regime. In a similar fashion to increasing
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the forecast length in traditional singular vector targeting (see Chapter 4), increasing the length

of the dynamical evolution of the initial condition errors,leads to the appearance of double peaks

in the zonal and vertical sensitivity distribution. Furthermore it is found that the effectiveness of

observations is increased if they correct errors that have evolved over a short time period. If this

time period is increased or reduced, then the effectivenessof observations is reduced.
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Conclusions

This thesis is a contribution to the subjects of mid-latitude dynamics and targeted observations.

For the first time the full spectrum of singular vectors of theEady model are considered. The im-

portance and implications of the unshielding and modal unmasking mechanisms, to the computed

singular vectors are discussed. The computed singular vectors are used to analyse the singu-

lar vector targeting function commonly used in observationtargeting, in a vertical cross-section.

Through comparison of this vertical cross-section to the dynamics of singular vectors, inferences

about the scale and qualitative behaviour of the perturbations to which particular regions are ’sen-

sitive’ are made. In the final section of the thesis, a new targeting method is introduced. This new

targeting method utilises a set of evolved singular vectorsto approximate the background errors

within the region identified by a set of targeted singular vectors as dynamically connected to the

verification region. The two sets of singular vectors can then be used as a computationally inex-

pensive means of predicting the reduction of forecast errorvariance that will be obtained from a

given deployment of observations. In this final chapter we shall summarise the main results and

conclusions of the work in the thesis, as well as motivating future work which may follow from

that contained within the thesis.

In Chapter 3 we examined the properties of the full spectrum of singular vectors in the Eady

model. The results and conclusions of this chapter can be summarised as follows. Roughly

speaking we can partition the dynamics of the Eady singular vectors into two regimes. These two
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regimes are the untilting regime and the modal unmasking regime. For short integration lengths it

is found that untilting of potential vorticity is the dominant mechanism for singular vector growth.

As the integration length increases then modal unmasking increases in importance, eventually be-

coming the dominant growth mechanism. Whilst the importance of both these mechanisms to

singular vector growth has already been established by other authors, what has not been estab-

lished is the implications for these mechanisms for singular vectors other than the first, and the

significance of zonal wavenumber in setting the time-scale for the transition between the two

regimes.

For the untilting regime, it is found that the requirement for orthogonality between untilting struc-

tures means that at higher zonal wavenumbers the second, third etc singular vectors will have an

initial tilt closer to that of the first. This similarity of tilt means that the second, third etc short

wavelength singular vectors will have singular values closer to that of the first singular vector,

than would the equivalent longer wavelength singular vectors. Furthermore, it is found that for

short integrations the singular values at smaller zonal scales are closer to that suggested by the

untilting mechanism, whereas at longer scales they are significantly smaller. This discrepancy is

attributed to the fact that at the smaller scales the normal modes are shallower so the interaction

between the potential vorticity dynamics and that of the normal modes is lower than in the larger

scales, allowing for the untilting of potential vorticity to occur in the smaller scales more freely

at smaller scales. Taking into account both these scale selective effects, it may therefore be said

that, for the untilting regime, the smaller scales dominatethe singular vector spectrum because

their maximum growth is larger, and because there are a larger number of singular vectors which

achieve large amplification.

It is found that the modal masking regime which is characterised by concentrations of singular
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vector amplitude near the steering level allows for amplification which can exceed the maximum

amplification possible via untilting. The transition from the untilting to the modal masking regime

is shown to occur more rapidly at the smaller zonal scales than the larger zonal scales. The time-

scale for the transition is found that to depend approximately on the relative phase speeds of the

normal modes and the potential vorticity in the region in which there is a strong interaction be-

tween potential vorticity and the normal modes. For short integrations this phase difference is

too small to lead to a significant change in the phase of the normal and continuum mode. As the

integration length increases the difference in phase speedbetween the normal modes and the po-

tential vorticity waves which interact with them is sufficient to allow a ’half-period’ phase change

to occur. The integration length required for this requirement to be met is inversely proportional

to the wavenumber, therefore the smaller zonal scales will make the transition from the untilting

to the modal masking regime at a shorter integration length than the larger scales. An interesting

result of the scale selectivity of this transition is the fact that for models with very high resolu-

tion one would expect that the smallest scales will have entered the modal masking regime even

at very short integration lengths, leading to singular vectors with the amplitude of the smallest

scales concentrated at the steering level.

In Chapter 4 we examine the singular vector targeting methodin the context of the Eady model

singular vectors. By examining the ’sensitivity’ as identified in the zonal-height plane we are

able to make the following links between the singular vectordynamics and the sensitivity at dif-

ferent longitudes. During the untilting regime, there is only a single peak in sensitivity which

corresponds to untilting perturbations on the central vertical levels of the model. Since the sin-

gular vectors amplify via untilting, the peak in sensitivity is associated with the most sensitive

region for all zonal scales. As the integration length increases and the dominant growth mecha-
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nism tends to modal unmasking, then the zonal location of sensitivity of smaller scales diverges

from that of larger scales. The sensitivity to smaller scales occurs at two peaks ’near too’ and

’far from’ the verification region. These two peaks are associated with unmasking the normal

modes on the lower and upper boundaries, respectively. The sensitivity at longitudes between

these peaks is associated with the unmasking of the longer-wave normal modes and the untilting

of shorter wavelengths. The association of different locations with different scales/growth mech-

anisms is of particular significance to singular vector targeting of this kind, as whilst the targeting

method identifies target regions, it does not yield information on how to deploy observations in

these regions. Knowledge of the perturbation scales and structures to which these ’sensitive re-

gions’ are sensitive may increase the ability to make informed choices about actual observational

deployment, within the context of the established singularvector method.

In Chapter 5 we introduce a new singular vector targeting method. This targeting method dif-

fers from previous singular vector targeting methods, in that it utilises a dynamical estimate of

the initial condition errors, rather than assuming that these errors are random with respect to a

chosen inner product. It differs from the Ensemble Transform Kalman Filter (ETKF) in that it

utilises singular vectors that are computed to only containinformation dynamically relevant to

the verification region, rather than a non-linear evolved ensemble, which potentially contains lit-

tle information relevant to the verification region. Also unlike the ETKF, the validity of method

also does not require the user to assume the presence of an operational Ensemble Kalman Filter,

but rather allows the user to utilise any desired level of approximation to the operational data as-

similation system in the estimate of the forecast error variance reduction. One further difference

between the method and both the singular vector and ETKF methods, is that it explicitly predicts

the reduction in forecast error variance as the difference between the forecast error variance with
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and without the targeted observations. This additional feature introduces the potential for the pre-

diction of instances where adding observations is likely tolead to anincreasein the forecast error

variance in the verification region.

The targets identified using the new targeting method in the Eady model with simplified data

assimilation system are calculated. The target region is found to always reside somewhere within

the sensitive region identified by the traditional singularvector methods, however the location

of the best observation varies when the time-scale of dynamically evolved initial condition error

estimate is varied. As with the ‘traditional’ singular vector targeting method discussed in Chapter

4, the changes in the optimal observation location are induced by the transition from the untilting

to the modal unmasking regime. However unlike the traditional singular vector targeting method,

in the new method the transition from the untilting to the modal unmasking regime occurs through

evolution of the initial condition errors prior to the forecast initialisation time, rather than due an

increase in the duration of the forecast. It is also found that the forecast error is more sensitive to

corrections in initial condition errors that have evolved over a short time interval, than those which

have not evolved or those which have evolved over a longer time interval. This result is based on

the assumption that in each case the initial condition errors have the same average variance.

The work in this thesis has concentrated on the analysis of perturbation amplification and targeting

observations within the context of the Eady model. Whilst the simplicity of the Eady model

facilitates analysis, it is of interest to see how the results can be extended to more complex models.

Of particular interest is the relationship between the two dynamical regimes of the Eady model

singular vectors and the dynamical regimes identified in theECMWF model singular vectors by

Hoskins et al. (2000). A further consideration is the relationship between the targets identified

using the Eady singular vectors and those computed using singular vectors obtained from a time
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varying background state.

Another area in which this work could be extended is that of data assimilation. The targeting

method defined in Chapter 5 utilises a linear transformationto approximate the effect of data as-

similation on the initial condition errors. Whilst in principle this transformation could be highly

representative of the data assimilation system, in our results we have reduced it to a simple lo-

cal projection. One question that remains unanswered is, how similar does this transformation

have to be to the operational data assimilation system for the targeting method to be successful,

and furthermore how significant will the difference betweenthe targets calculated with the new

method be to those calculated using a Kalman filter based targeting method.
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APPENDIX A

The Numerical Eady Model

A.1 Non-Dimensionalisation and Co-Ordinate Change

For the purpose of numerical accuracy, the Eady Equations outlined in Chapter 2 are non-

dimensionalised. The zonal, vertical and temporal coordinates (x, z andt) are rescaled by divisors

LR = N0Z/f0, Z andN0/f0Λ, respectively. A summary of the resultant rescaling applied to

different variables is given in TableA.1. In non-dimensional form Eady Equations are

∂q̂′

∂t̂
= −ˆ̄ug

∂q̂′

∂x̂
,















x̂ ∈ [0, X̂ ]

ẑ ∈ (0, Ẑ)

, (A.1)

∂b̂′

∂t̂
= −ˆ̄ug

∂b̂′

∂x̂
+ v̂′,















x̂ ∈ [0, X̂ ]

ẑ = 0, ẑ = Ẑ

, (A.2)

where

q̂′ =
∂2ψ̂′

∂x̂2
+
∂2ψ̂′

∂ẑ2















x̂ ∈ [0, X̂ ]

ẑ ∈ (0, Ẑ)

, (A.3)

where

b̂′ =
∂ψ̂′

∂ẑ
(A.4)
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and

∫ X̂

0
ψ̂′dx̂ = 0, z ∈ [0, Ẑ], (A.5)

where the hat denotes the non-dimensional variables. To minimise the variation in the magnitude

of the mean zonal wind over the domain the zero point is moved to the centre of the domain. The

mean zonal wind field may therefore be written

ˆ̄ug = ẑ −
Ẑ

2
. (A.6)

This change to the zonal wind is equivalent to placing the model in a frame of reference moving

in the positivex̂ direction with speed̂Z/2; i.e.

x̂ = x̂0 +
1

2
t̂, (A.7)

wherex̂0 the zonal coordinate att = 0. The use of this moving coordinate frame acts only to

translate evolving perturbations in the zonal direction bya factort̂/2 relative to the coordinatêx0.

In the next section we shall discussion the descritisation of the Equations (A.1) to (A.5). The hats

and dashes will be neglected and all quantities assumed to bein non-dimensional form.

A.2 The Discrete Equations and Numerical Model

For time integration of Equations (A.1) to (A.5) by a computer several processes are implemented

at each discrete time-step. The exact numerical schemes used for these processes will be discussed

in this section. Prior to this the nature and order of these processes will be summarised. Firstly
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the potential vorticity, Equation (A.3) is inverted, subject to Equations (A.4) and (A.5), to obtain

the stream-function field. Secondly the meridional perturbation velocity on the upper and lower

boundaries is computed from the stream-function. Thirdly Equations (A.1) and (A.2) are solved

to find the potential vorticity and upper and lower boundary buoyancy at the next time-step. In

what follows the hats and dashes will be omitted from our notation; however all variables are

identical to those used in Equations Equations (A.1) to (A.5).

The time dimension is discretised into intervals of length∆t. The spatial domain is discretised

into anNx byNz grid with grid spacing∆x and∆z in the zonal and vertical directions respec-

tively. The discrete and continuous spatial and time coordinates are related via

x = i∆x, i ∈ [1, 2, . . . , Nx], (A.8)

z = (j − 1)∆z, j ∈ [1, 2, . . . , Nz], (A.9)

t = n∆t, n ∈ [1, 2, . . . ,∞]. (A.10)

Due to the periodic boundariesNx∆x is equivalent to bothx = X andx = 0.

In this discrete representation a five-point scheme is used to approximate the Poisson Equation

(A.3) for potential vorticity. With this scheme the discrete potential vorticity is defined

qn
i,j =

ψn
i+1,j − 2ψn

i,j + ψn
i−1,j

∆x2
+
ψn

i,j+1 − 2ψn
i,j + ψn

i,j−1

∆z2
. (A.11)

At the periodic boundaries the boundary conditions

ψn
0,j = ψn

Nx,j (A.12)
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and

ψn
Nx+1,j = ψn

1,j (A.13)

are used. The derivative upper and lower boundary conditions are approximated using one-sided

difference approximations. The discrete boundary conditions are defined as

bni,1 =
ψn

i,2 − ψn
i,1

∆z
, (A.14)

and

bni,Nz
=
ψn

i,Nz
− ψn

i,Nz−1

∆z
, (A.15)

on the top and bottom boundaries respectively. The use of a first order accurate one-sided dif-

ference scheme on the upper and lower boundaries rather thanthe second order accurate centred

difference scheme is motivated by the fact that the use of a centred difference scheme on the

boundary was found to lead to ’non-physical’ singular vector structure. Tests of the accuracy

of the streamfunction field obtained from the potential vorticity inversion scheme outlined above

reveal that the accuracy is second order in the centre of the domain and first order at the upper

and lower boundaries.

The Constraint Equation (A.5) is written for the discrete model as

Nx
∑

i=1

(

ψn
i,j

)2
= 0, j ∈ [1, 2, . . . , Nz]. (A.16)

Equations (A.11) to (A.16) for a discrete elliptic integralproblem, which can be solved to uniquely

determine the stream-function field. Empirical convergence tests have shown that the solution to
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this integral problem has first order accuracy on the upper and lower boundaries and second order

accuracy in the central vertical level of the domain.

The time evolution of buoyancy and potential vorticity is computed by solving the discrete equa-

tions

qn+1
i,j − qn−1

i,j

2∆t
= −ūj

qn
i+1,j − qn

i−1

2∆x
, j ∈ [2, 3, . . . , Nz − 1]; (A.17)

and

bn+1
i,j − bn−1

i,j

2∆t
= −ūj

bni+1,j − bni−1

2∆x
+ vn

i,j, j = 1, j = Nz; (A.18)

for qn+1
i,j andbn+1

i,j respectively. In Equation (A.18) discrete meridional velocity vn
i,j is obtained

from the stream-function field using

vn
i,j =

ψn
i+1,j − ψn

i−1,j

2∆x
. (A.19)

The Centred Time Centred Space advection scheme used in these equations gives second order

accuracy in both space and time. This scheme remains numerically stable as long as the Courant

number,ūj∆t/∆x, remains strictly less than zero for allj. However, the scheme requires knowl-

edge of the state at two time-points (n andn−1) in order to find then+1th state. Since the initial

condition gives the state at only one time-point, an initialforward time centred space step is taken

for the initial time-step of the integration. This initial step is taken by solving the equations

qn+1
i,j − qn

i,j

∆t
= −ūj

qn
i+1,j − qn

i−1

2∆x
, j ∈ [2, 3, . . . , Nz − 1]; (A.20)
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and

bn+1
i,j − bni,j

∆t
= −ūj

bni+1,j − bni−1

2∆x
+ vn

i,j , j = 1, j = Nz, (A.21)

for qn+1
i,j andbn+1

i,j respectively.

A.3 The Effect of Courant Number on the Accuracy of Solution

The Eady background state is characterised by a constant zonal wind speed that is a linearly

increasing function of height. It is the rate of increase of the zonal wind-speed (relative to a

fixed domain height) that determines the stability properties of the model. The stronger the wind-

shear the greater the store of potential energy in the background flow and hence the greater the

instability in the system. Due to errors in the phase speed errors inherent in the Centred Time

Centred Space Advection scheme, the implied vertical profile of the of the mean zonal wind in

the discrete Eady model differs from that specified in the continuous Eady model. In this section

the nature of this discrepancy and its relationship with theCourant number will be discussed.

The dynamics in the interior of the model domain are governedby the conservative zonal advec-

tion of potential vorticity perturbations. On the upper andlower boundaries the zonal advection of

potential temperature perturbations is augmented by the implicit meridional advection of poten-

tial temperature along the background meridional temperature gradient. In the continuous Eady

Equations all potential vorticity anomalies travel with phase speed̂̄u(ẑ), which is a function of

height only. However, in the numerical Eady model the phase speed is a function of both height

and the anomaly’s horizontal wave-number. The numerical phase speed of each wavenumber,k̂,

157



Appendix A The Numerical Eady Model

is given by

ūnum(ẑ, k̂) =
1

k̂∆t
sin−1

[

c(ẑ) sin
(

k̂∆x
)]

; (A.22)

where the Courant number,c, is defined

c(ẑ) = ˆ̄u(ẑ)
∆t

∆x
. (A.23)

It is clear from inspection of Equation (A.22)c→ 1 thenūnum → ∆t/∆x, which from Equation

(A.23) implies thatūnum → ˆ̄u; the numerical phase speed tends to that specified in the contin-

uous equations. The exact phase speed however is unobtainable since for numerical stability the

magnitude of Courant number is restricted to remain strictly less unity. However, for Courant

numbers with magnitude close to one the numerical phase speed is a good approximation to the

true phase speed at all wavenumbers. Seemingly keeping the Courant number close to one will

minimise the effect of phase speed errors. In reality two problems with this idea occur. Firstly

having high Courant number causes the magnitude of oscillations associated with the computa-

tional mode to be high and degrades the accuracy of the instantaneous solution. Secondly, since

the phase speed̄u is a function of height the Courant number can not be uniform throughout the

model domain. This lack of uniformity means that the accuracy of the solution varies with height.

Vertical variations in phase speed accuracy in the Eady model have important consequences for

the vertically sheared wind field. The Eady model backgroundstate is characterised by a uni-

formly sheared wind field. In the non-dimensionalised equations, the magnitude of this shear is

given by the non-dimensional wind-shear parameterΛ̂ ≡ 1. Differentiating the numerical phase
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speed Equation (A.22) with respect to the height we obtain the numerical wind-shear parameter

Λnum

(

ẑ, k̂
)

=
sin

(

k̂∆x
)

k̂∆x

{

1 − c2(ẑ) sin2
(

k̂∆x
)}

Λ̂. (A.24)

The Courant number varies linearly with height and its magnitude is bounded by the values on

the upper and lower boundaries. If the magnitude of the Courant number ranges between values

∼ ±1 then the numerical wind-shear parameter becomes a non-linear function of height, thereby

contradicting the constant wind-shear assumed in the continuous Eady model. If however the

Courant number remains bounded by values of magnitude much less than one, then the numerical

phase speed may be written

Λnum ≈
sin

(

k̂∆x̂
)

k̂∆x̂
Λ̂, (A.25)

and so depends on wave-number only. Since the wind-shear parameter no longer depends on

height the properties of the zonal wind-field are consistentwith the linearly increasing wind as-

sumed in the continuous Eady Equations; albeit with each wavenumber experiencing a slightly

different wind-shear.
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Quantity Symbol Factor Value

vertical coordinate z Z 104m

zonal coordinate x LR = N0Z/f0 106m

time t N0/f0Λ 2.5 × 104s

stream-function ψ′ LRZΛ 4 × 107m2s−1

horizontal velocity ū′g, v
′
g ZΛ 40ms−1

buoyancy b′ N0ZΛ 4 × 10−1ms−2

potential vorticity q′ f0Λ/N0 4 × 10−5s−1

Table A.1 Non Dimensionalisation factors.
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Orthogonality between plane-waves

In this appendix we shall derive the condition for orthogonality between plane-waves of the same

zonal wavenumber. We shall start by defining two plane waves with the same zonal wavenumber

kn, but differing vertical wavenumbersm1 andm2. These two plane-waves are

ψ1 = cos (knx+m1z) , (B.1)

ψ2 = cos (knx+m2z) , (B.2)

wherem1 6= m2. Here it is worth reminding the reader that the tilt is related to the vertical

wavenumber bya = m/k. The two plane-waves are orthogonal if the integral of theirproduct

over the domain is equal to zero; i.e.

∫ X

0

∫ z2

z1

ψ1ψ2dzdx = 0. (B.3)

We shall start by rearranging the product

ψ1ψ2 = cos (knx+m1z) cos (knx+m2z) . (B.4)

Using the trigonometric identitycos(θ)cos(φ) = 1
2(cos(θ + φ) + cos(θ − φ)), we obtain

ψ1ψ2 =
1

2
{cos (2knx+ [m1 +m2]z) + cos ([m1 −m2]z)} . (B.5)
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Using the further trigonometric identitycos(θ + φ) = cos(θ)cos(φ) − sin(θ)sin(φ), we obtain

ψ1ψ2 =
1

2
{cos (2knx) cos ([m1 +m2]z) − sin (2knx) sin ([m1 +m2]z) + cos ([m1 −m2]z)} .

(B.6)

Next we shall integrate the rearranged product with respectto x andz. Firstly we note that the

integral with respect tox of the wave termscos(2Knx) andsin(2knx) will vanish, since we are

integrating over whole periods of the wave. Integrating with respect tox and applying the limits

we obtain

∫ X

0

∫ z2

z1

ψ1ψ2dzdx =

∫ z2

z1

Xcos ([m1 −m2]z) dz. (B.7)

Integrating with respect toz we obtain

∫ X

0

∫ z2

z1

ψ1ψ2dzdx =

[

X

m1 −m2
sin ([m1 −m2]z)

]z2

z1

. (B.8)

From this expression, it is evident thatψ1 andψ2 will be orthogonal ifsin ([m1 −m2]z1) =

sin ([m1 −m2]z2). This will occur for arbitraryz1 andz2 only if

(m1 −m2)z1 = (m1 −m2)z2 ± 2φπ, (B.9)

whereφ 6= 0 is an integer. Rearranging this condition and writing in terms of the tilta = m/kn,

we arrive at the condition that is imposed on the tilt to guarantee orthogonality between the plane

waves

δa = a1 − a2 =
m1 −m2

kn

= ±
2φπ

kn(z2 − z1)
. (B.10)
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The relationship between a simple data assimilation systemand a

local projection operator

The aim of this appendix is to show that, if we neglect vertical correlations inB andR and

variations inB with zonal wavenumber and assuming the observations are colocated with model

height levels, then we may write

FQT (Rp +QpF
TBFQT

p )−1QF T = FQT
pDQpF

T , (C.1)

whereD is a diagonal matrix.Each diagonal element inD corresponds to an observation location

and is given

c(z) =
r(z)

r(z) + b(z)
(C.2)

wherer(z) andb(z) are diagonal elements ofR andB respectively andz is the height of the

observation.

To begin with we note that, in the absence of vertical correlations inR andB,Gp becomes block

diagonal with each invertible block,̃Gp, corresponding to a single vertical level. For this reason

we may treat each diagonal separately. If we assume that the observation error varies with height

only, then for a single block

R̃(z) = r(z)I, (C.3)
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and likewise forB,

B̃(z) = b(z)I, (C.4)

We can define the inverse equation for a single block

(R̃(z) + Q̃pF̃
T B̃(z)F̃ Q̃T

p )−1 = (r(z)I + b(z)Q̃pF̃
T F̃ Q̃T

p )−1. (C.5)

For simplicity we shall drop the subscriptp for the rest of this appendix.

As in Bishop et al. (2001) we can make use of the fact that sinceit is symmetric, the eigenvectors

of QTFF TQ are form a complete orthonormal basis. We shall write the eigenvalue decomposi-

tion

Q̃F TFQ̃T = ΦΓΦT (C.6)

whereΓ is diagonal andΦ is orthonormal. SinceΦ is orthonormal, it satisfiesI = ΦΦT , therefore

we may write

(r(z)I + b(z)Q̃F TFQ̃T )−1 = (r(z)ΦΦT + b(z)ΦΓΦT )−1 = Φ(r(z)I + b(z)Γ)−1ΦT . (C.7)

We can also note that the eigenvectors and eigenvalues ofQ̃T F̃ F̃ T Q̃ are the right singular vec-

tors and singular values squared ofF̃ T Q̃ respectively. Assuming may define the singular value

decomposition of̃F T Q̃ as

F̃ Q̃T = ΩΥΦT , (C.8)

whereΩ is a matrix containing the left singular vectors andΥ is a possibly non-square diagonal
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matrix that satisfiesΥTΥ = Γ. Using this singular value decomposition we may write

F̃ Q̃T Φ(r(z)I + b(z)Γ)−1ΦT Q̃F̃ T = ΩΥΦTΦ(r(z)I + b(z)Γ)−1ΦTΦΥT ΩT , (C.9)

and the fact thatΦTΦ = I we write

F̃ Q̃T Φ(r(z)I + b(z)Γ)−1ΦT Q̃F̃ T = ΩΥ(r(z)I + b(z)Γ)−1ΥT ΩT . (C.10)

Now we shall consider the form ofΥ(r(z)I + b(z)Γ)−1ΥT . The matrix(r(z)I + b(z)Γ)−1

is a diagonal matrix with theith diagonal element given by1/(r(z) + b(z)(Γ)i,i). It is worth

emphasising here that even if(Γ)i,i is zero, 1/(r(z) + b(z)(Γ)i,i) may not be. However,

(Υ(r(z)I + b(z)Γ)−1ΥT )i,i = (Γ)i,i/(r(z) + b(z)(Γ)i,i) and thereforeis equal to zero if

(Γ)i,i = 0. Furthermore if all the non-zero elements ofΓ have the same valueγ, we may write

F̃ Q̃TΦ(r(z)I + b(z)Γ)−1ΦT Q̃F̃ T = c(Q̃)ΩΥΥT ΩT , (C.11)

wherec(Q̃) = γ/(r(z) + γb(z)) is a scalar that depends on depends observation distribution Q̃.

Here it is worth noting that non-zero elements ofΓ will only have the same value for specific

choices ofQ̃. We shall discuss these choices ofQ̃ a little further on. First however we note that,

from the definition of the singular value decomposition Equation (C.8)

c(Q̃)ΩΥΥT ΩT = c(Q̃)F̃ Q̃T Q̃F̃ T ≡ c(Q̃)T̃1(z), (C.12)

where T̃1(z) is a diagonal block of the local projection operatorT1 corresponding to a single

vertical level. For single a single observation on a vertical level and for an observation at ev-

ery grid-point on that level Equation (C.11) and ,consequently, Equation (C.12) are found to be
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generally true. This result was obtained empirically, by comparing the matrices eigen-spectra of

(R+ Q̃F̃ TBF̃Q̃) andT̃1. This relationship was also found to hold exactly and approximately for

many cases, but for concision further discussion will be neglected.
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Mathematical Symbols

AT : Transpose of general matrixA

A−1 : Inverse of general matrixA orA to the power−1

A+ : Psuedo-inverse of general matrixA

(A)i,j : ith, jth element of a general matrixA

(b)i : elementith of a general vectorb

Ai : Theith matrixA

bi : Theith vectorb

‖b‖2 = bT b : Vector 2-norm of general vectorb

‖b‖E = bTEb : Vector E-norm of general vectorb

I : Identity matrix

u : Left singular vector

U : Matrix of left singular vectors

v : Right singular vector

V : Matrix of right singular vectors

σ : Singular values

Σ : Matrix of singular values
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M : Non-linear numerical weather prediction model

M : Linear perturbation weather prediction model

χ : Weather forecast model state

δχ : Perturbation to weather forecast model state

J : Data assimilation cost function

H : Non-linear observation operator or foreward model

H : Linear observation operator or foreward model

R : Observation error covariance matrix

B : Background error covariance matrix

T : Local projection operator

E : E-Norm defining inner-product matrix
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x : Zonal spatial coordinate

y : Meridional spatial coordinate

z : Vertical spatial coordinate

t : Time

i : Zonally directed unit vector

j : Meridionally directed unit vector

k : Vertically directed unit vector

k : Zonal wavenumber

l : Meridional wavenumber

m : Vertical wavenumber

ψ : Quasi-geostrophic sreamfunction

q : Quasi-geostrophic potential vorticity

b : Scaled potential temperature perturbation (buoyancy)

u : Magnitude of zonal velocity

v : Magnitude of meridional velocity

w : Magnitude of vertical velocity

u = ui + vj + wk : Velocity

v = ui + vj : Horizontal velocity

f : Coriolis parameter

N : Static stability parameter

Λ : Eady model wind-shear parameter

X : Zonal extent of model domain

Z : Height of model domain

Ro : Rossby number
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