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Abstract

This thesis develops a new moving mesh method for the Euler equations based on opti-

mal transportation theory. It employs the Geometric Method, a numerical solution pro-

cedure for the optimal transport equations originally developed in the context of weather

simulation, to generate an unstructured polyhedral mesh with cells of specified areas.

One property of the method is that the mesh connectivity changes naturally as the areas

change, so that the mesh cannot tangle. Another is that the method is global - change

just one area and the entire mesh will adjust to accommodate - allowing rapid adaption

to changing conditions. However this sensitivity requires careful smoothing in the pres-

ence of discontinuities in the data such as shocks, and is achieved here by the use of

novel monitor functions based on weighted least squares errors. Conservation is achieved

by the construction of space-time cells and discretisation by a second order extension

of Godunov’s method which includes a novel limiter. The method is demonstrated on

several test problems including some comparable with published solutions and finally an-

other with large deformation, in which the regions of concentrated mesh change topology

significantly during the course of the simulation, merging and separating.
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Introduction

The goal of computer simulation is to solve practical problems quickly and accurately.

However perfect accuracy is generally impossible due to the presence of various types

of error, so it is necessary to understand these in order to gauge the level of accuracy

and gain confidence in the simulation. There are three main types of error: modelling,

discretisation and round-off, which are now described.

The first step in any simulation is to assemble a set of model equations, usually partial

differential equations (PDEs), that include all the relevant physics. Modelling errors are

introduced when, for simplicity, terms are discarded because their effects are expected

to be small in the problem under consideration. Found by balancing terms, the effects

discarded can include viscosity, material strength, relativity etc. We consider model

equations of the form:

E(u)
def
=

∂u

∂t
− L(u) = 0

where u is a scalar or vector of unknowns and L a spatial differential operator.

The next step is to set a length scale h and choose uh, a discrete (finite-dimensional)

approximation to u which can be stored in computer memory. Finally a corresponding

discrete approximation to E , Eh, must be defined and an algorithm developed to solve the

resulting discretised system:

Eh(uh) = 0

for uh. The interpolation or discretisation error is u−uh, the difference between the true

and approximate solutions.

Lastly, round-off errors are introduced by the finite accuracy of floating point numbers

and arithmetic, but these are usually small and are not considered here.

There are currently four main domain-based methods of discretisation. In the finite

difference method uh approximates u at a grid of points, and Eh is formed by replacing

derivatives with finite differences. The truncation error is Eh(u)−Eh(uh) (= Eh(u)) which

measures the error in the model equations.

In the finite volume and finite element methods the domain is decomposed into a mesh

of polygonal or polyhedral cells. In each cell the finite volume approximation uh of u is

a single cell-averaged value, whereas the finite element approximation uh is constructed

from a set of basis functions (usually polynomial) defined throughout the cell. In both,

the error in the model equations is measured by the residual error E(uh).
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Lastly mesh-free or particle methods, e.g. Smoothed Particle Hydrodynamics (SPH)

[63], are hybrids (and confusingly some construct temporary meshes at each timestep).

Like the finite difference method they approximate u at a grid of points, but these can

move round the domain. Like the finite element method they employ basis functions but

these are associated with the points.

Away from discontinuities, the truncation or residual error can be analysed by ex-

panding u in a Taylor series in the mesh size h and timestep δt. An algorithm of order p

(in space) is one which agrees with the model equations for the first p terms i.e. the error

is O(hp) (and similarly for δt). This implies the error at a point can be reduced either by

increasing the order p or decreasing the mesh size h.

The constant factor multiplying hp is both algorithm and solution dependent, making

exact error estimation difficult, but in general it will be higher where the polynomial

approximations for the variables are poor, e.g. at steep gradients. Typically however,

such regions only cover a fraction of the total domain - for example a shock wave is a line

or curve in 2D. Early algorithms employed a fixed, uniform (‘Eulerian’) mesh and fixed p,

which is inefficient as the mesh size could be increased away from these regions without

affecting the maximum error. In practice this inefficiency can be significant, with large

amounts of computing memory and processing time being taken up by regions where very

little is happening. The obvious solution is to adjust h and/or p locally. This is known

as mesh refinement and there are three basic types:

h-refinement: Reduce h by subdividing a cell.

Also known as Adaptive Mesh Refinement or AMR [13], the new cells can either

replace the old or be put in a separate mesh. Further subdivision is possible cre-

ating levels of successive refinement (Fig 1), allowing the error to be estimated

via Richardson extrapolation. The first method creates ‘hanging nodes’ which can

require special treatment, whereas with separate meshes the solution must be con-

servatively transferred between them, both of which can introduce perturbations at

the boundaries between different levels of refinement.

Figure 1: Adaptive Mesh Refinement
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p-refinement: Increase the order p in a cell.

This requires higher-order derivatives of the variables, which can either be stored as

additional data (as in the finite element method) or reconstructed at each timestep

e.g. by polynomial interpolation. Higher order interpolation requires larger stencils

and usually assumes smoothness, so special methods are needed to maintain mono-

tonicity in the presence of discontinuities, e.g. ENO/WENO schemes [49] which

employ solution-dependent stencils/coefficients.

r-refinement: Redistribute or move the mesh keeping the number of cells constant.

The simplest example is the Lagrangian method, where the mesh moves with the

local fluid velocity (Fig 2). This often reduces h where needed but can result in the

mesh becoming distorted or tangled in strong shear flows or vortices. In Moving

Mesh methods [45] the movement is completely general, and can be used to con-

trol the mesh quality, truncation error or residual, or other user-supplied criteria.

Many employ monitor functions as intermediaries to guide the mesh. Of these the

Arbitrary Lagrangian-Eulerian (ALE) methods of [10] are closest to Lagrangian,

relaxing the mesh at the end of each step to improve the mesh quality.

Figure 2: Moving Mesh methods

In addition there are hybrid schemes such as hp-refinement. Both h-refinement and

p-refinement are fairly mature and have been used extensively. Experience and error

analysis has led to effective refinement criteria and efficient methods for a wide range of

application areas. However, unlike r-refinement the total number of cells varies with time

necessitating more complex data structures and algorithms. In contrast, r-refinement is

still the subject of much current research, mainly focussed on how to successfully use the

generality of motion available in moving mesh methods.

The purpose of this thesis is to demonstrate a new moving mesh method based on a

mesh construction algorithm originally developed for atmospheric modelling. The semi-

geostrophic equations are a simplified weather model originally introduced by Hoskins in
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1975 [41]. Analysis of them by Cullen and Purser [24] in the 1980s led to a novel solution

algorithm called the Geometric Method that was further developed by Chynoweth [22] and

later Purser (described in Cullen [23, Sec 5.3.2]). Meanwhile significant advances had been

made in optimal transportation theory by Brenier [15] and others, and it was eventually

realised that the semi-geostrophic equations were in fact a model optimal transportation

problem, bringing a more complete understanding to the subject [23].

In discretising and solving the optimal transport problem, the Geometric Method

splits the spatial domain up into an unstructured mesh of polyhedral cells having spec-

ified (positive) areas, and it was realised that this could be used for mesh generation.

Furthermore, the generated mesh depends continuously on the areas specified, so if they

are slowly modified then the mesh changes smoothly to accommodate this with no cells

being created or destroyed suggesting it could also be used for mesh movement. One

feature of the method is that the mesh connectivity is not fixed, so as the mesh changes

new neighbours can be created or existing neighbours moved apart. Thus it provides a

novel alternative to other methods of generating variable connectivity meshes, e.g. those

based on the Voronoi mesh such as the Free Lagrange method [8], and could prove benefi-

cial in problems where fixed-connectivity meshes encounter difficulties as described above.

Another feature is that the geometric method is global - change the specified area in any

one cell and the entire mesh adjusts. This means that the mesh can adapt to changing

conditions much more quickly than other methods but as chapter 5 will demonstrate,

this sensitivity can require very careful handling if the method of computing the specified

areas is noisy.

An outline of the thesis is as follows. Chapter 1 sets the context by surveying current

mesh movement techniques, with particular emphasis on harmonic methods and equidis-

tribution. These are derived using variational methods, setting in place some mathemati-

cal machinery to be used later. Chapter 2 introduces basic optimal transportation theory,

briefly describing its history and current status before sketching some solution methods

and applications. Chapter 3 describes in detail the Geometric Method and Panel Beater

algorithm and its implementation, before demonstrating it on some simple test problems

and analysing the performance. The intended application here is the Euler equations,

and chapter 4 describes in detail the discretization method for the unstructured mesh, in-

cluding a least squares surface fitting procedure for gradient estimation, a new monotonic

limiter and the choice of timestep. Then chapter 5 picks up from chapter 1, describing the
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particular choice of monitor to be used, which is based on the solution gradient. However

this soon runs into difficulties in the mesh adaption when used in problems with disconti-

nuities, and is repeatedly modified to cope with successively more difficult problems, first

by adapting the least squares surface fitting, then by using the least squares error itself

for the monitor. In the process some new parameters have been introduced and their

effects are investigated analytically. Chapter 6 demonstrates the complete algorithm on

a selection of test problems, starting off with the simple Sod shock tube to help choose

suitable parameter values, then moving on to some more challenging problems. Lastly,

conclusions are made in chapter 7 along with suggested further work.

Note: all computations were carried out on a PC with an AMD Athlon 3800+ processor

and 2GB of RAM.
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Chapter 1

Moving Mesh methods

In this chapter we briefly survey current moving mesh methods. Broadly they are

split into those that directly specify the location of the new mesh at each timestep and

those that generate a mesh velocity which is integrated to advance the current mesh in

time. The majority start by defining a functional measuring the quality of the mesh. The

mesh motion is then found by maximising this functional, either by the Euler-Lagrange

equations or other optimisation methods. We apply variational theory to derive the former

for two popular functionals, the harmonic method and equidistribution.

1.1 Introduction

We start by introducing some notation to describe the mesh and its motion. The

problem domain Ω ⊂ Rn (boundary ∂Ω) is called physical space. Each point x ∈ Ω is

assigned a fixed label ξ, where ξ is a point in computational space Ωc ⊂ Rn (boundary

∂Ωc). It is assumed that Ω and Ωc are compact and simply-connected, and that at time

t the map x(ξ, t) : Ωc → Ω is invertible and maps ∂Ωc onto ∂Ω, as illustrated in Fig 1.1,

for example.

Computational space Ωc Physical space Ω

ξ1

ξ2

x1

x2

ξ
x(ξ, t)

Figure 1.1: Computational space and physical space

The Jacobian of this map is the matrix J with components and determinant

Jij = Jij(ξ) =
∂xi

∂ξj
, J = det(J) (1.1)
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where indices range from 1 to n. If Ωc is subdivided into cells, then the map transforms

these into cells in Ω. In Fig 1.1 the computational mesh is Cartesian resulting in a logically

structured physical mesh but this approach works equally well for unstructured meshes.

A small area |dξ| in computational space is mapped to |dx| = J(ξ)|dξ| in physical

space, so J(ξ) represents the area magnification factor at ξ. If it becomes zero or negative

then the physical mesh cells are contracted to a point or become folded over and x is no

longer invertible, thus it is required that J > 0 to avoid this, i.e. J be positive definite.

Some but not all schemes have this property. For later convenience we define the inverse

Jacobian separately:

Kij = Kij(x) =
∂ξi

∂xj
⇒ JijKjk = δik, K = det(K) =

1

J

where δij is the Kronecker delta and summation over repeated indices is implied. The

inverse ξ(x, t) satisfies

x(ξ(y, t), t) = y for all t, y ∈ Ω.

Differentiating this with respect to time gives Jij
∂ξj

∂t
+ ∂xi

∂t
= 0 ∀i. For a finite timestep

δt, this is approximated by

Jijδξ
j + δxi = 0 (1.2)

where δx = δt∂x
∂t

and δξ = δt∂ξ
∂t

.

1.2 Location-based methods

A number of mesh movement schemes are based on minimizing some functional I[ξ].

For example harmonic methods [18] minimize the total (elastic distortional) energy of the

mapping:

Ihrm[ξ] =

∫

Ω

n∑
i=1

(∇ξi)T G−1
i (∇ξi)dx =

∫

Ω

Kij(G
−1
i )jkKikdx (1.3)

where G−1
i (x) are symmetric matrices specifying the ‘coefficients of elasticity’ at x, called

monitor functions. The existence and uniqueness of minimizers - which are harmonic maps

(hence the name) - is guaranteed provided ∂Ω is convex [38, 79]. In 2D the mesh cannot

fold but this is not true in 3D [62]. This general framework includes the functionals of:

• Winslow [95] G−1
i = G−1 = 1

w
I where I is the identity matrix and w a scalar

function controlling the relative size of mesh cells;

• Dvinsky [28] G−1
i = G−1 = I + f(F )(∇F )(∇F )T /|∇F |2 which concentrates mesh

over the curve F = 0 in accordance with a distance function f ;
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• Brackbill [14] G−1
i = 1

w
[(V i·V i)I−V iV

T
i ] for scalar w which aligns the mesh with

the vectors V i;

amongst others [6] (some definitions have an explicit tensor weighting factor
√

det G but

here it is incorporated into G−1
i ).

A number of schemes are based on the equidistribution principle [45]. For example

Cao et al [18] define an equidistribution functional

Ieq[ξ] =

∫

Ω

m

(Jm)γ
dx (1.4)

where m(x) > 0 is a scalar monitor function and γ > 1 . Some other functional approaches

are those of Knupp [52]:

I[ξ] =

∫

Ω

‖K −G−1‖2
F dx

where ‖ · ‖F is the Frobenius norm, and Thompson et al [87]:

I[ξ] =

∫

Ω

(‖K‖2
F − Piξ

i)dx

where Pi are control functions.

In general

I[ξ] =

∫

Ω

c[ξ(x)]dx

for some cost functional c[ξ(x)]. Often I is minimized by the steepest descent method.

Under the variation ξ → ξ + δξ (which must be natural to preserve ∂Ω, i.e. δξ and all

its derivatives vanish on ∂Ω) the (first) variation in I is

δI =

∫

Ω

[
∂c

∂ξi
δξi +

∂c

∂ξi
,j

δξi
,j +

∂c

∂ξi
,jk

δξi
,jk + . . .

]
dx

=

∫

Ω

[
∂c

∂ξi
− ∂

∂xj

(
∂c

∂ξi
,j

)
+

∂2

∂xj∂xk

(
∂c

∂ξi
,jk

)
+ . . .

]
δξidx

on integration by parts (commas denoting differentiation), assuming the relevant deriva-

tives of the cost functional exist. This is written

δI =

∫

Ω

δI

δξi
δξidx (1.5)

where the variational or Fréchet derivative of I is

δI[ξ]

δξi(x)
=

∂c

∂ξi
− ∂

∂xj

(
∂c

∂ξi
,j

)
+

∂2

∂xj∂xk

(
∂c

∂ξi
,jk

)
+ . . . . (1.6)

The steepest descent direction (in computational space) is then

δξi
Ωc

(x) = − δI[ξ]

δξi(x)
. (1.7)
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At stationary points δξΩc
= 0 - the Euler-Lagrange equation for I.

For the harmonic functional (1.3), c =
∑

k Kkl(G
−1
k )lm(x)Kkm and (1.6) gives

δIhrm[ξ]

δξi(x)
= 0−

∑

k

∂

∂xj

(
∂

∂ξi
,j

[
Kkl(G

−1
k )lm(x)Kkm

])
+ 0...

= −
∑

k

∂

∂xj

(
(G−1

k )lm(x)
∂

∂Kij

[KklKkm]

)

= −
∑

k

∂

∂xj

(
(G−1

k )lm(x) [δikδjlKkm + Kklδikδjm]
)

= −
∑

k

2δik
∂

∂xj

(
(G−1

k )jmKkm

)

= −2∇ · (G−1
i ∇ξi) (no sum on i)

where the symmetry of G−1
i has been used. At the stationary point (a minimum if the

G−1
i are set up to be positive definite)

∇ · (G−1
i ∇ξi) = 0, i = 1, . . . , n, (1.8)

i.e. each ξi satisfies a generalized Laplace equation. In practice some discrete methods

of solution can lead to mesh folding, despite this being prohibited analytically (in 2D).

Ivanenko’s variational barrier method [6] introduces a clever discretization to avoid this.

Before proceeding we derive a useful identity. From the cofactor expansion of K,

∂K

∂Kij

= KK−1
ji (1.9)

where K−1
ij denotes (K−1)ij. Now set

I[ξ] =

∫

Ω

Kdx =

∫

Ωc

dξ = |Ωc|.

A natural variation δξ will leave ∂Ωc and hence |Ωc| unchanged, so taking the variational

derivative

0 =
δI[ξ]

δξi(x)
=

∫

Ω

δI

δξi
δξidx =

∫

Ω

[
∂K

∂ξi
− ∂

∂xj

(
∂K

∂ξi
,j

)
+ . . .

]
δξidx

= −
∫

Ω

∂

∂xj
(KK−1

ji )δξidx.

But δξ is arbitrary, so [93]
∂

∂xj
(KK−1

ji ) = 0. (1.10)

Following the same argument but with x and ξ switched,

∂

∂ξj
(JJ−1

ji ) = 0. (1.11)
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We now proceed to the equidistribution functional (1.4), for which c = m/(Jm)γ:

δIeq[ξ]

δξi(x)
= − ∂

∂xj

(
m1−γ ∂

∂ξi
,j

(Kγ)

)

= − ∂

∂xj
(m1−γγKγ−1KK−1

ji )

= −γKK−1
ji

∂

∂xj

[
(m/K)1−γ

]

using (1.9) and (1.10). A stationary point occurs when m/K is constant i.e.

Jm = σ (1.12)

for a positive normalisation constant σ determined by integration:
∫

Ω

mdx =

∫

Ω

σ

J
dx = σ

∫

Ωc

dξ = σ|Ωc|. (1.13)

In fact from Hölders inequality:
(∫

Ω

f pdx

)1/p (∫

Ω

gqdx

)1/q

>
∫

Ω

fgdx,
1

p
+

1

q
= 1, p, q > 1

with f p = m/(Jm)γ, p = γ, gq = m, q = γ/(γ − 1), we have fg = 1/J so

Ieq[ξ] >
(∫

Ω

dx

J

)γ

/

(∫

Ω

mdx

)γ−1

=
|Ωc|γ

(σ|Ωc|)γ−1
=
|Ωc|
σγ−1

(1.14)

with equality when Jm = σ so the stationary point is a minimum, at which m has been

equidistributed (see also [44]). Also J = σ/m > 0 as required for a valid mesh. In 1D

this determines ξ(x) uniquely, but not in higher dimensions where additional constraints

will be needed.

To convert ξ(x) into mesh coordinates x(ξ), the steepest descent direction δξΩc
(x) is

transformed using (1.2) and

x = x(ξ),
∂

∂ξi
=

∂xj

∂ξi

∂

∂xj
= K−1

ji

∂

∂xj
⇒ ∂

∂xi
= J−1

ji

∂

∂ξj
. (1.15)

For the harmonic functional

δxi
Ωc

(ξ) = −Jijδξ
j
Ωc

= −Jij

(
−δIhrm

δξj

)

= −2Jij
∂

∂xl

(
(G−1

j )lmKjm

)

= −2JijJ
−1
kl

∂

∂ξk
((G−1

j )lmJ−1
jm). (1.16)

When G−1
j = G−1, and setting (ai)j ≡ Jji, (ai)j ≡ J−1

ij , this can be rewritten

δxk
Ωc

(ξ) = −2JkiJ
−1
jl

∂

∂ξj
(G−1

lmJ−1
im )

= − 2

J
Jki

∂

∂ξj

(
JJ−1

jl G−1
lmJ−1

im

)

hence δxΩc(ξ) = − 2

J
ai

∂

∂ξj

(
Jaj ·G−1ai

)
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agreeing with [42, (6)] (with p = 2). For the equidistribution functional

δxi
Ωc

(ξ) = −Jij

[
−γJ−1 ∂

∂ξj

[
(Jm)1−γ

]]

=
γ

J
Jij

∂

∂ξj

[
(Jm)1−γ

]
.

An obvious question is why iterate ξ(x) then convert to x(ξ) - why not just iterate x(ξ)

in the first place? Well, δxΩc is not the steepest descent direction in physical space. To

find that we rewrite (1.5) for δI using (1.7) and transform via (1.2):

δI = −
∫

Ω

δξi
Ωc

δξidx

= −
∫

Ωc

(−J−1
ij δxj

Ωc
)(−J−1

ik δxk)Jdξ

= −
∫

Ωc

(JJ−1
ij J−1

ik δxj
Ωc

)δxkdξ

Thus the steepest descent direction in physical space (δxΩ) and the steepest descent in

computational space transformed into physical space (δxΩc) are related via

δxΩ = J(J−T J−1)δxΩc (1.17)

(presumably a standard result but the author is unaware of it being stated in this context).

This can be checked for particular cases by transforming the functional before applying

the variation, e.g. for the equidistribution functional:

Ieq[ξ] =

∫

Ω

m1−γ(x)J−γdx

⇒ Ieq[x] =

∫

Ωc

m1−γ[x(ξ)]J−γJdξ.

Then the cost c[x(ξ)] = m1−γ[x(ξ)]J1−γ and

δIeq[x]

δxi(ξ)
=

∂c

∂xi
− ∂

∂ξj

(
∂c

∂xi
,j

)
+

∂2

∂ξj∂ξk

(
∂c

∂xi
,jk

)
+ . . .

= J1−γ ∂

∂xi

(
m1−γ

)− ∂

∂ξj

(
m1−γ ∂

∂xi
,j

(
J1−γ

))
+ 0 . . .

= J1−γJ−1
ji

∂

∂ξj

(
m1−γ

)− ∂

∂ξj

(
m1−γ(1− γ)J−γJJ−1

ji

)

= J−1
ji

[
J1−γ ∂

∂ξj

(
m1−γ

)− (1− γ)J
∂

∂ξj

(
m1−γJ−γ

)]

= J−1
ji

[
J1−γ ∂

∂ξj

(
m1−γ

)− (1− γ)J1−γ ∂

∂ξj

(
m1−γ

)− (1− γ)m1−γJ
∂

∂ξj

(
J−γ

)]

= J−1
ji

[
γJ1−γ ∂

∂ξj

(
m1−γ

)
+ γm1−γ ∂

∂ξj

(
J1−γ

)]

= γJ−1
ji

∂

∂ξj

[
(Jm)1−γ

]

= JJ−1
ji J−1

jk δxk
Ωc

(ξ)
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as required. So what’s the difference? In steepest descent methods the rate of convergence

is governed by the condition number of the Hessian of I [33]. Convergence is slow if the

condition number is high which corresponds to the level sets of I being highly ellipsoidal

in shape near a minimum. In this situation the steepest descent direction will not point

directly to the minimum at the centre of the ellipsoid and so the path taken will meander

back and forth along valley floors. Whereas if the condition number is close to one then

the Hessian is close to the identity, the level sets are close to spherical and few steps will be

required. In practice the condition number can be reduced by pre-conditioning - linearly

transforming the coordinates at each step in order to make the transformed Hessian close

to the identity, then finding the steepest descent direction in the transformed coordinates.

For example quasi-Newton (or variable metric) methods maintain and update an explicit

approximation to the inverse Hessian. Here well-adapted coordinates will have a similar

effect, with high gradients in physical space being smoothed out in computational space,

reducing the condition number, so convergence in computational space should be quicker.

In [43] Huang sets Gi = M/
√

det M (⇒ det Gi = 1 in n = 2 dimensions) and

(m ≡)ρ =
√

det M so that the same problem can be solved by both the equidistribution

and harmonic methods. Setting M c = JT MJ , then with his definitions

Ieq[ξ] =

∫

Ω

[nn det(M−1
c )]

γ
2 m(x)dx, Ihrm[ξ] =

∫

Ω

[tr(M−1
c )]

nγ
2 m(x)dx.

Applying the arithmetic-geometric mean inequality to the eigenvalues of M−1
c gives

nn det(M−1
c ) 6 tr(M−1

c )n

from which it follows that Ieq[ξ] 6 Ihrm[ξ]. This makes sense because the equidistribution

condition (1.12) is less restrictive than the harmonic (1.8). Furthermore equality occurs

when M c = θ(x)I for some scalar function θ(x), in which case the optimal mesh is

isotropic and equidistributes m, so accessible to both methods. Also M = θ(x)J−T J−1

in which the change of variable factor (1.17) appears again.

1.3 Velocity-based methods

These schemes generate a mesh velocity xt which is used to advance the current mesh

to its new position.

The Lagrangian method sets xt = v, the local fluid velocity. This has the advantage

that convection terms are eliminated from the governing equations, but strong shear flows
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and vortices can distort or even fold the mesh. An ALE method avoids this by adding

a mesh relaxation phase at the end of each step to improve the mesh quality, a popular

choice being a few iterations of the steepest descent method with Winslow’s harmonic

functional (1.16).

The Moving Finite Element (MFE) method [7] determines both xt and ∂uh

∂t
simulta-

neously by minimising the weighted L2 norm of the residual:

IMFE[
∂uh

∂t
,xt] =

∫

Ω

[E(uh)]
2w(x)dx.

In the original MFE the weight w = 1 whereas in the Gradient Weighted MFE (GWMFE)

w = 1/(1 + |∇u|2). In 1D, when L = L(x, u, ux), the MFE reduces to the Lagrangian

method: xt = −∂L/∂ux = v. As with static finite elements the solution is found by

inverting a mass matrix, but unlike static elements the matrix is not always positive

definite and can be singular in certain situations. This can be fixed with the addition of

penalty functions or by choosing a different timestep when such situations arise.

The Geometric Conservation Law (GCL) [86] states that a constant u should be

an exact solution of the numerical method. It can be expressed as a statement of the

conservation of area:

∇ · xt =
1

J

DJ

Dt

where D
Dt
≡ ∂

∂t
+ xt · ∇ is the usual Lagrangian derivative. Cao et al [18] choose xt to

equidistribute a monitor function ρ (1.12) ⇒ D(ρJ)
Dt

= 0 which when combined with the

above yields

∇ · (ρxt) +
∂ρ

∂t
= 0.

However this is insufficient to uniquely determine xt. Motivated by the Helmholtz de-

composition theorem, which states that a continuous, differentiable vector field can be

uniquely resolved into the sum of the gradient of a scalar field and the curl of a vector

field, it is sufficient to specify in addition the curl of xt, for example via ∇×w(xt−V ) = 0

for some scalar weight w and vector field V . Typically V = 0 and w = 1 (in which case

∇ × xt = 0 i.e. the mesh is irrotational) or w = ρ. Together with suitable boundary

conditions, these form an elliptic system which is solved for xt.

This completes the summary of the main methods currently in use. The analysis of

the variational approach helped put the different methods into context and sets the scene

for the next chapter, which introduces and explores an alternative functional from optimal

transportation theory.
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Chapter 2

Optimal Transportation

Optimal transportation theory considers the following problem: we are given an initial

distribution µ of some material, for example a heap of sand, and we wish to rearrange

this into some target distribution ν (Fig 2.1) of the same volume. The catch is that there

is a cost associated with doing so - transporting a unit of sand from point x to point y

costs c(x,y). The problem then is to find the rearrangement which minimizes the total

cost or in other words the optimal transport plan. In this chapter we first summarise the

main results and a little useful background theory for the case of continuous ν. Then we

introduce some discontinuous variations and describe some current applications.

a
b

c

µ ν

Figure 2.1: The Monge problem - move the heap of sand from µ to ν cheaply

The problem has a long history, being originally formulated by Gaspard Monge [64]

in 1781 for x, y∈Rn and cost equal to the distance moved: c(x,y)= |x−y|. However it is

not until fairly recently that significant progress has been made, in the process bringing

together work in fields as diverse as geometry, probability, functional analysis, partial

differential equations, fluid dynamics and mathematical economics. It transpires that

Monge’s original problem turns out to be the most difficult, in part because for this cost

function the solutions are highly degenerate. For example, suppose you wish to move a

row of books one place to the right - you can either move all the books along one or move

the leftmost book to the other end leaving the rest untouched - both are equally valid

solutions.

Another subtlety introduced by Kantorovich [50, 51] (who shared the 1975 Nobel
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prize in economics for ‘contributions to the theory of optimal allocation of resources’), is

whether grains of sand are considered divisible or not i.e. whether sand at a point can

be split up and parts sent to different destinations. In the Monge problem (MP) this is

not allowed and so any transport plan can be written as a function y = t(x) (for x, y in

general measure spaces X, Y ), whereas in the Monge-Kantorovich problem (MKP) this

restriction is relaxed, and the transport plan must be recast as a joint probability measure

π(x,y) - the probability that material at x is transported to y. Any solution to the MP

is automatically a solution to the associated MKP but the reverse doesn’t hold and often

there is a solution to the MKP but not the MP (e.g. when µ is a point mass but ν isn’t

then mass must be split). In 1987 Brenier [15] solved the MKP (for X, Y ⊂Rn, quadratic

cost c(x,y)= |x−y|2 and µ, ν absolutely continuous with respect to the Lebesgue measure

L) with the introduction of polar factorization. This stimulated a renewal of interest in

the subject, and work by Evans, Gangbo, Knott and Smith, and McCann amongst many

others, has led to a broad understanding of the problem for general cost functions and

spaces X, Y , see e.g. [30, 31, 75, 91].

Qualitatively, the character of the solution depends on the ‘regularity’ of µ, ν, and

whether the cost function is convex, linear or concave in the distance d(x,y). For X, Y ⊂
Rn, d(x,y) = |x−y| and c(x,y) = |x−y|p the cost is (strictly) concave when 0 < p < 1,

linear when p=1 and (strictly) convex when p>1. An optimal plan always exists for the

MKP, but not necessarily for the MP. For strictly convex cost functions (and µ absolutely

continuous) the MP and MKP share a unique solution (furthermore for quadratic cost the

solution takes the simple form of the gradient of a convex function of a scalar quantity).

When the cost is linear there can be more than one optimal plan for the MP (as seen

above), and when concave there is in general no solution to the MP (except when µ and

ν are concentrated on disjoint sets) and solutions display a much richer structure - locally

reversing the orientation for example. The bookshelf example (with N books of width w)

illustrates these other cases - for the convex cost it is now cheaper to move all the books

along one (total cost N ×wp) than the first book to the other end (total cost 1× (Nw)p),

but for the concave cost the reverse is true (and no other permutations improve on these

for either cost). A more relevant application is where the material represents some goods

that need to be shipped from factories µ to shops ν. A concave cost function favours one

long trip over two short trips which is often true in practice due to economies of scale.
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2.1 Main results

To properly define the problem µ and ν are measures with supports X and Y ⊂ Rn.

The equal volume condition becomes µ(X) = ν(Y ) < ∞. For the MP we consider the

class of measurable mappings t : X → Y which transport or rearrange µ into ν i.e.

ν[B] = µ[t−1(B)] (2.1)

for any ν-measurable set B ⊂ Y , or equivalently

∫

X

f(t(x))dµ(x) =

∫

Y

f(y)dν(y) (2.2)

for any ν-integrable function f . The mapping t is said to be measure preserving or push-

forward µ onto ν, written t#µ = ν. The cost function c : X × Y → R+ and the total

cost to be minimized is I[t] =
∫

X
c(x, t(x))dµ(x). Define densities α, β by

dµ(x)=α(x)dx, dν(y)=β(y)dy (2.3)

When µ and ν are absolutely continuous with respect to Lebesgue, α and β are bounded

nonnegative functions, and the rearrangement condition becomes a Monge-Ampere equa-

tion for t:

α(x) = β(t(x)) det

(
∂t(x)

∂x

)
. (2.4)

For the MKP, the transport plan π is a nonnegative measure defined on the product

space X × Y , and the rearrangement condition becomes

π[A× Y ] = µ[A], π[X ×B] = ν[B] (2.5)

for all measurable subsets A ⊂ X and B ⊂ Y (in other words µ and ν are the marginals of

π), or equivalently
∫

Y
dπ(x,y) = dµ(x) and

∫
X

dπ(x,y) = dν(y). Let Π(µ, ν) denote the

set of π satisfying the rearrangement condition. The MP is now a special case for which π

takes the form π(x,y) = δ(x)δ(y − t(x)). The total cost is I[π] =
∫

X×Y
c(x, y)dπ(x,y).

Kantorovich also introduced the dual problem, which is to maximize

J [ϕ̃, ψ̃] =

∫

X

ϕ̃dµ +

∫

Y

ψ̃dν (2.6)

=

∫

X×Y

[ϕ̃(x) + ψ̃(y)]dπ(x, y) if and only if π ∈ Π(µ, ν)

over the set Φc of measurable functions (ϕ̃, ψ̃) such that ϕ̃(x) + ψ̃(y) ≤ c(x,y). He

showed that indeed infΠ(µ,ν) I[π] = supΦc
J [ϕ̃, ψ̃], and this minimum cost is known as
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the Wasserstein distance between µ and ν. Unlike the Monge-Ampere equation which is

highly nonlinear in t, the dual problem is linear in ϕ̃, ψ̃ so numerical methods can use the

techniques of linear programming.

For the quadratic cost c(x,y)= |x−y|2/2, a useful change of variables is

ϕ(x) =
1

2
|x|2 − ϕ̃(x), ψ(y) =

1

2
|y|2 − ψ̃(y). (2.7)

In terms of these the dual condition is

ϕ(x) + ψ(y) ≤ x · y (2.8)

which is automatically satisfied if ψ = ϕ∗(y), where ϕ∗(y) is the Legendre-Fenchel (LF)

transform (or convex conjugate function) of ϕ(x):

ϕ∗(y) = sup
x∈X

{y · x− ϕ(x)} (2.9)

(see section 2.3 for further properties). When ϕ is convex and differentiable this reduces

to the familiar Legendre transform:

ϕ(x) + ϕ∗(y) = x · y (2.10)

where x and y are related by

y = ∇ϕ(x), x = ∇ϕ∗(y). (2.11)

Brenier proved that if µ is absolutely continuous (with respect to Lebesgue) then there

is a unique optimal plan and it is of the form t = ∇ϕ(x) for some convex function ϕ (in

fact the theorem required some additional technical assumptions which have since been

proved unnecessary). Obviously this only defines t uniquely where ϕ is differentiable but

this will be the case dµ-almost everywhere. Furthermore if ν is absolutely continuous (with

respect to Lebesgue) then x = ∇ψ(y) dν-almost everywhere, where ψ∗ = ϕ, ϕ∗ = ψ, and

is the solution of the MP for transporting ν back to µ.

Brenier also provided the equivalent result that any absolutely continuous vector field

f has a unique polar factorisation f(x) = ∇ϕ(r(x)) where ϕ is convex and r is a

rearrangement of X.

2.2 Example: the semi-geostrophic system

The semi-geostrophic system is a set of equations used in atmospheric modeling first

introduced by Hoskins [41]. Starting from the compressible Navier-Stokes equations in a
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3D rotating frame of reference, together with the first law of thermodynamics for a medium

containing different phases of water and the ideal gas equation of state, approximations

and transformations are made [23, sec 2.3] which result in the semi-geostrophic equations :

D
Dt

(X,Y, Z) = f(y − Y,X − x, 0)

∇ · u = 0

(X,Y, Z) = ∇P

P = 1
2
(x2 + y2) + f−2ϕg

(2.12)

for x = (x, y, z) in some domain Γ, where f is the fixed Coriolis parameter, ϕg is the

geopotential and D/Dt= ∂/∂t+u · ∇ is the usual Lagrangian (convective) derivative.

This constitutes a system of seven equations for the seven unknowns (X,Y, Z, P,u). The

energy of the system is E =
∫
Γ
c(x)dx where

c(x) = f 2[
1

2
(x−X)2 +

1

2
(y − Y )2 − zZ].

Setting X =X(x)=(X,Y, Z) in some domain Σ, the potential vorticity q is defined to be

q = det

(
∂X

∂x

)
= det(D2P ) (2.13)

where D2P is the Hessian of P . This is a Monge-Ampere equation (2.4) for P with α = q

and β = 1.

Cullen’s [23, sec 3.1] stability principle asserts that physical states correspond to min-

ima of the energy with respect to variations preserving q. This is equivalent to saying

they are solutions to an MKP with cost c(x) from which we can deduce the existence and

uniqueness of a physical state for a given q, characterised by a convex potential P (x). We

define R(X) to be its Legendre transform:

R(X) + P (x) = x ·X (2.14)

and then x = ∇R. Also

c(x) = f 2[1
2
(x2 + y2) + 1

2
(X2 + Y 2)− x ·X]

= f 2[1
2
(x2 + y2)− P (x) + 1

2
(X2 + Y 2)−R(X)]

= ϕ̃(x) + ψ̃(X)

where ϕ̃(x) = −ϕg(x) and ψ̃(X) = f 2[1
2
(X2 + Y 2)−R(X)], which with X → y recovers

the original MKP.

The remaining content of (2.12) is Dq/Dt=0 - thus the semi-geostrophic equations

split into two parts: a fixed-time MKP coupled to a Lagrangian time-evolution equation

for q.
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2.3 The Legendre-Fenchel transform

Some properties of the LF transform (equation 2.9) are (see e.g. Rockafeller [77]):

(a) ϕ∗ is always convex (and lower semi-continuous).

(b) ϕ∗∗ is the convex hull of ϕ. If ϕ is convex (and lower semi-continuous) then ϕ∗∗= ϕ.

(c) As ϕ∗ is always convex (and lower semi-continuous), ϕ∗∗∗ = ϕ∗. In words the

transform of a function is identical to the transform of its convex hull, which means

that any non-convex parts of a function are eliminated by the transform.

(d) Linear functions (hyperplanes) are transformed into points. Convex piecewise linear

functions are transformed into convex piecewise linear functions.

(e) Where functions are convex and differentiable the transform reduces to the Legendre

transform - equations (2.10) and (2.11).

The following examples illustrate these properties (ψ = ϕ∗).

ϕ ψ

LF

ϕ ψ

LF

x y

ϕ=x2/2

x y

ψ=y2/2
ϕ=mx+c (m,−c)

(a) (b)

Figure 2.2: LF transform of convex differentiable, linear functions

1) Convex, differentiable ϕ (Fig 2.2a). If ϕ = x2/2, (2.11) ⇒ y = ϕ′(x) = x, then

(2.10) ⇒ ψ(y) = xy − ϕ(x) = y2/2.

2) Linear ϕ (Fig 2.2b). If ϕ(x) = mx + c, (2.11) ⇒ y = ϕ′(x) = m. When y = m,

(2.10) ⇒ ψ(m) = xy−ϕ(x) = −c, but this is not applicable for other values of y. In

fact (2.9) implies ψ(y) is not finite elsewhere. Thus the line mx + c is transformed

into the point (m,−c).

3) Linear ϕ through a point (Fig 2.3a). If ϕ(x) = ϕ0 + m(x − x0) then ϕ passes

through the point v at (x0, ϕ0). Four different values for m are shown. Again (2.11)

⇒ y = ϕ′(x) = m but now ψ(m) = xy−ϕ(x) = mx0−ϕ0. The points (m,mx0−ϕ0)

all lie on a line of slope x0, and this line transforms back into the point v.
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ϕ ψ

LF

ϕ ψ

LF

x y

v

x y

vm1

m2

m3 m4
ψ1

ψ2

ψ3

ψ4

ψ1

ψ4

(a) (b)

Figure 2.3: LF transform of linear functions, points

4) Piecewise linear ϕ with a vertex v (Fig 2.3b). Applying (2.9) directly only yields

finite values for ψ when m1 6y 6m4, and then ψ(y) = yx0 − ϕ0; elsewhere ψ(y) =

+∞.

ϕ ψ

LF

ϕ ψ

LF

x y

v

x y

v

ψ1

ψ4

(a) (b)

Figure 2.4: LF transform of convex non-differentiable, non-convex differentiable functions

5) When ϕ is convex and piecewise differentiable (Fig 2.4a), its transform combines the

transform in the previous example with the transform of the differentiable sections.

Because ϕ is convex, ψ∗ = ϕ∗∗ = ϕ i.e. ψ transforms back into ϕ. Compare this with

the case when the function contains non-convex sections (Fig 2.4b) - the supremum

in (2.9) results in these sections being lost.

6) A convex piecewise linear function ϕ (Fig 2.5a) is transformed into a convex piece-

wise linear function ψ. The linear pieces (faces) are labelled A to E, and ϕ can be

defined as the supremum of the lines created by extending each face out to infinity

at both ends. Taken individually, these lines are transformed into correspondingly

labelled vertices in ψ. Example (4) showed that the supremum of the two lines A

and B is transformed into the face a in ψ. Similarly the suprema of the pairs of

lines B/C, C/D and D/E are transformed into the faces b, c and d respectively.

This establishes a duality between vertices and faces under the transform.
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ϕ ψ

LF

ϕ ψ

LF

x y x1

x2

y1

y2

(a) (b)

Figure 2.5: LF transform of piecewise linear, piecewise planar functions

7) This duality extends naturally to x ∈ R2, as shown in (Fig 2.5b). Each face of ϕ

(e.g. the one shaded) can be uniquely identified with a vertex in ψ (the marked

vertex), and each vertex in ϕ (e.g. the one marked) can be identified with a face in

ψ (shaded). Also each edge between adjacent faces of ϕ (e.g. the thick edge) can

be identified with an edge in ψ (also thick).

2.4 Discrete versions of the mass transport problem

When the cost is quadratic but µ, ν are not absolutely continuous then α, β (2.3) are

distributions not functions so Brenier’s result is not applicable. However an optimal plan

can still exist, and these cases are of practical importance so are dealt with separately.

For these we adopt the semi-geostrophic notation, x ∈ Γ and y → X ∈ Σ.

2.4.1 Point distributions

Here α consists of m point masses αi (>0) at points xi (1 6 i 6 m) i.e. α(x) =
∑m

i=1 αiδ(x − xi), and β consists of n point masses βj (>0) at points Xj (1 6 j 6 n)

i.e. β(X) =
∑n

j=1 βjδ(X −Xj), and the equal volume criterion is
∑

i αi =
∑

j βj. The

transport plan is a matrix where πij (>0) is the amount of mass to be moved from xi to

Xj. If the cost incurred moving a unit of mass from xi to Xj is cij, then the total cost to

be minimised is I[π] =
∑

ij cijπij and the rearrangement criterion becomes
∑

j πij = αi,

1 6 i 6 m, and
∑

i πij = βj, 1 6 j 6 n.

For example if m=n and αi =βj =1, 1 6 i, j 6 n, π is bi-stochastic matrix and the

minimiser is a permutation [91], that is πij = δi,σ(j) for some permutation σ of {1, · · · , n}
which corresponds to finding an optimal matching between the points xi and Xj e.g. as

in Fig 2.6 for R2.
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Γ Σ

xi Xj

Figure 2.6: Monge problem with discrete unit masses

The dual problem is to maximise J [ϕ, ψ] =
∑

i ϕiαi +
∑

j ψjβj subject to the con-

straints ϕi + ψj 6 cij. This is a linear programming problem and so can be solved by e.g.

the simplex method [73].

2.4.2 Constant distribution to point distribution

Let β be as before, but Γ now be a convex polyhedron in which α = 1 (Fig 2.7). In

other words the sand is initially spread evenly throughout Γ and is to be gathered into

a set of containers of capacity βi at points X i (1 6 i 6 n), the equal volume condition

requiring
∑

i βi = |Γ|. This will be called the Semi-discrete Monge-Kantorovich Problem

or SMKP.
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Figure 2.7: Monge problem gathering uniform distribution to a set of points

As n → ∞ the SMKP can approximate ever more closely a continuum MKP, which

suggests the solution to the SMKP will also be of the form t = ∇P for convex P .

Suppose so. As every point in Γ must be transported to one of the X i then for any
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x ∈ Γ, t(x) = ∇P (x) = X i for some i, so P must be piecewise linear e.g. as Fig 2.8a.

From example 7 in the previous section, R is also piecewise linear (Fig 2.8b).
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Figure 2.8: Piecewise linear P (x) (blue), cells (red), and dual surface R(X)

Integrating t(x) gives the equation of the plane forming face i of P (blue in Fig 2.8a):

Pi(x) = x ·X i −Ri, (2.15)

where Ri is a constant. As P is convex, it can be defined as the supremum over planes i:

P (x) =
n

sup
i=1
{Pi(x)} (2.16)

and the projection of face i onto Γ defines the cell Ci (red in Fig 2.8a):

Ci = {x : Pi(x) > Pj(x), j 6= i}, (2.17)

with area Ai = |Ci|. Within Ci, P is differentiable so LF-transform property (e) applies:

R(X) + P (x) = x ·X, x ∈ Ci. (2.18)

Comparing this with (2.15) we see R(X i) = Ri i.e. Ci is transported to the point (X i, Ri)

in the dual space Σ (Fig 2.8b). To establish that faces in Σ are indeed transformed back

into vertices in Γ consider the vertex v in Fig 2.8a where the three faces Pi(x), Pj(x), Pk(x)

meet. If the vertex has coordinates (xv, Pv) then it satisfies (2.15) for each of the three
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planes:

P (xv) = Pv =





X i · xv −Ri

Xj · xv −Rj

Xk · xv −Rk

or




Xi Yi −1

Xj Yj −1

Xk Yk −1







xv

yv

Pv


 =




Ri

Rj

Rk


 . (2.19)

where x = (x, y), X = (X,Y ). The determinant of the matrix is 2Aijk, where Aijk is the

area of the triangle with vertices X i,Xj, and Xk in Σ (coloured red in Fig 2.8b) :

Aijk
def
=

1

2
[(Xj −Xi)(Yk − Yi)− (Yj − Yi)(Xk −Xi)] . (2.20)

Provided Aijk 6= 0, (2.19) can be inverted to obtain (xv, Pv). Alternatively the equation

of a plane in dual space is of the form R(X) = xv · X − Pv for constants xv, Pv. The

plane which passes through the points (X i, Ri), (Xj, Rj), (Xk, Rk) must satisfy the same

equations as (2.19) and so this xv, Pv must be the same as before i.e. the vertex v is

LF-transformed into the face v in Fig 2.8b as expected.

Lastly for P to solve the SMKP, it must satisfy the rearrangement criteria (2.1), (2.2).

If B is some neighbourhood of X i sufficiently small to contain no other Xj then (2.1)

becomes

Ai = βi i = 1, . . . , n. (2.21)

Thus Γ is decomposed into a set of convex polyhedral cells {Ci}, where Ci has area βi and

is transported to the point X i (Fig 2.9). In the process the set {X i} is also triangulated.
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Figure 2.9: Convex polygons and triangulation created by the transport solution
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To summarize, the solution of the SMKP, if it exists, is a convex polyhedral function

P whose faces have gradients X i and projected areas βi, for i = 1, . . . , n. Aleksandrov

(described in Pogorelov [71]) first proved a solution exists and is unique, as independently

did Cullen and Purser [24] when developing a numerical method for the solution of the

semi-geostrophic equations.

2.5 Other applications

The Monge problem is so basic that it should be no surprise to find it cropping up

elsewhere. The following sections describe applications of the Monge problem for which

numerical solutions have been developed.

2.5.1 Optical reflector design

A far field optical reflector [67] (Fig 2.10) is a surface R in Rn that transforms a given

spherical light source at the origin O which has intensity I(m) in the direction m into a

given intensity L(y) in the direction y far away.

m

I(m)

r(m)

u
y

L(y)

O

R

Figure 2.10: A far field optical reflector R

A ray m hits the surface R at r(m) where the normal is u and is reflected into the

25



direction y. The map from m to y is given by Snell’s law γ :m 7→ y=m−2〈m, u〉u, where

〈·, ·〉 denotes the inner product. When γ is a diffeomorphism, the intensity L(y) must

satisfy the Monge-Ampere equation L(γ(m)) det(D2γ(m))) = I(m). Solutions to this

pointwise equation are called strong solutions, whereas solutions to the corresponding

MKP are called weak solutions. Oliker and Kochengin [69] developed an algorithm,

the method of supporting paraboloids, to find numerical solutions by approximating R

by the envelope of a finite number of paraboloids, each of which has its focus at O

and so reflects all the rays hitting it in the same direction. This is a SMKP where

m ↔ x, X =Y =S2, I ↔ α, L ↔ β, γ ↔ t, log(ρ) ↔ ϕ̃,− log(1 − 〈m,y〉) ↔ c(x,y)

[68], and the construction ensures that γ is the gradient of a convex function. The N

paraboloids are iteratively adjusted until the required intensities are satisfied to within

tolerance i.e. the rearrangement criterion (2.1) is met. The original method performed

poorly for large N , but was improved by switching to the downhill simplex method [66]

after an initial number of iterations.

Some related problems can also be formulated in terms of optimal transportation. A

near field reflector illuminates a given hypersurface with a specified intensity field and

can be solved numerically by decomposing R into sections of ellipsoids with one focus at

O and the other on the hypersurface. Rearranging the intensity of a set of parallel rays,

or generating parallel rays of given intensity from a point source are not possible with a

single reflector as it does not have enough degrees of freedom but both are achievable using

two successive reflectors (Fig 2.11). These cases also have parallels in antenna design.

O

R2

R1

R2

R1

Figure 2.11: Some two-reflector systems

2.5.2 Image registration and warping

Image registration is the process of establishing a common geometric reference frame

between two or more image data sets possibly taken at different times and warping is the
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process of finding an explicit map from one image to another. Images here are rectangular

arrays of pixels, each of which has a positive real intensity (and often colour information,

but that is not considered here). An example application is in medicine, where different

datasets e.g. X-rays and MRI scans need to be overlayed for diagnosis or pre-operative

planning. Another example is comparing a series of scans of a tumour during the course

of therapy. There are numerous different approaches to this task, ranging from methods

using optical flow, statistics, computational fluid dynamics and warping methodologies.

Typically they start by defining a function that quantifies the difference between two im-

ages which might include the differences between intensity values or the distance between

specific features (e.g. surface contours or other landmarks) once located on each image.

Then the transformation is found that minimises this e.g. by solving some optimisation

problem. Haker et al [37] suggested using the Wasserstein distance (section 2.1) with

quadratic cost as the difference function and then the registration problem becomes a

MKP.

Unlike Oliker’s algorithm and the geometric method (chapter 3), which vary a convex

function until the rearrangement criteria is met, their algorithm varies rearrangements

until the map is a gradient of a convex function. Starting from an initial rearrangement u0

of image µ0 in domain Ω0 ⊂ Rn onto image µ1 in Ω1, new rearrangements u are generated

by u = u0 ◦ s−1, where s is a rearrangement of µ0. Initially s is set to the identity map

but is iteratively updated via the steepest descent direction of the Wasserstein distance

M =
∫
Ω0
‖u(x)− x‖2µ0(x)dx until the unique global minimum is found.

If s and u are parameterized by t, they show that rearrangements are generated by

st =
(

1
µ0

ζ
)
◦ s, ut = − 1

µ0
det(Du)ζ, where ζ is any vector field such that ∇ · ζ = 0,

and 〈ζ, ~n〉 = 0 on ∂Ω0 (to ensure that s(Ω0) = Ω0). Also Mt = −2
∫
Ω0
〈ζ, χ〉dx where

u = ∇w + χ is the unique Helmholtz decomposition of u (∇ · χ = 0). Thus the steepest

descent direction is ζ = χ . To effect the decomposition requires solving the Poisson

equation ∆w = ∇·u for w, with Neumann-type boundary condition 〈∇w,~n〉 = 〈u, ~n〉
on ∂Ω0, from which χ = u − ∇w. This can be done efficiently by e.g. the multigrid

method [76] so the algorithm is expected to be of comparable computational efficiency

with Oliker’s algorithm and the geometric method.

Chartrand et al [21] have developed an algorithm for the quadratic cost which com-

putes the optimal transport plan by maximising the dual cost J [ϕ̃, ψ̃] (2.6) by steepest
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descent. With the change of variables (2.7), this is equivalent to minimising

L[ϕ, ψ] =

∫

X

ϕ(x)dµ(x) +

∫

Y

ψ(y)dν(y) (2.22)

under the condition (2.8). They impose ψ = ϕ∗ by defining

M [ϕ] =

∫

X

ϕ(x)α(x)dx +

∫

Y

ϕ∗(y)β(y)dy,

and prove the variational derivative exists, being

M ′[ϕ] =
δM [ϕ]

δϕ
= α− β(∇ϕ∗∗) det(D2ϕ∗∗) (2.23)

where D2ϕ∗∗ is the absolutely continuous part of the Hessian of ϕ∗∗. Assuming ϕ is convex

(ϕ∗∗ = ϕ), at the minimum M ′[ϕ] = 0 which recovers the Monge-Ampere equation (2.4).

The steepest descent method in some pseudo-time parameter t is

ϕt = −M ′[ϕ] = β(∇ϕ) det(D2ϕ)− α. (2.24)

For the image warping problem, α and β are approximated by arrays of greyscale pixel

intensities and the discretised descent step for pseudo-timestep 4tn is

ϕn+1 = ϕn +4tn[β(∇ϕn) det(D2ϕn)− α]. (2.25)

They use a Lax-type numerical scheme, evaluating ϕ at pixel vertices and the derivatives

at pixel centres by centred differencing. The second term in (2.25) is computed at pixel

centres and ϕn+1 updated from ϕn by averaging over pixel centres. This was found to

produce numerical artifacts which worsened on further iteration, so instead they Gaussian-

smoothed α and β first and iterated ϕ, then smoothed α and β to a lesser degree and

continued iterating, and so on, eventually using the original α and β. In practice they

found just one change of smoothing produced good results.

2.5.3 The Parabolic Monge-Ampere method

For mesh movement we identify X with computational space Ωc, Y with physical space

Ω and solve the Monge problem for α = constant. The Monge-Ampere equation (2.4)

now expresses the equidistribution of β ((1.12) with J ≡ det(D2ϕ), ρ ≡ β and σ ≡
α). This is also the continuous analogue of the SMKP. The additional requirement of

optimal transportation singles out a unique equidistribution regardless of the number of

dimensions. Furthermore the form of the optimal transport plan (y = ∇ϕ) also means

that ∇× y = 0 in R2 and R3 i.e. the mapping is irrotational.

28



To eliminate α from (2.24) we set Q = ϕ + αt so that the steepest descent is

Qt = ρ(∇Q, t) det(D2Q).

Budd and Williams [16] observe that this is a parabolic Monge-Ampere equation for Q

[59], and prove that it converges to the solution of the MP when the monitor is constant

in time. In practical applications, it is usually necessary to smooth Q [42], typically by

local averaging. The Parabolic Monge-Ampere method uses the Laplacian to smooth:

ε(I − γ∆)Qt = [ρ(∇Q, t) det(D2Q)]1/d (2.26)

for x,y ∈ Rd, where ε and γ are constants controlling the relaxation rate and degree of

spatial smoothing and the power 1/d is introduced for scale invariance.

2.5.4 Power diagrams and interface reconstruction

Power diagrams are a variant of the Voronoi construction which has been used in a

recent interface reconstruction algorithm.

Given a set of sites {X i} ∈ Rd, the Voronoi region [5] associated with site X i is the

set of points closest to X i: V R(X i) = {x : d(x, X i) < d(x,Xj), ∀j 6= i} where the

metric d(x, y) = |x−y| is the Euclidian distance. The Voronoi regions are polyhedral

and their boundaries together form the Voronoi diagram. They can be generalized by

choosing different metrics - for power diagrams the metric is

d(x,y) = |x− y|2 − w(y)

where w is a weight function, which is only evaluated at the sites so can be replaced by

the set {wi} where wi = w(X i). Power regions are also polyhedral, and reduce to the

Voronoi regions when the wi are identical. As wi increases with respect to its neighbours,

the associated power region PR(X i) increases in size. For a positive weight the metric

can be interpreted as the tangential distance (squared) to a ball of radius
√

wi.

If we associate with each point X i the plane ϕi(x) = x · X i − ψi in Rd+1, where

ψi = (|X i|2−wi)/2 then the power region of X i becomes simply PR(X i) = {x : ϕi(x) >

ϕj(x),∀j 6= i}. In other words the power diagram is the projection of the convex hull

of the planes, ϕ(x) = supi{ϕi(x)}, onto ϕ = 0. Alternatively any convex polyhedral

function when projected down yields a power diagram. The polar point [5] associated

with the plane ϕi is (X i, ψi) so the polarity transform is actually a Legendre transform
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[82]. Furthermore the solution to the SMKP is thus a power diagram which also satisfies

the rearrangement criteria (2.21), providing an existence and uniqueness proof for power

diagrams with specified areas in a domain with a polyhedral boundary.

In multi-material simulations of fluids some mechanism is required to keep track of

the locations of the different materials. A popular choice is the Volume of Fluid (VOF)

method [40] in which each cell maintains information on which materials are present and

what fraction of the volume each takes up. Each timestep the interfaces between the ma-

terials in each cell are reconstructed using the volume fractions in the cell and surrounding

cells. Typically these interfaces are linear (planar in 3D). More recently the Moment of

Fluid (MOF) method [2] maintains centroid information in addition to the volume frac-

tions to reconstruct the interfaces without using information from surrounding cells, but

the interfaces are still piecewise linear/planar. Schofield et al. [80] instead construct a

power diagram using the centroids as sites and varying the weights with Newton’s method

until the volume fractions match.

This concludes the summary of the basic theory and existing numerical techniques,

although the list is likely to grow as new areas of application are found.
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Chapter 3

The Geometric Method and Panel Beater

algorithm

In this chapter we describe in detail some algorithms for the numerical solution of the

optimal transportation problem, and investigate their performance in some relevant test

problems. The geometric method was developed to solve the optimal transport component

of the semi-geostrophic equations (2.13), and approximates the MP by a SMKP (which has

the additional benefit that the remaining time evolution component becomes particularly

simple - the geopotential q is conserved in each cell). Chynoweth [22] solves this with

the multi-dimensional Newton-Raphson technique - each iteration constructing the dual

convex polyhedral potentials P (x) and R(X) (2.12), (2.14) from scratch. The method

has been implemented in two and three dimensions but is quite general, taking O(N2)

operations for N cells. Purser has improved the geometric method by using a convex

hull algorithm to construct the initial convex potentials in just O(N log N) operations,

adjusting the potentials with the faster conjugate gradient method, and repairing the

convexity if needed each iteration with the panel beater algorithm in on average O(N)

operations. This has been implemented in two dimensions and could in principle be

extended to higher dimensions.

We identify Γ with physical space Ω and Σ with computational space Ωc. As P and

R are dual, one can be completely determined from the other, and we choose R to be the

independent variable from which P is derived. Now R is the convex hull of N vertices

{(X i, Ri)} in Rn+1 and an arbitrary set of points in Rn+1 is said to be in general position if

no n+2 points lie on an n-dimensional hyperplane, otherwise they are in special position.

Point sets in special position form a measure zero subset of all point sets, in other words

a random set of points is almost always in general position. In this case (n=2) all faces

of R will be triangular (furthermore as R is convex the triangulation is regular [78]) and

by duality exactly three edges meet at every vertex of P . A general position can always

be recovered by moving offending vertices an infinitesimal distance off the hyperplane

(illustrated by Fig 3.1) so this is assumed from here on. The domain boundary can be
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Figure 3.1: Recovering a general position

included quite naturally in this representation as cells N + 1, . . . , NC having dual space

vertices at infinity (in practice a finite but large distance from the origin).

3.1 Description of data structures

Before describing their algorithms in detail, we introduce the data structures used to

represent R and P , which are based on the doubly-connected edge list (DCEL) [11] for

simply-connected polyhedra and consist of (Fig 3.2):

• NV vertices in physical space at coordinates (x[v],y[v],p[v]), 16 v 6NV .

• 2NE directed edges numbered -NE to -1, 1 to NE.

Edge e starts at vertex Vert[e], has cell number Cell[e]on its right hand side, and

the next edge travelling anti-clockwise around the cell perimeter is Next[e]. Edge

−e overlays e but travels in the opposite direction.

• NC cells with dual space coordinates (X[c],Y[c],R[c]), 16 c 6NC . FirstEdge[c]is

some edge on the perimeter of cell c.

e

−e

Vert[−e]

Vert[e]

Next[−e]

Next[e]

Cell[−e]
Cell[e]

FirstEdge[Cell[e]]

e

−e

Cell[−e]

Cell[e]

Next[e]

Next[−e]

Vert[−e]

Vert[e]

Physical space Dual space

Figure 3.2: Data representation for mesh
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For each boundary vertex an extra edge is required - in Fig 3.3 the example of Fig 2.9

is extended by edges eab, ebc, ecd and ead which complete the representation of vertices v1

to v4 respectively (shaded), where boundary cells a, b, c and d are a large distance from

the interior cells in dual space.

a

b

c

d

eab

ebc

ead

ecd

v1

v2
v3

v4

a

b

c

d

eab

ebc

ead

ecd

v1

v2

v3

v4

Physical space Dual space

Figure 3.3: Data representation for boundary cells

In dual space there are in total NC vertices, NE edges and NV triangular faces, of

which (NC−N +1) vertices and (NC−N +1) edges lie on the boundary. Summing three

edges for every triangle counts the internal edges twice and the external edges once so

3NV =2NE +(NC−N +1). Euler’s theorem for a plane graph (V −E+F =1) here reads

NC−NE+NV =1 and combining these two expressions yields

NV = 3N + 4(NC −N)− 2, NE = 2N + 3(NC −N)− 1. (3.1)

3.2 The Geometric Method

3.2.1 Construction of the potential P

The overall strategy is to find a cell on the domain boundary and trace round its edges

to find its vertices and neighbouring cells. Then by tracing round these neighbours more

vertices and neighbours are found, and so on spreading out until all the cells have been

constructed and the domain X covered.

First some definitions (1 6 i, j, k 6 NC): xijk is the point of intersection of three

planes i, j, k (2.19), Lij is the line of intersection of two planes i and j,
−→
Lij a vector along
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it, and eij ⊂ Lij is the edge between cells i and j if it exists in P and R. Points (x, p) on

Lij satisfy (2.15)

p = x ·X i −Ri = x ·Xj −Rj

⇒ x · n̂ij = dij, n̂ij =
Xj −X i

|Xj −X i| , dij =
Rj −Ri

|Xj −X i| . (3.2)

As n̂ij is normal to the line Lij, n̂ij · −→Lij = 0 and so the line X i → Xj in dual space

is perpendicular to the corresponding line Lij in physical space. If |X i| → ∞ then the

normal n̂ij → n̂i = −X i/|X i| and dij → di = −Ri/|X i| so that as long as Ri = −di|X i|
the line is still well defined but insensitive to j which is exactly the property required of

a boundary segment.

A key step in the method is determining the vertices at each end of an edge eij known

to be part of P . Chynoweth [22] finds them by testing all the possible vertices along Lij:

{xijk, k = 1, . . . , NC , k 6= i, j}. Fig 3.4 shows the cross section of P along Lij. The shaded

region, P > P (x), is the intersection of the half-planes P > Pk(x), for k = 1, . . . , NC .

Travelling along the line, the intersection points fall into two categories depending on

whether the associated half-plane is entered (black circles) or exited (white) i.e. whether

Xk ·−→Lij is positive or negative. The vertices sought then correspond to the last half-plane

entered and first half-plane exited, with the order along the line being determined by the

scalar parameter x · −→Lij.

xijk

P

eij

Lij

x

Pk(x) P (x)

Figure 3.4: Determining the end vertices of edge eij

Initially the data arrays x,y,p,X,Y,R,FirstEdge,Next,Cell are empty, and new ver-

tices, cells and edges are numbered sequentially as they are found and corresponding array

elements filled in (except boundary cells are numbered from N +1 to NC). The method is:
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1. Initialise the boundaries.

Each boundary plane i (line in n=2) is defined by a normal n̂i and perpendicular distance

di. Set |X i| to some large number and X i = −|X i|n̂i, Ri = −di|X i| and store in

boundary cell N + i, N + 1 6 N + i 6 NC .

2. Find a cell a on the boundary.

An arbitrary point xb is picked on the boundary plane b (Fig 3.5). From (2.16) xb lies

on the plane that maximises {Pa(xb), a = 1, . . . , N, a 6= b}. If two planes a, c share this

maximum value then they are neighbouring cells and xb = xabc is a vertex of P (x). The

next step can then be skipped.

3. Find vertex xabc on the boundary using the method above with line Lab.

4. Starting at xabc find the vertex xacd at the other end of edge eac.

5. Repeat, starting from known vertices, until there are no cells left.

xb xabc

xacd

xade

a
c

d
e

b

Ω ∂Ω

Figure 3.5: The Geometric Method

To find a new vertex O(N) intersection points are evaluated, and this is repeated for every

edge totalling O(N2) operations per reconstruction.

3.2.2 The iteration procedure

To reduce the number of degrees of freedom the X i are fixed at the start and throughout,

leaving only R = {Ri}, 1 6 i 6 N variable (from here on unless otherwise stated this

range is always assumed). To solve the SMKP the rearrangement criteria (2.21) must be

satisfied which is rewritten as the single vector equation:

F (R)
def
= β −A(R) = 0, (3.3)
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where β = {βi}, A(R) = {Ai}. We wish to solve this by Newton-Raphson so need to

compute the Jacobian matrix Jij = ∂Ai

∂Rj

∣∣∣
R

which represents the change in area of cell i

on varying Rj. As adjusting Rj will only change the areas of cell j and its immediate

neighbours the matrix is sparse. If Ri → Ri + δRi, then by (3.2) if δRi < 0 the edge eij

will move sideways into neighbour cell j by δdij = −δRi/|Xj − X i| (Fig 3.6) so cell j

loses the shaded region δCij which has area δAij ≈ −|eij|δRi/|Xj −X i| from which the

off-diagonal elements are

Jji = −δAij

δRi

= |eij|/|Xj −X i| = Jij > 0, j 6= i. (3.4)

The total area
∑

j Aj = |Ω|, a constant, and differentiating this with respect to Ri gives

∑
j

Jji = 0 ⇒ Jii = −
∑

j 6=i

Jij < 0, 1 6 i 6 N. (3.5)

δCij

eij

n̂ij

Cj

Ri → Ri + δRi

Ci

δdij

Figure 3.6: Computing elements of the Jacobian

Equation (3.5) can be written as Jv = 0 where v = (1, 1, . . . , 1), so that v is an

eigenvector of J with eigenvalue zero. The interpretation of this is that if all the Ris

are changed by the same amount then the areas remain unchanged. It also means J is

singular and cannot be inverted. Fortunately this is the only zero eigenvalue because

RT JR =
∑

RiJijRj

= 2
∑
i>j

RiJijRj +
∑

i

R2
i Jii

= 2
∑
i>j

RiJijRj +
∑

i

R2
i (−

∑

j 6=i

Jij)

= −
∑
i>j

Jij(Ri −Rj)
2 6 0. (3.6)
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Equality occurs if Ri = Rj whenever cells i,j are neighbours (Jij 6= 0). But if the

neighbours of cell i must have the same value of R then so also must their neighbours and

so on spreading out until all cells must have the same value of R i.e. RT JR = 0 ⇔ R

is a multiple of v. A simple way to remove this eigenvector is to fix one of the Ri’s, say

that of cell a. The reduced Jacobian Ja is formed by removing row and column a from

J (but retaining the index numbering) and Jii = −∑
j 6=i Jij = −∑

j 6=i,a Jij − Jia ⇒ Ja
ii >

−∑
j 6=i,a Ja

ij with strict inequality when cell i is a neighbour of cell a (Jia 6= 0). Thus Ja

is diagonally dominant, strictly for some rows, and so invertible.

We can now apply Newton-Raphson to the reduced system (dropping the superscript

a):

Rn+1 = Rn − J−1(β −A(Rn)) (3.7)

Chynoweth applies Euler’s theorem for a plane graph to show that the number of non-

zero elements of J is O(N) allowing the use of fast sparse matrix inversion methods e.g.

Lanczos. It doesn’t matter that cell a has been removed from R because when all the

other cells have the correct area
∑

j Aj =
∑

j βj = |Γ| ensures that so too will cell a.

However it is possible for one of the Ri to be raised so high that the vertex is no longer

part of the convex hull of R(X), which corresponds to the cell’s area becoming zero (Fig

3.7).
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Figure 3.7: Disappearing cell (red) as Rred increased

When this happens the iteration is stopped and, as long as they are isolated, any

offending cells are re-inserted by lowering their Ri until the number of vertices where

Pi(x) > P (x) is either one or two (this ensures no other cells can be accidentally removed

as every cell has at least three vertices). With this capability the initial guess R0 can

consist of just a few cells with non-zero values, with the rest being inserted in successive

iterations.
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3.3 Purser’s implementation

Purser’s implementation of the geometric method [74] differs from Chynoweth’s [22] in

four areas.

Firstly we still expand F (R) (3.3) to first order but do not multiply through by J−1:

J(Rn+1 −Rn) = β −A(Rn) (3.8)

This is solved for Rn+1 by the (linear preconditioned) conjugate gradient method [33].

Unlike the original geometric method no cells need be removed from R, but the possi-

bility arises that it could acquire a large component in the direction of v which must be

subtracted to keep the numbers sensible. A simple choice is to reset R1 to zero after each

iteration i.e. R → R−R1v.

Secondly, instead of reinserting cells that have been ‘cast adrift’ of the convex hull (Fig

3.7), the solution of (3.8) is split up into a number of smaller steps, enough so that this

doesn’t happen in the first place. Each step the target areas β are slowly modified, being

initially set equal to the current areas (so no change in R is required) and are adjusted

linearly with step number until after Ngm steps they are the intended areas. So starting

from an initial guess R0 the target areas on step n are

β(n) =

(
1− n

Ngm

)
A(R0) +

n

Ngm

β. (3.9)

The parameter Ngm is determined experimentally and for all the test problems in this

thesis Ngm = 3 was found sufficient for each timestep, but sometimes needed to be more

during the initial mesh convergence phase.

Thirdly the potentials P and R are constructed by finding the convex hull of the

vertices {(X i, Ri)} using the method of Preparata and Hong [72] which is described next,

followed by some details of the implementation. The fourth and last difference is that

instead of constructing new potentials R and P from scratch each iteration, the current

potentials are retained and modified if necessary to maintain convexity with the panel

beater algorithm, described in section 3.3.3.

3.3.1 The convex hull algorithm of Preparata and Hong

The basic strategy is to divide-and-conquer: the set of vertices (excluding vertices

representing boundary cells) is split into two spatially-disjoint subsets (i.e. a dividing

plane exists between the two), the convex hulls of each of these are found separately
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and then they are merged together. The algorithm is recursively applied to each subset,

breaking them up in turn into smaller and smaller pieces, until each piece consists of just

one or two vertices. Then the pieces are repeatedly merged together, back up the binary

tree structure, until there is just one piece - the complete convex hull.

The sets can be split efficiently if the vertices are initially renumbered in order along

an axis, say the x-axis. For N = 2M vertices this takes O(N log N) operations but then

a subset {xa, . . . , xb} can be immediately split, by a plane normal to the axis just to

one or other side of the median vertex, into {xa, . . . , xb(a+b)/2c} and {xb(a+b)/2c+1, . . . , xb}.
After i iterations there are 2i subsets of N/2i = 2M−i vertices, and so if two subsets of

size p and q can be merged in O(p + q) operations, the total computational cost will be

O(N log N) +
∑M

i=1 2iO(2M−i) = O(N log N) operations.

In two dimensions a convex hull is a convex polygon and the merge routine amounts to

finding mutual tangents (green in Fig 3.8) of the two polygons A and B, and eliminating

the points now inside the new hull.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1  1.5  2  2.5  3  3.5  4

A B

a
a + 1

a− 1 b
b + 1b− 1

Figure 3.8: Merging two convex hulls in 2D with the mutual tangents (blue)

Let the vertices of A and B be numbered anticlockwise from 1 to p and 1 to q respec-

tively, and for any three vertices i, j, k the area of the triangle they form is

A(i, j, k) =
1

2
[(xj − xi)(yk − yi)− (yj − yi)(xk − xi)] (3.10)

which is positive(negative) if k is on the left(right) side of the line from i to j. Then the

conditions for ab (a ∈ A, b ∈ B) to be the lower(upper) mutual tangent are

A(a, b, a− 1), A(a, b, b + 1) > (<)0 and A(a, b, a + 1), A(a, b, b− 1) > (6)0,

where arithmetic is modulo p, q for A, B respectively. The algorithm for finding the lower

mutual tangent aLbL iteratively moves either a or b until the conditions are met:
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1. Set a to be the leftmost vertex of A and b to be the rightmost vertex of B.

2. If A(a, b, a + 1) 6 0 then set a ← a + 1 and goto 2.

3. Elseif A(a, b, b− 1) 6 0 then set b ← b− 1 and goto 2.

4. Else ab is the required tangent. Set aL = a, bL = b and exit.

The first step takes O(p) + O(q) operations and then on each iteration the convexity

of A and B ensure that either A(a, b, a + 1) is increased or A(a, b, b − 1) is decreased,

so the algorithm is guaranteed to stop in O(p + q) steps. The algorithm for the upper

mutual tangent aUbU is similar, also taking O(p + q) steps, and the merged convex hull is

{aL, bL, bL+1, . . . , bU , aU , aU +1, . . . , aL−1}, evaluated in O(p+q) operations as required.

The three dimensional case is more complex but follows the same basic idea of con-

structing the tube-shaped surface T (green in Fig 3.9) bridging the convex hulls A and

B, then removing any vertices that are now internal.
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Figure 3.9: Merging two convex hulls in 3D

Starting with some edge E of the tube the gift-wrapping principle of Chand and Kapur

[20] is used to find an adjoining face, then a face adjoining that, and so on round the tube

until it is complete. The first step then is to find an edge on the tube and this is easily

done with the help of the two dimensional algorithm. Hulls A and B are projected onto

the plane beneath and the algorithm above is used to find the lower mutual tangent aLbL.

This must be the projection of an edge E of T (Fig 3.10), so set a1=aL, b1=bL and E=a1b1.

Given a face f of a polyhedron the gift-wrapping principle states that the face adjoin-

ing f along an edge e is contained in the plane through e and another vertex, the one
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Figure 3.10: Finding an edge on T

whose plane forms the minimum angle with f . Chand and Kapur’s convex hull algorithm

tests every other vertex to find this minimum each edge so their algorithm takes O(N2)

operations in total but the convex hulls A and B can be used to reduce the number of

tests significantly. In fact it is only necessary to test the vertices connected by an existing

edge to either a1 or b1 (marked black in Fig 3.11). The first face f is constructed by

joining E to its projection on the plane below.

Ea1
b1

f

Figure 3.11: Applying the gift wrapping principle

Applying the gift wrapping principle to (f ,E) yields a vertex from either A or B, in

this case b2 ∈ B, and the first face of T , a1b1b2 (green in Fig 3.12).

a1
b1

b2

Figure 3.12: The first face of T
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Now we can set E=a1b2, f=a1b1b2 and apply the gift wrapping principle again, testing

vertices connected to a1 or b2 (marked black in Fig 3.12), to get the next face of T (Fig

3.13), and so on, with the final result in Fig 3.9. No special treatment is required for

degeneracies (vertices on A and B both sharing the same minimum angle).

a1
b1

b2
a2

Figure 3.13: The next face of T

At each stage at least two vertices are tested. The successful vertex is added to T

which removes it from further consideration, and leaves at least one unsuccessful edge

that can therefore never be part of T so can also be removed from further consideration.

From Euler’s formula for convex polyhedra V − E + F = 2 (for V vertices, E edges and

F faces), the number of edges of A and B can be at most 3p− 6 and 3q − 6 respectively,

so the total number of tests carried out before all the vertices and edges are exhausted is

bounded by O(p + q).

In the process the ends of E trace out two loops of vertices a1a2 . . . and b1b2 . . . (marked

yellow and light blue in Fig 3.9) which divide A and B into two disjoint pieces, one of

which is internal to the new hull and must be removed. It is possible to determine which

vertices these are in O(p + q) operations, for example by ‘shrinking’ the loops (to the

right side of a1a2 in A and the left side of b1b2 in B) down to a point. In total, including

finding the two-dimensional hull, the merge takes O(p + q) operations as required.

3.3.2 Pertinent details of the implementation

Ordering all the vertices along an axis to simplify the splitting of sets of vertices into

disjoint subsets is elegant theoretically but results in increasingly thin subsets which

could give rise to difficulties numerically (Fig 3.14). Instead Purser [74] splits the sets

alternatively in the x and y directions (forming a balanced kd-tree [73]), which results in

more evenly proportioned subsets. To partition a set of n vertices by the median is an

example of selection and is achievable in O(n) operations [73, sec 8.5]. To partition all the

42



subsets of N = 2M vertices that are created takes O(2M) + 2O(2M−1) + 4O(2M−2) + . . . +

2MO(1) = O(M2M) = O(N log N) operations so the overall complexity is unchanged.

Figure 3.14: Dividing vertices by the x coordinate (left) or by both coordinates alterna-

tively (right)

The division process is stopped when a piece has three or four vertices and the convex

hull of these explicitly constructed. For three vertices there are just two cases (the triangle

they form when projected onto the plane beneath is either clockwise or anti-clockwise),

and twenty different cases for four vertices. If V i = (Xi, Yi, Ri) then the volume of the

tetrahedron formed by vertices i, j, k, l is

Vijkl = 1
6
(V j − V i) · (V k − V i)× (V l − V i)

= 1
3!

det




Xij Yij Rij

Xik Yik Rik

Xil Yil Ril




. (3.11)

where Xij = Xj −Xi etc. There are just two basic patterns for four vertices, types A and

B:

a b

c

d

a b

d c

Figure 3.15: Type A (left) and B (right) four-vertex convex hulls

Using the binary digits 1 and 0 to represent truth and falsehood, table (3.1) lists all

the combinations of area and volume by sign and, for each that is possible, its type and

the vertices a, b, c, d. The case number is just the binary number formed from the first five

rows. For vertices on the perimeter FirstEdge is initialised to point to the next vertex

round the perimeter clockwise e.g. for type A FirstEdge[a]=eac etc.

43



case 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A123 >0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A134 >0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

A142 >0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

A234 >0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

V1234 >0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

type A B B - B - - - - A A B A B B - - B B A B A A - - - - B - B B A

a 2 1 1 - 1 - - - - 1 1 4 1 3 2 - - 2 3 1 4 1 1 - - - - 1 - 1 1 2

b 4 2 3 - 4 - - - - 2 3 1 4 1 1 - - 4 2 2 3 4 3 - - - - 2 - 4 3 3

c 3 4 2 - 3 - - - - 3 4 2 2 4 3 - - 3 4 4 2 3 2 - - - - 3 - 2 4 4

d 1 3 4 - 2 - - - - 4 2 3 3 2 4 - - 1 1 3 1 2 4 - - - - 4 - 3 2 1

Table 3.1: Cases of four vertex convex hulls

The algorithm as described is applicable to a general set of points scattered throughout

R3, but the set of dual space vertices {Ri} define a single-valued function R(X), which

makes certain simplifications possible. The three dimensional hull is bowl-shaped, and the

corresponding two dimensional hull is then formed by the projection of the rim (the thick

lines in Fig 3.16). The data structures described earlier make navigation anticlockwise
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Figure 3.16: The convex hull of single-valued R

around the rim very simple - if e is an edge anticlockwise round the rim then the next is

Next[-e]. Also as FirstEdge can be any edge starting from the same vertex, for vertices

on the rim it is set to the clockwise edge so that travel is now simple in both directions.

Lastly the rim can be quickly located by storing any vertex on it along with each hull.
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For example the vertex stored with the merged hull is a1.

Instead of creating new data arrays to represent the merged hull, the arrays for A and

B are adjusted in place as T is constructed, making sure that the anticlockwise ordering

of edges at each is maintained. A typical stage in the construction is shown, looking down

from above, in Fig 3.17a, where f and E=ab are the current face and edge of T , and it is

assumed that FirstEdge[a]=E and FirstEdge[b]=−E.

E

f

a b

a1

a2

b1 b2

E

a b

a1
f

(a) (b)

Figure 3.17: Advancing the edge E

The procedure to advance E is as follows.

1. Find the vertex ai connected to a whose plane has the minimum angle to f .

Set e0=FirstEdge[a](=E) and ei=Next[ei−1], ai=Cell[ei], i = 1, . . . which generates

vertices in the order indicated by the arrow. If the normals to the planes f and fi = abai

are f and f i then the angle θi between them satisfies tan θi = |f × f i|/(f · f i) (a little

computational effort can be spared in determining the minimum by comparing tan θ not

θ). The iteration stops when either ei = e0 (have gone right round a), tan θi > tan θi−1

or A(a, b, ai) < 0 (ai is behind the dashed line formed by E in Fig 3.17a).

2. Find the vertex bi connected to b whose plane has the minimum angle to f .

Set e0=FirstEdge[b](=−E) and ei=Next[ei−1], bi=Cell[ei], i = 1, . . .. Vertices are

not counted until A(a, b, bi) > 0 (they are ahead of the dashed line), and again the itera-

tion stops when either ei = e0 or tan θi > tan θi−1.

3. Compare the ‘winning’ vertices from A and B, if they exist, and move forward.

In this example (Fig 3.17b) vertex a1 has the least angle overall so a new edge E = a1b

is created, f becomes aba1, FirstEdge[a1]=E, FirstEdge[b]=−E and the data arrays

for a1 and b are adjusted to accomodate the new edge E.

To remove vertices internal to the merged hull, they are found with a fill routine seeded

by the vertices just inside the loop. It uses three auxilary variables - a list of vertices to be
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removed (initially empty), a logical flag that indicates whether a given vertex is in either

the loop or the list (initially true for vertices in the loop, false otherwise), and an integer

counter (intially zero). The routine starts with i = 1 and proceeds as follows (for A):

1. Find an edge from ai to an unflagged vertex inside the loop. If none goto step 5.

First find the edge to ai−1: set e =FirstEdge[ai]and repeat e ←Next[e]until Cell[e]=

ai−1. Then repeat e ←Next[e], v =Cell[e]until either v is unflagged or v = ai+1.

2. Flag v, add it to the list and remove edge e from ai and v.

3. Flag any unflagged vertices adjacent to v and add them to the list.

4. If the counter is not at the end of the list then increment it, set v to be the vertex in

this position in the list and return to step 3.

5. If ai is the last vertex in the loop then exit otherwise set i ← i+1 and return to step 1.

If the vertices all lie on a single convex surface then there will be no internal vertices and

the above routine is unnecessary, e.g. as in Fig 3.18.
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Figure 3.18: Merging two hulls (red and blue) with no internal vertices

It is possible to arrange this as the convex hull is only computed once at the start and

we are free to choose the initial set {Ri}. A suitable convex surface is the paraboloid:

R(X, Y ) = aX2/2 + bX + cY 2/2 + dY - the resulting hull, when projected onto R = 0,

is just the Delauney triangulation of {X i} [5]. From (2.14) x = aX + b, y = cY + d,

P = (x−b)2/2a+(y−d)2/2c and det(D2P ) = 1/ac, a constant. If {X i} are evenly spaced

throughout Σ then this has the additional benefit that cells in physical space all have the

same area and a rectangular domain in physical space is transformed into a rectangular

domain in dual space e.g. [b, b + a] × [d, d + c] is transformed to [0, 1] × [0, 1], and so
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this is fixed from now on. Finally to minimise the possibility of the vertices {(X i, Ri)}
initially falling into special position (resulting in four or more edges meeting at a vertex

in physical space violating the assumption of three currently hard-coded) the {X i} are

slightly randomised.

3.3.3 Panel beating

The behaviour of the conjugate gradient method (3.8) is governed by the Jacobian ∂A
∂R

.

Equations (3.4), (3.5) evaluate the Jacobian at the point R, providing only first derivative

information, so for higher order terms a more accurate expression is required for the area

of Ci. If b, c, d are three neighbours in anticlockwise order around cell a then

Aa =
1

2

∑

b

(xabcyacd − xacdyabc)

and inverting (2.19):




xabc

yabc

Pabc


 =

1

2Aabc




Yb − Yc Yc − Ya Ya − Yb

−Xb + Xc −Xc + Xa −Xa + Xb

XcYb −XbYc XaYc −XcYa XbYa −XaYb







Ra

Rb

Rc


 (3.12)

and similarly for xacd, yacd. These are all linear functions of R, and so the area is quadratic.

Vary R sufficiently and the convex hull will change discretely so the area is in general

piecewise quadratic, and the Jacobian piecewise linear. We can therefore expect successive

iterations Rn to be fairly similar which suggests it would be more efficient to modify the

existing convex hull from one iteration to the next rather than generate a new one from

scratch each time. The simplest possible change in connectivity that can occur between

iterations is an edge flip (Fig 3.19), in which a dual space edge flips to the alternate

diagonal of the quadrilateral which surrounds it (here eac flips to ebd in abcd), which

in physical space corresponds to neighbours a, c moving apart and cells b, d becoming

neighbours.

Figures 3.20 and 3.21 show how the potentials R and P cause this. The left hand panels

show the initial configuration. The surface R is convex, so the grey line which has been

added to join cells b and d lies above R, as does the tetrahedron it forms with the edge

eac, and Vabcd (3.11) is positive. If Rb is lowered (middle panels) then at some point the

line db in dual space will drop below the plane acd and Vabcd becomes negative which

indicates that R has become non-convex.
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Figure 3.19: An edge flip
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Figure 3.20: Edge-flip in dual space

In physical space this corresponds to the plane of cell b being raised until the surface

P becomes involuted, with a tetrahedral ‘pocket’ underneath it. The right hand panels

show the corrected convex hull in which the faces abc and acd of R have been replaced

by the faces abd and bcd, in effect beating the non-convex ‘bump’ out of the surface R

in a manner somewhat reminiscent of panel beating sheet metal, hence the name. This

suggests an alternative interpretation - that the volume above R(X) is being maximised.
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Figure 3.21: Edge-flip in physical space

A naive panel beating algorithm assumes that the only changes between one iteration

of R and the next are isolated edge flips which can be detected by tetrahedra Vabcd with

negative volume:
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1. Loop over edges e = 1, . . . , NV .

Set c =Cell[e], a =Cell[−e], d =Cell[Next[e]], b =Cell[Next[−e]].

2. Compute volume Vabcd and if negative flip e from ac to bd and adjust data arrays.

Set ead =Next[e], eda = −eIL, edc =Next[eda], ecd = −edc, ecb =Next[−e], ebc = ecb,

eba =Next[ebc], eab = −eba (Fig 3.19). Then remove e from a with Next[eab]= ead and

insert it at b with Next[ebc]= e, Next[e]= eba, Vert[e]=Vert[ebc]. Also remove −e

from c with Next[ecd] = ecb and insert it at d with Next[eda]= −e, Next[−e]= edc and

Vert[−e]=Vert[eda]. Lastly set Cell[−e]= b, Cell[e]= d.

Evidently this takes O(NV ) operations, which by (3.1) is O(N).

If (3.8) casts a cell a adrift of the convex hull then in physical space its area shrinks to

zero (Fig 3.22). In dual space the vertex a rises above the plane bcd to form a tetrahedral

bump in R (Fig 3.23a). The above repair procedure applied to edge ac will identify the

non-convexity from the sign of Vabcd and replace faces abc and acd by the faces abd and

bcd. Face bcd is fine but face abd forms with adb an opposing pair (same vertices but

opposite orientation) visible as a ‘flap’ of zero volume sticking out from R (Fig 3.23b).

This situation can be detected from Aabd < 0 or Abcd < 0 (3.11), and rectified either by

eliminating the opposing faces abd, adb (Fig 3.23c) and optionally reinserting cell a at the

end of this iteration (page 37), or by aborting the iteration procedure and restarting with

a higher value of Ngm.
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Figure 3.22: Cell a being cast adrift (physical space)

The edge flip, insertion and deletion operations together comprise the set of planar

geometric bi-stellar flips [78] and form a basis of operations for modifying point set tri-

angulations. In the notation the edge flip is called a (2,2)-flip, the insertion a (1,3)-flip
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Figure 3.23: The cast adrift cell a undergoing repair in dual space

and the deletion a (3,1)-flip. In two dimensions, the set of all possible triangulations is

known to be connected which means that any change to the connectivity can always be

built up by repeated edge flips. The simplest way to extend the previous algorithm to

allow these is to test each edge in turn and flip if needed as before, but then also recheck

any adjacent edges in case they have been made non-convex as a result:

1. Initialise a priority queue to be empty and set edge e = 0.

2. Take the next edge from priority queue or if empty increment e and take that edge.

3. Check edge as above and if repair required then do so and add any of the adjacent

edges |eab|, |ebc|, |ecd| and |eda| that are less than e to the priority queue (any above will

be checked anyway in due course).

4.If e = NE and the priority queue is empty then exit else goto step 2.

As it stands the algorithm looks like it could cycle indefinitely but this cannot happen

because each edge flip increases the volume above the surface R by some tetrahedron (the

tetrahedron abcd in Fig 3.20) and the total number of tetrahedra is
(

N
4

)
which is finite.

However many of these tetrahedra overlap so an edge-flip can add pieces of a number of

tetrahedra - which raises the question: how many edge-flips are required in the worst-case

scenario? In two dimensions, despite the fact that the total number of triangulations rises

exponentially with N [3], it is known that O(N2) edge-flips are always sufficient [39] and

sometimes necessary [48]. So there exist cases where modifying an existing hull will be

slower than the O(N log N) required to construct the convex hull from scratch, and this

is before the expense of finding flippable edges is considered. However, because here the

difference between successive iterates Rn is expected to be small, so too is the expected
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number of edge flips which suggests a reasonable strategy would be to start with the panel

beater algorithm but if the number of edges flipped reaches some cutoff e.g. N log N then

switch to the full reconstruction.

Two possible extensions of the panel beater scheme are briefly mentioned. Firstly if

not just {Ri} but {X i, Ri} are allowed to vary, then Purser [74] shows that it is possible

for the surface R to become non-convex without any of the volumes of the tetrahdra

formed by adjacent triangular faces of R becoming negative. His example demonstrates

how it is possible to repair the surface R by using the full range of bi-stellar flips.

Fig 3.24a shows an initial configuration in which the convex surface R(X) contains

vertices a to f , of which d and e move as indicated resulting in a self-intersecting or

‘snagged’ surface of (3.24b). Despite the tetrahedra all having positive volume, at least

one triangle’s normal now points downwards (ebd and edc), and R becomes multi-valued

there (d′ and d′′ below d and e′ above e). Assuming a downward normal is sufficient to

detect all such snags, we then have the choice of which vertex on the common edge eed

to treat first. Suppose we delete vertex d from R by replacing faces dbe, dec and dcb by

ecb (3.24c). Since Rd > Rd′′ the cell d has been cast adrift. However R is still not convex

across edge ebc so it must be flipped to eae, replacing faces abc and ecb with abe and aec.

The final R is shown in Fig 3.24d.

The alternate strategy is to delete cell e first, by removing faces edb, ebf , efc and ecd

and refilling the tetrahedral gap dbfc with either dbf and dfc or bfc and bcd. The former

choice results in a situation like that in Fig 3.23 and cell d will be cast adrift. Fig 3.24e

shows the latter choice, and again a pair of opposing faces, bcd, bdc are created, which

when eliminated cast cell d adrift. Now however Re < Re′ , so cell e must be reinstated.

As e′ lies in face abc, this face is replaced by the faces ebc, eca and eab as shown in

(3.24f). Again R is still not convex, this time across edge ebc, which when flipped to

eef results in the same final configuration as before in (3.24d). Although successful in

repairing R, there is a hidden cost here - computing Rd′ and Re′ requires first locating

the faces containing vertices d and e. For general configurations this search could be

expensive but the panel beater method is only expected to be used when the connectivity

isn’t changing too much in which case the overall cost will not be significantly affected.

The same techniques could be used to resolve more complicated snags, but at the expense

of a more complicated algorithm.
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Figure 3.24: A ‘snag’ and its resolution

The second extension is into three dimensions. For x ∈ R3 polyhedral cells, polyg-

onal faces, edges and vertices in physical space are now LF-transformed into vertices,

edges, triangular faces and tetrahedra in dual space. There are again two bistellar flips,

illustrated in dual space in Fig 3.25. The (1,4)-flip decomposes a tetrahedron into four

sub-tetrahedra and the (2,3)-flip rearranges the two tetrahedra separated by the gray

triangle (abcd and abec) into the three tetrahedra shown (abed, bced and caed).

(1,4)

(4,1)

(2,3)

(3,2)

a

b

c

d

e

a

b

c

d

e

Figure 3.25: Three dimensional geometric bistellar flips (dual space)

Fig 3.26 shows the bistellar flips in physical space.
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(1,4)

(4,1)

(2,3)

(3,2)

Figure 3.26: Three dimensional geometric bistellar flips (physical space)

Purser’s panel beater algorithm in three dimensions [74] loops over the triangular

faces in dual space, combines the tetrahedra each side into a four-simplex and computes

its volume via the generalisation of (3.11):

Vijklm =
1

4!
det




Xij Yij Zij Rij

Xik Yik Zik Rik

Xil Yil Zil Ril

Xim Yim Zim Rim




. (3.13)

If negative it performs a (2,3)-flip, eliminating any opposing pairs of tetrahedra that may

result (tetrahedra with the same vertices but opposite sign volume). Again tetrahedra

adjacent to a flip will need to be rechecked as well. Snags can also be treated using the

same method as before. Reinstating a vertex (c.f. reinstating vertex a in Fig 3.24f) is

achieved easily enough by a (1,4)-flip but refilling the arbitrary polyhedral gap left by

removing a vertex (c.f. refilling the gap dbfc in Fig 3.24e) with new tetrahedra is slightly

more complex. One method would be to pick a vertex on the boundary and join that up

to each triangular face on the inside of the gap. However in three dimensions the set of

all possible triangulations is not always connected (see [4] for a counterexample) so the

panel beater scheme is not guaranteed to succeed, although again as the changes in Rn

are expected to be small this would be unlikely to occur in practice.
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3.4 Steepest descent methods

The SMKP can also be solved by the steepest descent method. Rewriting (2.22) in

terms of ψ instead of ϕ:

M [ψ] =

∫

X

ψ∗(x)α(x)dx +

∫

Y

ψ(y)β(y)dy. (3.14)

Switching to semi-geostrophic notation, and assuming R is convex (R∗∗ = R), the varia-

tional derivative is

M ′[R] = β − α(∇R) det(D2R). (3.15)

For the SMKP α(x) = 1, β(X) =
∑

i βiδ(X −X i) and P (x) = x ·X i − Ri for x ∈ Ci

(unless qualified indices range from 1 to N). Plugging this into (3.14) gives

M [R] =
∑

i

[∫
Ci

(x ·X i −Ri)dx + Riβi

]

=
∑

i

[
X i ·

∫
Ci

xdx + Ri(βi − Ai)
]
.

To compute the integrals they are decomposed into integrals over the triangles formed by

connecting the vertices to the origin O in physical space (Fig 3.27).

i
j

eij

xji

xij
AOij

dijO

Figure 3.27: Computation of dual cost for the SMKP

Let eij be the edge having cell i on the left and j on the right and xij its starting vertex.

Then eji has j on the left and i on the right, so is the same as eij but travelling in the

opposite direction, and starts from xji. With this convention the perpendicular distance

to eij is dij (3.2) and the area of the shaded triangle is AOij = dij|eij|/2 = −AOji. This

definition is also valid for boundary edges e.g. if i 6 N < j 6 NC then dij = dj = Rj/|Xj|.
Lastly set AOij = 0 if N < i, j 6 NC or eij doesn’t exist. By using signed areas,

cancellation ensures that Ai =
∑

j6NC

AOij for all i 6 N . The centroid of the shaded

triangle is (xij + xji)/3, so
∫

Ci
xdx =

∑
j6NC

AOij(xij + xji)/3,

∑
i X i ·

∫
Ci

xdx =
∑

i6N,j6NC

AOijX i · (xij + xji)/3
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We split the sum
∑

i6N,j6NC

=
∑

i<j6N

+
∑

j<i6N

+
∑

i6N<j6NC

. For the first two parts

∑
i<j AOijX i · (xij + xji)/3 +

∑
j<i AOijX i · (xij + xji)/3

=
∑

i<j AOijX i · (xij + xji)/3 +
∑

i<j AOjiXj · (xji + xij)/3

=
∑

i<j AOij(X i −Xj) · (xij + xji)/3

=
∑

i<j AOij2(Ri −Rj)/3

= 2
3

∑
i<j AOijRi − 2

3

∑
i<j AOijRj

= 2
3

∑
i<j AOijRi − 2

3

∑
j<i AOjiRi

= 2
3

∑
i,j6N AOijRi

= 2
3

∑
i6N,j6NC

AOijRi − 2
3

∑
i6N<j6NC

AOijRi

where the first and fifth steps just swap i and j in the second term. Plugging this in:

∑
i X i ·

∫
Ci

xdx = 2
3

∑
i6N

Ri

∑
j6NC

AOij +
∑

i6N<j6NC

AOij[X i · (xij + xji)− 2Ri]/3

= 2
3

∑
i AiRi + B

M [R] = B + 2
3

∑
i AiRi +

∑
i Ri(βi − Ai) = B +

∑
i Ri(βi − 1

3
Ai)

where the boundary term B depends only on the cells just inside the boundary. Away

from these, i.e. for i, j 6 N , (3.4) ⇒ AOij = (Rj − Ri)Jij/2 so Ai = 1
2

∑
j RjJij (using

∑
j Jij = 0) and

∂M

∂Ri

=
∂

∂Ri

∑
j

Rj(βj − 1

3
Aj) = βi − 1

3
Ai − 1

3

∑
j

RjJji

= βi − 1

3
Ai − 1

3
(2Ai) = βi − Ai

which is the discrete analogue of (3.15). Differentiating again ∂2M/∂Ri∂Rj = −Jij and

from (3.6) −RT JR > 0, as expected for a minimum. Furthermore ∂M/∂R = F (3.3) so

minimising M is equivalent to solving F = 0. The steepest descent step is

Rn+1 = Rn − τn(β −A(Rn)), (3.16)

the SMKP version of (2.25). The steepest descent method is slow, converging linearly

with iteration near a minimum, because it doesn’t make use of any derivative information

(e.g. the Jacobian J). Also τn must be chosen somehow, typically either from a line

search along F (expensive) or set to a constant (very slow convergence, but the algorithm

is then parallelizable). A simple improvement is to pre-condition by approximating the

full Jacobian by its diagonal which can be inverted explicitly:

Rn+1
i = Rn

i − τ(βi − Ai(R
n))/Jii. (3.17)
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For the SMKP the dual cost J [ϕ̃, ψ̃] becomes

J [R] =
∫
Ω

1
2
|x|2α(x)dx +

∫
Ωc

1
2
|X|2β(y)dy −M [R]

=
∫
Ω

1
2
|x|2dx +

∑
i

1
2
|X i|2βi −M [R].

The first two terms are independent of R so J ′[R] = −M ′[R]. The cost is

I[R] =
∫
Ω

1
2
|x−X(x)|2α(x)dx

=
∑

i

∫
Ci

1
2
|x−X i|2dx

= J [R] +
∑

i(
1
2
|X i|2 −Ri)(Ai − βi).

Recall that for the MP, the unique minimum occurs when ψ and ϕ are Legendre transforms

and the rearrangement criteria is met. At this minimum the cost and dual cost coincide,

to the Wasserstein distance. Here R and P are Legendre transforms by construction and

when in addition the rearrangement criteria is met (A = β) we see that I[R] = J [R] as

expected. Differentiating,
∂I

∂Ri

=
∑

j

(
1

2
|Xj|2 −Rj)Jji.

When Ri = 1
2
|X i|2 ∀i then

dij =
Rj −Ri

|Xj −X i| =
1
2
|Xj|2 − 1

2
|X i|2

|Xj −X i| =
(Xj + X i) · (Xj −X i)

2|Xj −X i| =

(
X i + Xj

2

)
· n̂ij

so points x on the line Lij satisfy (x− Xi+Xj

2
) · n̂ij = 0. Thus Lij is perpendicular to the

line X i → Xj and also passes through its midpoint so is the perpendicular bisector. This

is true for all edges with the result that the physical mesh is Voronoi and the corresponding

dual space triangulation is Delauney. The power diagram representation (section 2.5.4)

provides a more direct derivation - when Ri = 1
2
|X i|2 the weights wi are all constant. Note

that the Voronoi mesh is only a solution of the SMKP if the rearrangement condition is

also met - Fig 2.9 displays an example in which the solution is not Voronoi.
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3.5 Test problems

In this section simple test problems are used to compare the performance of the various

schemes for the solution of the SMKP, and further investigate their properties.

3.5.1 Static smooth β

The first test problem is set up as follows. Both domains are square: Ω = [0, 2] ×
[0, 2] and recall Ωc = [0, 1] × [0, 1] is fixed. The dual space vertices X i are located at

(j/Nx, k/Ny), 0 6 j 6 Nx, 0 6 k 6 Ny, and ((j + 1
2
)/Nx, (k + 1

2
)/Ny), 0 6 j 6 Nx − 1,

0 6 k 6 Ny−1, where Nx = Ny = 200, forming a lattice of equilateral triangles. Each Xi,

Yi is then displaced by a uniform random number in the range [0, 0.001] and a Voronoi

mesh set up by Ri = X2
i + Y 2

i . The convex hull routine is used to construct the mesh,

the cells of which will have slightly randomised areas so the geometric method is applied

with βi = |Ω|/N to obtain equal areas. When both domains are square and Nx = 2Ny or

2Nx = Ny the resulting physical mesh is (randomised) hexagonal with distance between

the centroids (a convenient length scale for later)

R0 =

√
2|Ω|

NC

√
3

(3.18)

The resulting physical and dual space meshes are displayed in Figs 3.28, 3.29 and 3.30.
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Figure 3.28: Close-up of the initial mesh
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Figure 3.29: Initial mesh for static smooth β test
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Figure 3.30: Initial dual space mesh for static smooth β test
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A target area is set for each cell:

βi = 1.1 + sin(5πx̄i/2) sin(5πȳi/2),

where xi = (x̄i, ȳi) =
∫

Ci
xdx/Ai is the centroid of cell Ci, and the areas are then

normalised to fill the domain:

βi ← βi

( |Ω|∑
i βi

)
. (3.19)

Either these target areas remain fixed (‘static’) throughout the test or are recalculated

each time the cells move and xi changes (‘dynamic’). We compare the steepest descent

method (3.16) with τn = 1/ max
i

(Jii), the pre-conditioned steepest descent method (3.17)

with τ = 1/3, and the conjugate gradient method (3.8) with Ngm = 3 and stopping criteria

‖β−A(Rn)‖ < tol‖β‖. These values were found by trial and error as the largest possible

that do not set any cells adrift. The solution R∗ (such that A(R∗) = β) is approximated

by applying the conjugate gradient method with a tolerance close to machine accuracy

(tol = 10−14), and is shown in Fig 3.31. Fig 3.32 shows the number of edge-flips that
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Figure 3.31: Converged mesh for static smooth β test

occurred on the boundary of each cell by this point. It ranges from zero to eight, tending

to be lower where cells have changed size less but is otherwise fairly random, as might be

expected.
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Figure 3.32: Plot of edge-flips per cell for static smooth β test (green=0-2, pink=2-4,

blue=4-8)

Two metrics are used to compare the schemes for static β:

E1 = M [Rn]−M [R∗], E2 = ‖F n‖ = ‖β −A(Rn)‖

As expected the steepest descent and pre-conditioned steepest descent (Fig 3.33) converge

linearly with iteration (after all edge flips have occurred), with the latter about four times

faster.
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Figure 3.33: Convergence histories for descent-based methods with static smooth β test

Fig 3.34 shows the corresponding results for the conjugate gradient method. It is applied

repeatedly, each application or cycle comprising Ngm steps with tol = 10−10 throughout.
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Figure 3.34: Convergence histories for the conjugate gradient method

The method is much faster, with E2 displaying quadratic convergence with cumulative

iteration. The paucity of data points indicates another benefit of the method - it is

not necessary to recompute the Jacobian and apply the panel beater algorithm to up-

date the mesh connectivity every iteration because close to convergence slight errors in

the mesh/Jacobian are unlikely to set cells adrift or significantly affect the convergence

rate. For the descent-based methods the mesh/Jacobian could have been updated less

frequently, for example at some fixed frequency of iterations, but this would introduce

another ad hoc parameter to the method. However with the conjugate gradient method

there is a natural choice - update after each cycle. Here convergence occurred after just

four cycles hence four data points and a running time of seconds compared with hours for

the descent-based methods. For this reason only the conjugate gradient method is used

from here on.

3.5.2 Dynamic smooth β

Fig 3.34 shows the convergence history for the same problem but with β now continually

updated. Now we are chasing a moving target and in this case M [Rn] does not converge

monotonically to M [R∗] so E1 is discarded in favour of

E2 = ‖βn −A(Rn)‖, E3 = ‖βn −A(Rn+1)‖.

E2 now describes how far away from the target we are at the start of each cycle (i.e.

how far we want to go) and E3 how far away at the end (i.e. how close we got). By

about 35,000 iterations E3 has dropped close to machine accuracy indicating we reached

the target in that cycle, and again E2 converges quadratically. Overall 27 cycles were

required for this problem, compared with 4 for the static β.

61



3.5.3 Static nonsmooth β

For this problem the domain is Ω = [0, 1]× [0, 1] and the dual space mesh has Nx = 10,

Ny = 20 with random offsets in the range [0, 0.001] as before. At the top of Fig 3.35 is

the initial mesh in which the cells have equal areas. Then the target areas of the cells

whose centroid lies inside the circle are reduced:

βi =





1 if (x̄i − 0.25)2 + (ȳi − 0.6)2 6 0.152

3 otherwise

resulting in the middle mesh (taking 2 cycles to converge). As the cells in the circle

shrink, the normalisation (3.19) causes cells across the entire domain to expand to fill

the space. This is visible at the bottom of the figure, in which the arrows indicate the

overall displacement of the cell centroids. This can be viewed as a positive property of

the scheme - cells can respond immediately to changing conditions throughout the entire

domain and move automatically to where they are needed - but can also result in limit

cycles, as the final example demonstrates.

3.5.4 Dynamic nonsmooth β

Using the same initial mesh as before, the target areas of any cells whose centroids lie

in a narrow vertical band (shaded gray in Fig 3.36) are reduced:

βi =





0.03 if 0.4 6 x̄i 6 0.4256

1 otherwise

This example is representative of problems containing line features such as disconti-

nuities over which the mesh is to be concentrated. After a few cycles the mesh begins to

oscillate between the two positions shown. What is happening is that a few of the small

cells in the upper figure have just moved so their centroids are now to the left of the gray

band, in the process pulling some of the centroids of the larger cells to their right into the

band. Next iteration (lower figure) those smaller cells have expanded so their centroids

are back in the band, and vice-versa for the larger cells. Their target areas then return

to their former values, so the mesh is then adjusted back to its former position, and the

loop continues.

In this example the limit cycle has period two, but if the problem is modified slightly

e.g. by widening the gray band, limit cycles are soon encountered with other periods such

62



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Figure 3.35: Initial mesh (top), final mesh (middle) and centroid displacement (bottom)

63



as 3,4,6,8,9,10,11 etc. This is potentially very serious because any unintended movement

of the mesh could affect the quality or even stability of the solution to the model equations.

It could be argued that this example is quite tough because often the model will contain

dissipative processes such as viscosity that tend to stabilise the mesh movement. However,

when setting up a problem by adapting the mesh to the initial conditions the model

equations cannot help because there is no time evolution.

It should be noted that this problem is not specific to the geometric method and a

standard remedy in moving mesh methods is to smooth the monitor function (here target

areas) in space or time [42]. The latter is easier to apply, with:

βn ← βn−1 + λa(β
n − βn−1) (3.20)

for some constant 0 < λa 6 1 which determines what fraction of the change in target area

to accept each cycle. In this example dropping λa to 0.98 dampens the mesh movement

sufficient for convergence, in 13 cycles.

To summarize: we have described in detail Purser’s algorithm and demonstrated that it

solves the SMKP efficiently for fixed target areas β, but when the target areas are variable,

straightforward iteration can, in certain circumstances, lead to undesirable behaviour such

as limit cycles.
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Figure 3.36: A limit cycle of period two
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Chapter 4

Application to the Euler equations

The preceding chapters detailed a method that generates an unstructured polygonal

mesh from prescribed cell areas. This purpose of this chapter is to describe a discretization

scheme for the Euler equations that can advance the solution from one such mesh at the

start of a timestep to another at the end.

The choice of discretization is determined primarily by the fact that the mesh con-

nectivity can change during the timestep. To accommodate this would significantly com-

plicate the set of finite element basis functions, so the finite volume method is chosen

instead. As vertices and edges jump around when the connectivity changes, all variables

are cell-centred. In this regard it is similar to mesh-free schemes such as SPH [63] or

Free-Lagrange [8], however they do not explicitly model the solution through the con-

nectivity changes as here. The scheme has been adapted from the Godunov Linear Flux

Correction (GLFC) scheme of Azarenok et al [6]. Godunov’s scheme is only first order ac-

curate due to the piecewise constant reconstruction of the variables used in the Riemann

solver. One method of achieving higher order accuracy is to use piecewise polynomial

reconstructions and solve a generalized Riemann problem (GRP) at cell boundaries e.g.

the ADER approach [88]. In contrast the GLFC is a MUSCL-Hancock two-step method

in which the predictor provides half-timestep values used as initial data for a piecewise

constant Riemann problem in the corrector. Furthermore it solves the Riemann problem

on the moving mesh where possible to minimise the diffusive effects of interpolation or

remapping.

Since the development of this scheme Shashkov [81] has extended the ALE method to

handle changing mesh connectivity in a similar manner by introducing a single interme-

diate mesh and computing fluxes via swept regions over each phase.

In the following we reserve the vector x for coordinates in space i.e. x = (x, y), and

r for coordinates in space-time, i.e. r = (x, y, t).
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4.1 The Euler equations

The Euler equations for an ideal gas in planar or axisymmetric geometry are

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= S (4.1)

where

U =




ρ

ρu

ρv

E




, F =




ρu

ρu2 + p

ρuv

u(E + p)




, G =




ρv

ρuv

ρv2 + p

v(E + p)




, S =
νv

y




ρ

ρu

ρv

E + p




, W =




ρ

u

v

p




(4.2)

and ρ, u, v, e are the density, components of velocity and specific internal energy respec-

tively. The total energy E = ρ
[
e + 1

2
(u2 + v2)

]
, the pressure p is given by the ideal gas

equation of state p =(γ−1)ρe where γ is the heat capacity ratio (γ = 5/3 for a monatomic

gas). The vector U contains the conserved variables (mass, momentum and total energy),

F and G their fluxes in the x and y directions respectively, S is a pseudo-source term

in which ν = 0/− 1 for planar/axisymmetric problems, and W collects the primitive or

flow variables.

4.2 Construction of the finite volume

To solve (4.1) numerically it is integrated over a finite (control) volume V . To the

two dimensions of space Azarenok adds time as a third to construct a three dimensional

space-time finite volume for each cell by joining up the vertices at the start of a timestep

(t = tn) to the corresponding vertices at the end (t = tn+1), as shown in Fig 4.1. In

general the sides are ruled surfaces not planes.

This method leaves a gap whenever a connectivity change occurs between the two

timesteps, as shown in Fig 4.2a. Here the cell c becomes a new neighbour of cell a during

the timestep as cells b and d move apart, and the maroon tetrahedron in between is

not a part of any cell. We fill the gap by decomposing the tetrahedron into four smaller

tetrahedra, formed by joining the centroid to each of the vertices (Fig 4.2b), and assigning

each sub-tetrahedron to the adjacent cell. In this example the maroon sub-tetrahedron is

assigned to cell a whose resulting space-time volume V is shown in Fig 4.2c.

If adjacent connectivity changes occur then the tetrahedral gaps will join up to form

more general polyhedral gaps. Fig 4.3 shows an extreme example in which there are a
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Figure 4.1: Construction of the space-time finite volume V for a cell
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Figure 4.2: Construction of the space-time finite volume V for a cell with single connec-

tivity change

number of very short edges on the right hand side of the red cell. If Rred is reduced so

that the cell expands out to the red line, a number of connectivity changes occur. Two

views of the subsequent gap are shown in Fig 4.4.
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Figure 4.3: An example of adjacent connectivity changes

The above procedure - join all the vertices to the centroid of the gap - can still be

applied and three different views of the result are shown in the top row and bottom left of

Fig 4.5. The decomposition is successful in that no gaps remain, and furthermore other

than the single point at the centroid, cells do not come into contact with any cells they

were not already in contact with. However some cells are poorly shaped, such as the one

68



 1 . 7 6 1  1 . 7 6 1 5  1 . 7 6 2  1 . 7 6 2 5  1 . 7 6 3  1 . 7 6 3 5  1 . 7 6 4

 0 . 3 4 6

 0 . 3 4 8

 0 . 3 5

 0 . 3 5 2

 0 . 3 5 4

 0 . 3 5 6 0

 0 . 2

 0 . 4

 0 . 6

 0 . 8

 1

 1 . 7 6 1

 1 . 7 6 1 5

 1 . 7 6 2

 1 . 7 6 2 5

 1 . 7 6 3

 1 . 7 6 3 5

 1 . 7 6 4

 0 . 3 4 6
 0 . 3 4 8

 0 . 3 5
 0 . 3 5 2

 0 . 3 5 4
 0 . 3 5 6

 0

 0 . 2

 0 . 4

 0 . 6

 0 . 8

 1

Figure 4.4: The polyhedral gap in space-time
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Figure 4.5: Example decomposition for adjacent connectivity changes

shown in the bottom right of the figure, which could affect the quality of the solution.

More generally, if the gap is not star-shaped then self-intersecting cells will be generated.

To rectify this more points would need to be inserted into the gap necessitating a more

sophisticated decomposition algorithm.

4.3 Discretization Scheme

Assuming a valid space-time decomposition, the Euler equations are integrated over

each space-time cell Vi, i = 1, . . . , N . The application of Gauss’ law to (4.1) for cell i

yields

69



∫

Vi

[
∂U

∂t
+

∂F

∂x
+

∂G

∂y
− S

]
dV =

∮

∂Vi

(U , F ,G) · dn−
∫

Vi

SdV = 0 (4.3)

which is valid for discontinuous as well as continuous solutions. Equation (4.3) is dis-

cretized thus:

An+1
i Un+1

i − An
i Un

i +
∑

j

(U
n+1/2
ij ,F

n+1/2
ij , G

n+1/2
ij ) · nij = ViS

n+1/2
i (4.4)

where Un
i is the cell average over Cn

i , centered at the cell centroid rn
i = (xn

i , t
n) (Fig

4.6), and similarly for Un+1
i ; U

n+1/2
ij , F

n+1/2
ij and G

n+1/2
ij are averages over the face Fij

between Vi and neighbouring Vj, centered at the face centroid rij = (xij, tij); and S
n+1/2
i

is the average over the space-time cell Vi, centered at the space-time cell centroid ri.

tn
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Figure 4.6: Variable centering

The geometric factors are Vi, the volume of Vi, and nij =
∫
Fij

dn, the integrated face

normal over Fij (outward from Vi). For the quadrilateral face (Fig 4.6a) the vertices rk

are numbered 1 to 4 anticlockwise round the perimeter and rij = 1
4

∑4
k=1 rk. From the

divergence theorem
∮

S
dn = 0 for any closed surface S so by setting S = Fij − F ′

ij the

integral over Fij is equal to the integral over any surface F ′
ij spanning ∂Fij. Here we set

F ′
ij to be the two triangular faces (r1, r2, r3) and (r1, r3, r4), finding

nij = (r2 − r1)× (r3 − r1) + (r3 − r1)× (r4 − r1) = (r3 − r1)× (r4 − r2).

For the triangular faces (Fig 4.6b,c) we number the vertices rk of each tetrahedron 1 to 4,

with 4 the newly created vertex and 1 to 3 anticlockwise around it. This generates three

triangular faces (r1, r2, r4), (r2, r3, r4) and (r3, r1, r4), which have centroids, normals

1
3
(r1 + r2 + r4), (r2 − r1)× (r4 − r1) etc. (b) shows an example of a new neighbour Vj

joining Vi and (c) the current neighbour Vj leaving.
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To compute Vi, lines are added from the vertices to the origin forming a 3D region

for each face, with the signed volumes summing to Vi. The contribution from the bottom

and top faces is −An
i tn/3, An+1

i tn+1/3 respectively, triangular faces contribute e.g. V124 =

1
6
r1 · r2 × r4, and Dukowicz [26] has shown that each quadrilateral face contributes

V1234 =
1

12
(r1 + r2) · (r1 + r4)× (r2 + r3).

At the start of the predictor phase only the values of the flow variables at t = tn are

known. So predictor values for Fij are taken from a nearby point rp
i = (xp

i , t
n) on the

boundary of Cn
i - either the midpoint of an edge if present (as in (a),(c)) or a vertex (b).

Similarly corrector values for Fij are interpolated at a point rc
i = (xc

i , t
c
i). For a scheme

to be second order (in space) it must be exact when the variables are linear in which

case the correct values for the face Fij are located at rij. Unfortunately setting rc
ij = rij

can create a problem because for triangular faces rij cannot be written as a convex

combination (interpolation) between a point on Cn
i and a point on Cn+1 (it lies outside

the convex hull in space-time between Cn
i and Cn+1

i ) but only as an extrapolation, so the

values of the flow variables at rij will similarly be an extrapolation not an interpolation.

This means that even if the flow variables are monotonically limited both in Cn
i and Cn+1

i ,

their values at rij might not be. To guarantee monotonicity on triangular faces the point

rc
ij must be moved back into the space-time convex hull e.g. put on the face (r1, r2, r3).

For (b) rc
ij = 1

3
[r2 + r3 + 1

3
(r1 + r2 + r3)] and for (c) rc

ij = 1
3
[r1 + r2 + 1

3
(r1 + r2 + r3)].

Currently both options (second order or monotone) are implemented.

Lastly in the evaluation of S
n+1/2
i , ri is approximated by 1

2
(rn

i + rn+1
i ) and W

n+1/2
i

approximated by W n
i in the predictor and 1

2
(W n

i + W n+1
i ) in the corrector.

The predictor-corrector scheme for Vi is:

Predictor

1. Compute ∇W n
i , the gradients of the flow variables at tn (section 4.4).

2. Monotonically limit the gradients (section 4.5).

3. For each neighbour j extrapolate the flow variables to rp
ij via W

n+1/2
ij = W n +

(xp
ij − xn

i ) · ∇W n
i and derive U

n+1/2
ij , F

n+1/2
ij and G

n+1/2
ij .

4. Evaluate S
n+1/2
i and solve (4.3) for the predictor values Un+1

i and W n+1
i .
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Corrector

1. Compute ∇W n+1
i , the gradients of the predictor variables at tn+1 (section 4.4).

2. Monotonically limit the gradients (section 4.5).

3. For each neighbour j compute the flow variables at rc
ij via

W
n+1/2
ij =(1−λ)

[
W n

i + (xc
ij − xn

i ) · ∇W n
i

]
+λ

[
W n+1

i + (xc
ij − xn+1

i ) · ∇W n+1
i

]

where λ = (tcij − tn)/4tn .

4. Similarly find W
n+1/2
ji and solve the 1-D Riemann problem normal to Fij (section

4.6) to get the post-wave W
n+1/2
ij .

5. Compute the fluxes across Fij for the moving mesh and update the allowed

timestep 4tn from the wave-speeds and cell geometries (section 4.7).

6. Repeat for all neighbours, evaluate S
n+1/2
i and solve (4.3) for the full-timestep

values Un+1
i and W n+1

i .

The main algorithm embeds the predictor-corrector scheme into a mesh adaption cycle:

Main algorithm

1. Create a new mesh for time tn+1 by copying the mesh at tn and set the timestep

by 4tn = Ccfl min{4tn−1} where Ccfl 6 1 is the CFL coefficient.

2. Advance the flow variables to tn+1 using the predictor-corrector scheme above for

each cell. If adjacent connectivity changes have occurred or the CFL condition

is violated then if present retrieve W n+1 from the previous cycle and goto step

6 otherwise remap W n onto the tn+1 mesh (section 4.8) and goto step 1.

3. Compute the monitor and set new cell areas β (chapter 5).

4. Apply the geometric method to adjust the mesh at tn+1 (chapter 3).

5. Repeat steps 2-4 until the movement of the mesh drops below some tolerance or

a maximum number of cycles Ncycle (here Ncycle = 5) is reached.

6. If problem endtime reached then exit otherwise set n ← n + 1 and goto step 1.

It is possible for cells to be cast adrift in the geometric method if their prescribed

areas change too rapidly but this is eliminated by a combination of smoothing the monitor

function (chapter 5) and setting Ngm sufficiently high (section 3.3).

However adjacent connectivity changes can still arise naturally (e.g. as in Fig 4.3). As

the primary focus of this thesis is upon the optimal-transport-based mesh movement, it

was decided to minimise any side effects from the novel discretization by avoiding adjacent

connectivity changes. Four options were considered: reduce the timestep or restrict the
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change in target areas until the connectivity changes occur in separate timesteps, remap

the solution from one mesh to the other, or just retrieve the previous cycle of the mesh

adaption loop and continue from that.

The first option is inefficient when vertices are close together e.g. as in Fig 4.3 because

the allowed timestep can be very small. This is exacerbated by the global nature of the

conjugate gradient scheme in the optimal transport problem - any slight change to the

target areas in one part of the mesh affects the mesh everywhere else (i.e. the problem is

stiff). This also makes computation of the allowed timestep a global problem.

The second option does not work because if the mesh is held back in one timestep it

will just try to compensate by moving further the next compounding the problem. The

last option is simplest but could run into similar problems, and also requires there to be

at least one successful cycle of the mesh adaption loop. Thus in some cases remapping is

the only option.

Remapping is an essential part of many algorithms - each timestep in an Eulerian

or ALE scheme can be interpreted as a Lagrange step followed by a remap step - so is

perfectly acceptable and as long as it is conservative, positivity preserving and second-

order accurate the overall order of the scheme will not be affected. As no time evolution

will have occurred, for consistency the timestep must be set to zero, so the computational

efficiency of the scheme is slightly reduced however. To avoid this the previous cycle of

the mesh adaption loop is retrieved when available, otherwise the solution is remapped

onto the new mesh. This turns out to be satisfactory in practice.

The procedure is the same if the CFL condition is violated. This would appear to

cause unnecessary remapping as the timestep could be reduced instead but in some cir-

cumstances this turns out not to work. If the mesh is still moving when the maximum

number of cycles is reached, then on the next timestep as long as the flow variables do

not change too much the mesh will just carry on moving. Reduce the timestep to zero

and the flow variables (and hence monitor and target areas) will be unchanged but the

mesh still moves the same amount guaranteeing the CFL condition will be violated at

some point. Remapping guarantees progress can always be made.

A final point to make is that if any cells were cast adrift in the geometric method

then reinserting them is likely to result in their positions being shifted causing adjacent

connectivity changes or CFL violations. Reapplying the geometric method with a higher

Ngm is therefore the safer option.
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4.4 Gradient Estimation by Least-Squares Surface Fitting

The first step in the predictor and corrector is to estimate the gradient of the primitive

variables at cell i. To minimise any mesh bias we use the moving least squares (MLS) [55]

approach in which a quantity u is approximated in cell i by a polynomial determined by

minimising an interpolation error functional over its support - a set of local cells. Here

we set the support Supn(i) of cell i at time tn to be itself and its immediate neighbours.

Dropping the time superscript for clarity, the approximation in cell i is

ui(x) =
∑

I

cIPI(x− xi) = cT P (x− xi) (4.5)

for a vector of coefficients c and polynomial basis functions

P (x) = (1, x, y, x2, xy, y2, . . .).

As the data is in the form of cell-averaged values Ui, Garimella et al [32] propose an error

E which compares the cell-averages of the approximation to the data:

E =
∑

j∈Sup(i)

[
1

Aj

∫

Cj

ui(x)dx− Uj

]2

but on substituting for ui(x) this will involve integrals of the basis functions over the cells

which are expensive to compute for an unstructured mesh so we approximate the integrals

with centroid values (or alternatively reinterpret the data as point values located at the

cell centroids) to get the cheaper error

E =
∑

j∈Sup(i)

[ui(xj)− Uj]
2 .

The two error functionals coincide as the cells shrink to zero size and the sum becomes an

integral. They also agree when U is linear but differ more as the curvature of U increases,

although where the curvature is high e.g. near discontinuities, the gradient is likely to be

limited anyway so the difference is not considered significant.

Substituting in for ui(x) and expanding the brackets,

E = cT Mc− 2eT c + E0

where the moment matrix M , e and E0 are given by

MIJ =
∑

j∈Sup(i)

PI(xj − xi)PJ(xj − xi)
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eI =
∑

j∈Sup(i)

UjPI(xj − xi), E0 =
∑

j∈Sup(i)

U2
j .

Differentiating with respect to the coefficients cI , ∇E = 2(Mc− e) so that the minimum

occurs at c = M−1e, when M is invertible. As M is a Gram matrix and the PI(x) are

linearly independent (over a general region in R2), it is invertible when the number of

linearly independent centroid displacements {xj − xi}j∈Sup(i) is greater than the number

of coefficients. For example a typical cell in a slightly randomized hexagonal mesh such

as Fig 3.35 has six neighbours so six centroid displacements which is sufficient to fit up to

quadratic terms in P but no more. A number of options are available for inverting M -

because the moment matrix is quite small little difference was found in accuracy or timing

between the LU , Cholesky or Singular Value Decomposition (SVD) inversion routines in

[73] so the latter is used for safety.

The gradient at cell i is then the coefficients of the basis functions P2(x) = x and

P3(x) = y. The reason for including the constant function (P1(x) = 1) in the basis set

is that the extra degree of freedom results in smoother, less mesh-dependent gradients

(the fact that the cell average of ui(x) might not now match Ui is irrelevant as only the

gradient information is used). No special treatment is required at boundaries.

4.5 Limiting

Discontinuities such as shocks can give rise to spurious oscillations in the physical

variables without some form of limiting. This can be applied either in the variable re-

constructions (slope limiting) or to the resulting fluxes (flux limiting), although for linear

reconstructions the two approaches are equivalent [83]. Various limiting strategies have

been proposed, the most popular being Total Variation Diminishing (TVD) schemes [58],

MUSCL schemes [90] and Positivity Preserving (PP) (or positive definite, monotone)

schemes [83]. In 1D the total variation of U is TV (U) =
∑

i |Ui+1 − Ui| and a TVD

scheme is one for which TV (Un+1) 6 TV (Un). Hyperbolic systems have bounded total

variation in 1D but not in higher dimensions where focusing can occur [61], and so TVD

schemes become at most first order accurate [35]. PP schemes give positive updates for

positive data, or equivalently the cell averages at tn+1 are bounded by the cell averages at

tn [84], and in MUSCL schemes the reconstructed variable is bounded by the neighbouring

cell averages. PP schemes are most general, including the rest as special cases in 1D [94].

In higher dimensions, simple schemes can be constructed from 1D limiters, but these can
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be more diffusive than genuinely multidimensional schemes. Another issue is that often

the limiter is used to generate the slopes/fluxes rather than to limit values found by an-

other method e.g. averaging or least-squares fitting. This can lead to artifacts where the

scheme switches between different regimes or other ill-effects such as ‘staircasing’ caused

by over-compression in the Superbee scheme [12].

The limiter described here takes as its starting point Hubbard’s [47] MUSCL scheme

for triangular cells. First the linear reconstruction of a quantity u in cell i is generated

from its cell-averaged value Ui and the least-squares gradient (section 4.4). Hubbard

then limits the reconstruction at the middle of each edge to lie in the range of the min-

imum/maximum cell averages of the two cells either side. We sample the reconstruction

at other points so instead limit the reconstruction at each vertex v ∈ Ci to lie in the range

of the minimum/maximum cell averages of the set N (v) of neighbouring cells at v. Note

that this is a slight variation on the standard multidimensional Van Leer limiter, due to

Barth and Jesperson [9] or Dukowicz and Kodis [27], which limit the reconstruction at v to

the range of the minimum/maximum cell averages over the larger set N (i) =
⋃

v∈Ci
N (v).

The reason for this is that in certain cases the standard method can increase the variation

locally (but not the total variation). Fig 4.7 shows an example with a hexagonal mesh

in which u is unity everywhere except two adjacent cells h and l where it is respectively

higher and lower. These cells cause the least-squares fit at neighbouring cells to have

non-zero gradient, and allows the two cells adjacent to both h and l (m and n say) to

retain this after limiting, resulting in undershoots or overshoots.
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Figure 4.7: Least-squares gradients limited to neighbourhood minimum/maximum

For the standard method Swartz [85] has shown that a necessary and sufficient con-
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dition for the set of neighbours N (i) to limit correctly is that the convex hull formed by

their centroids completely contain Ci. For vertices the equivalent condition is that the

convex hull formed by the centroids of N (v) must contain v, for all v ∈ Ci. Usually the

three adjacent cells suffice, but not always, as illustrated by Fig 4.8.
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Figure 4.8: Dual space triangulation of centroids

The grey lines connect the cell centroids of Fig 4.3 with the triangulation provided by

the dual space potential R. In this example vertex v1 lies inside the triangle formed by

the centroids of the three surrounding cells (shaded) whereas v2 does not. Finding which

triangle in a triangulation contains a given point is a basic problem in computational

geometry and can be achieved in many ways, the simplest being to walk from triangle to

adjacent triangle towards the point until it is covered [25]. For v2 two steps are required:
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Figure 4.9: Walking through the triangulation to find the triangle covering vertex v2

At each step the edges of the triangle are checked to see if the point lies on the opposite
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side to the triangle. If this is true for just one edge then the next step is to the triangle

adjacent at this edge, and if true for two edges a random choice is made between them. If

not true for any edges then we are done. Termination is guaranteed and rarely takes more

than a step or two. IfN (v) no longer includes cell i it is added back in: N (v) ← {N (v), i}.
The linear reconstruction of u in cell i is

ui(x) = Ui + (x− xi) · ∇u, x ∈ Ci

where Ui is the cell average, xi the cell centroid and ∇u = (ux, uy) the gradient. The

limiting conditions are

Umin
v = min

j∈N (v)
Uj 6 ui(xv) 6 Umax

v = max
j∈N (v)

Uj, for all v ∈ Ci.

Each inequality is linear in ux, uy so describes a half-plane in (ux, uy) space. Their

intersection - the monotonicity region M - is convex and describes the set of feasible

gradients (the shaded region in Fig 4.10a). As i ∈ N (v) ∀v the origin is always feasible

so no special treatment is required for maxima or minima.

The least square surface fit provides an initial estimate of the gradient ∇uLS =

(uLS
x , uLS

y ). If this lies outside M it must be moved inside. Fig 4.10b contrasts three

different methods of generating a limited gradient ∇uL.

ux

uy

M

ux

uy ∇uLS

S

QP

LP

(a) (b)

Figure 4.10: The Monotonicity Region and various limiters

The scalar limiter (labelled S) of Barth & Jesperson [9] maximises λ such that λ 6 1

and λ∇uLS ∈ M by applying each constraint in turn. The linear programming (LP)

method of Berger et al [12] maximises the functional ∇u · ∇uLS i.e. it finds the ver-

tex on M furthest in the direction ∇uLS e.g. by the simplex method [73]. Lastly the

quadratic programming (QP) method finds the point in M closest to ∇uLS by minimis-

ing the quadratic functional |∇u−∇uLS|2. For all three methods there is always a unique
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optimum and in general the QP method alters the least-squares gradient the least so is

the method adopted here. The implementation is in the form of an active set method, in

which at any one time a number of constraints (the active set) are in force and constraints

are swapped in and out of this set as the minimisation progresses (Fig 4.11).

(a) (b)

ux

uy ∇uLS

ux

uy ∇uLS

(c) (d)

ux

uy ∇uLS

ux

uy ∇uLS

∇uL

Figure 4.11: The Quadratic Programming (QP) limiter

First, in (a), the scalar limiter is applied to find a point on the boundary of M , then

in (b)-(d) we move from vertex to vertex round the boundary checking each time to see if

the perpendicular bisector through ∇uLS has been passed. The dotted lines indicate the

constraints relevant at each stage. Termination is guaranteed, either at the bisector if it

is passed, or by reaching a vertex from which no further improvement is possible. The

method has the same order of complexity as the simplex method.

Vertices on the domain boundary do not contribute to the limiting process.

Two examples demonstrate the behaviour of the limiter - (5.3) and (5.18). The first is

continuous everywhere and smooth inside the ellipse, whereas the second is discontinuous

on the ellipse. Fig 4.12 displays the unlimited least squares gradients on the left and

the limited gradients on the right - in both examples all under/overshoots have been

eliminated. In the first example there is one cell in which the constraints conflict reducing
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Figure 4.12: Limiter examples for continuous (top) and discontinuous (bottom) u

M to the origin (as i ∈ N (v)) and resulting in the flat gradient clearly visible on the

right side. This is correct but unsatisfying - one could instead remove i from N (v) and

minimise the piecewise linear error functional E(ux, uy) that sums the violation of each

constraint. Then if M exists, the functional is zero inside it so minimisation would still

result in a nearby point in M , but if it does not exist the functional will still have a non-

trivial minimum which will look better when drawn but could increase the total variation.

In the second example there are many faces with vertices on u = 0 or u = 1 indicating

the over/undershoot has only just been removed, i.e. the gradient has been adjusted by

the minimum amount as intended.

4.6 1-D Riemann problem on the moving mesh

In step 4 of the corrector scheme the flow variables each side of a face FLR, W
n+1/2
L

and W
n+1/2
R , are used as input for a 1-D Riemann problem (and for convenience we

drop the superscript). First the velocities are decomposed into components normal and

tangential to the face. From the face normal nLR = (nx, ny, nz) we set a unit 2D normal
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n̂ = (nx, ny)/
√

n2
x + n2

y from which the components of velocity are

v⊥i = n̂xui + n̂yvi

v
‖
i = n̂yui − n̂xvi, i = L,R.

and the speed of the face is V face
LR = −nz/

√
n2

x + n2
y (positive if moving L → R). For cells

on the domain boundary (e.g. L 6 N < R 6 NC), boundary conditions are imposed by

defining

(ρR, pR, v⊥R) =





(ρL, pL,−v⊥L ) on reflective boundaries

(ρL, pL, v⊥L = 0) on transmissive boundaries.

Then (ρL, pL, v⊥L ) and (ρR, pR, v⊥R) form the initial left and right states for the exact ideal

gas Riemann solver of Toro [89]. It returns the solution (ρLR, pLR, v⊥LR) at similarity

coordinate ξ ≡ x/t = V face
LR i.e. the values on the moving face, together with the speeds

of the contact discontinuity V cont
LR and fastest waves VLR and VRL travelling from L → R

and R → L respectively. Upwinding is completed by setting the tangential component of

velocity on the face to be

v
‖
LR =





v
‖
L if V face

LR < V cont
LR

v
‖
R otherwise.

Finally the Cartesian components of the velocity on the face are recovered with

uLR = n̂xv
⊥
LR + n̂yv

‖
LR

vLR = n̂yv
⊥
LR − n̂xv

‖
LR

and the post-wave flow variables are W
n+1/2
LR = (ρLR, uLR, vLR, pLR).

4.7 Timestepping

For the scheme to be stable the timestep must satisfy certain conditions. The CFL

condition states that for hyperbolic systems the numerical domain of dependence of each

cell must include the physical domain of dependence, or equivalently characteristics cannot

completely traverse any cell during the timestep. For a fixed, rectangular mesh, this

requires the timestep 4t to satisfy

4t 6 min(4tx,4ty),

where 4tx, 4ty are the times taken by the fastest waves in the x and y directions to

traverse a cell. The CFL condition is not always sufficient - linearised (von Neumann)
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stability analysis or positivity can impose stricter constraints. For a scalar hyperbolic

system, Liu [60] proves positivity of Runge-Kutta schemes on a fixed triangular mesh if

4t 6 1

3
min

i
(4ti),

where4ti = {Area(4i)/Perimeter(4i)}/v and v is the fastest wavespeed in the domain.

For a moving quadrilateral mesh, Godunov [34] shows that a suitable energy norm is

non-increasing if

4t 6
(

1

4tx
+

1

4ty

)−1

.

As 1
2
min(4tx,4ty) 6 ( 1

4tx
+ 1

4ty
)−1 this can be replaced by

4t 6 1

2
min(4tx,4ty).

The author is unaware of any results for a moving arbitrary mesh with changing connec-

tivity but the above suggest the form

4t = Ccfl min
Fij

(4tij)

where 4tij is the time taken for the fastest wave emanating from face Fij to reach the

other side of cell i and Ccfl is the CFL coefficient, applied in step 1 of the main loop.

The computation can be simplified by observing that the time it takes for a wave to

traverse a moving cell will be roughly twice the time it takes to reach the middle (the

space-time centroid ri), so long as the cell is not changing shape or size too much. If

Vji < V face
ji (see section 4.6 for definitions) the wave is travelling towards the centroid so

4tij ≈ 2dij/(−Vji), where dij = (xi−xp
ij) · (−n̂ij) is the perpendicular distance from the

face (unit 2D normal n̂ij) to the centroid. This turns out to be bad at connectivity changes

as the three triangular faces can vary significantly in direction, resulting occasionally in

very small timesteps which can lead to difficulties if the mesh movement is large. Setting

dij = |xi−xp
ij| (as if the wave travels directly towards the centroid) was found to produce

sufficiently smooth timestepping (for comparison Ball [8] sets V face
ij = 0, dij = |rn+1

i −rn+1
j |

and Ccfl = 1
2
).

In any case this is not the only source of error - Hubbard [47] notes that not using a

Riemann solver in the predictor can lead to small overshoots and undershoots. For these

reasons a suitable Ccfl is found for each problem by trial and error.
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4.8 Remapping

There are two main approaches to remapping, based either on computing intersections

of cells between two arbitrary meshes (e.g. [36]) or computing the volumes swept out by

the faces as one mesh is deformed into the other (e.g. [32]). Although the latter is cheaper

it assumes the deformation is sufficiently small, and connectivity changes require special

treatment [81], so the former method is used here.

In it the solution is remapped from the tn mesh to the tn+1 mesh by forming the

limited linear reconstruction un
j (x) of the conserved variables Un

j in each cell j on the tn

mesh and integrating these over each cell i in the tn+1 mesh:

An+1
i Un+1

i =
∑

j

∫

Cij

un
j (x)dx

=
∑

j

∫

Cij

[
Un

j +∇un
j · (x− xn

j )
]
dx

=
∑

j

Aij

[
Un

j +∇un
j · (xij − xn

j ))
]

where Cij = Cn+1
i

⋂
Cn

j - the intersection of tn+1 cell i with tn cell j - has area Aij =
∫

Cij
dx

and centroid xij =
∫

Cij
xdx/Aij. These satisfy

∑
i Aij = An

j ,
∑

i Aijxij = An
j xn

j so that

∑
i

An+1
i Un+1

i =
∑
ij

Aij

[
Un

j +∇un
j · (xij − xn

j ))
]

=
∑

j

Aj

[
Un

j +∇un
j · (xn

j − xn
j ))

]

=
∑

j

An
j U

n
j

ensuring conservation, so it just remains to find the polygonal intersections Cij. Numerous

convex polygon intersection algorithms exist having optimal computational complexity

O(m + n) for polygons with m and n vertices respectively, and here we employ the

particularly simple algorithm of O’Rourke [70].

As there are
(

N
2

)
possible intersections Cij between arbitrary meshes, computing every

one would be expensive, but as the deformation is expected to be fairly small this number

can be significantly reduced. In the computation of the monitor function for Cn
i , the

first step is to find the support Supn(i, R) - the set of tn cells intersecting a disc of

radius R centered on xn
i (shaded in Fig 4.13a) and we reuse that subroutine here. It

employs a Huygens-type construction, spreading out from cell Cn
i in an expanding front

(Fig 4.13b). Each iteration we loop over the cells in the current front (medium grey),

testing for intersection any untested neighbouring cells, and if so adding them to the next
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front (dark grey) and the support. If the next front is empty we are done otherwise that

becomes the current front and another iteration begins. Auxiliary variables are used to

keep track of whether a cell has been tested, the current/next fronts and the support.

R

xn
i

current front

next front (incomplete)
(a) (b)

Supn(i, R)

Figure 4.13: The expanding front method for filling the support

We set the radius R to be just large enough so the disc completely covers Cn+1
i (Fig

4.14a) via R = maxv∈Cn+1
i

|xn+1
v − xn

i |, then the support is guaranteed to contain all the

tn cells that could intersect Cn+1
i so we need only compute Cij for j ∈ Supn(i, R) (Fig

4.14b).

R

Cn
i

Cn+1
i

Cij

Cn+1
i

Cn
j

(a) (b)
Supn(i, R)

Cn
i

Figure 4.14: Using the support to reduce the number of polygon intersections

To test a cell for intersection with the disc we compute the area of intersection, and

check if that is positive. The details are postponed to section 5.2 where more general

integrals are considered.

This concludes the description of the discretisation scheme to advance the solution in

time from one mesh to another.
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Chapter 5

Monitor functions

To complete the discretisation it just remains to specify the end-of-timestep mesh, which

is determined here by setting the final cell areas to equidistribute a monitor function and

applying the geometric method.

The plan for this chapter is a little different from preceding chapters because a novel

monitor is introduced which requires some justification. After briefly mentioning existing

monitors, a common gradient based monitor is chosen and applied, on our unstructured

mesh, to simple test problems containing discontinuities. The mesh adaption keeps failing,

and each time the monitor is modified to cope, first by changing the support in the least

squares surface fitting, then by introducing weighting, making the support adaptive, and

finally by using the least squares error itself instead of the gradient. After looking at

some properties of the new monitor, one further test problem admitting some theoretical

analysis is used to shed some light on why previous monitors didn’t work and how to set

the parameters that have been introduced.

Monitor functions were introduced in chapter 1 equations (1.3) and (1.4) but were left

unspecified. They set desired properties of the mesh such as the size, shape and orientation

of the cells through the Jacobian [44], and can be used for a variety of purposes. These can

be problem-specific, e.g. to focus on a particular region or feature of interest or align the

mesh with an external vector field, but more generally they are used to try to maintain the

mesh or solution quality. The latter can be measured by the interpolation or truncation

error, which in general will be higher where polynomial approximations for the variables

are poor, e.g. at steep gradients. This leads to the popular arc-length monitor [42]:

m =

√
1 +

1

α
|ux|2

in 1D which when applied will equidistribute the arc-length of u over the cells, making

them smaller where the gradient of u is high. The adaption intensity parameter α governs

how much the mesh reacts to the monitor - strongly for small α but less as α →∞ at which

point the mesh becomes regular. In n = 2 dimensions, scalar and isotropic/anisotropic
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matrix variants in use include [42]:

m =

√
1 +

1

α
|∇u|2, G = mI, G = I +

1

α
∇u∇uT .

Why not directly minimise the error instead of equidistributing it? Firstly from (1.14)

the solution is the same in both cases and secondly because direct minimisation often

leads to ill-conditioned problems [46].

In [44] Huang applies finite element error analysis to derive various estimates of the

interpolation error. These depend on the differentiability of the function being approxi-

mated (assumed to be in the Sobolev space W l,p i.e. all partial derivatives up to total order

l are p-integrable), the order of polynomial approximation (k) and error norm (Wm′,q),

where k, l, m′ are integers such that 0 6 m′ 6 l 6 k + 1 and p, q ∈ [1,∞]. We use [44,

(3.20)], which is best suited to isotropic meshes (J ∝ I):

|u− Πku|qW m′,q(Ω)
6 C

∫

Ω

J
q(l−m′)

n

(
1 +

1

α
‖Dlu‖p

)q

dx,

where Πk is the projection operator onto the space of polynomials of order k and C is a

constant. In fact this choice of regularization excludes some of the previous monitors so

we modify it to

|u− Πku|qW m′,q(Ω)
6 C

∫

Ω

J
q(l−m′)

n

(
1 +

1

α
‖Dlu‖s

p

)q/s

dx

for yet another number s > 0. Then for an (asymptotically) optimally interpolating

isotropic mesh

m =

(
1 +

1

α
‖Dlu‖s

p

)γ/s

, γ =
nq

n + q(l −m′)
, (5.1)

extending the 1D results of Carey and Dinh [19] and Baines [7]. Now we are able to

recover m =
√

1 + |∇u|2/α with γ =1, s=2 whereas if s=1 then m = 1+ |∇u|/α. Huang

suggests setting α so that a fraction β ∈ (0, 1) of the mesh cells are placed in regions

where the monitor is high (m À 1) leading to

α =

[
(1− β)

β|Ω|
∫

Ω

‖Dlu‖γ
pdx

]s/γ

. (5.2)

He also derives matrix monitors for an optimally interpolating anisotropic mesh. For all

the constraints on l,m′, p, q require u to be at least continuous.

Unfortunately, none of the monitors are directly applicable here because in general the

mesh solving the optimal transport problem will be different from either of the optimally

interpolating meshes. It is true that the solution to the optimal transport problem is
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an equidistribution (of 1/β), but it is also irrotational (∇ × ξ = ∇ × ∇P = 0) and

not in general isotropic (J = Hessian(P ) ∝/ I). So the mesh is not able to optimally

interpolate the data, but we still require a scalar monitor and (5.1) is at least reasonable.

The problem is that numerical implementation can be sufficiently noisy to cause the sort

of behaviour seen in section 3.5, as illustrated in the following test problem.

5.1 Ellipsoid test problem

We set Ω = Ωc = [0, 1] × [0, 1], Nx = Ny = 20 and the data U to be zero except

where the ellipsoid with semi-major axes (a, b, c) = (1.1, 0.8, 1), centred on (x0, y0, U0) =

(0.5, 0.5,−0.8), rises above the plane U = 0 (Fig 5.1):

U(x, y) = max


0, U0 + c

√
1−

(
x− x0

a

)2

−
(

y − y0

b

)2

 . (5.3)

This means ∇U is continuous everywhere except the ellipse
(

x−x0

a

)2
+

(
y−y0

b

)2
= 1−(

U0

c

)2

where the ellipsoid and plane meet (drawn in blue). Fig 5.2 compares the analytic values
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Figure 5.1: Uniform mesh and data U for ellipsoid test

of |∇U |2 at the cell centroids (as the mesh is not structured we cannot use superconvergent

points [96]) with the values obtained using the least squares surface fit (section 4.4) with

P = (1, x, y, x2, xy, y2) and support Sup(i) comprising cell i and its immediate neighbours.

The agreement is excellent for those cells whose support does not cross the ellipse, but

very poor for those that do.
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Figure 5.2: Comparison of |∇U |2: analytic top left, computed top right, difference below

We now use the computed gradients in the mesh iteration. The monitor is set by (5.2),

(5.1) with β = 0.75, p = q = n = s = 2, l = 1, m′ = 0 i.e. m =
√

1 + |∇U |2/α, and then

smoothed:

mk ← mk−1 + λmon(mk −mk−1) (5.4)

where λmon ∈ (0, 1] and mk is the vector of monitors for each cell on the kth cycle. The

cell areas are set by equidistributing the monitor i.e. βimi = 1, and finally normalised

via (3.19). Figure 5.3a plots the fractional change in monitor ‖mk −mk−1‖/‖mk−1‖ per

cycle for λmon = 0.1. The initially uniform mesh adapts satisfactorily for the first fifty or

so cycles, reaching a position (Fig 5.3b) that doesn’t substantially change from then on.

However the mesh does not settle down, but continues to oscillate around this position

indefinitely.

This is caused by the noisy, mesh-dependent gradients near the ellipse, and cannot be

fixed by increasing the smoothing. Fig 5.4a shows the equivalent history for λmon = 0.001

- it takes longer to approach the equilibrium position, and the oscillations around it

are smaller, but qualitatively it’s the same. Enlarging Sup(i) to include neighbours of

neighbours as well does not help either (Fig 5.4b).
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Figure 5.3: Fractional monitor change per cycle for λmon = 0.1 and mesh at cycle 300
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Figure 5.4: Fractional monitor change per cycle for λmon = 0.001 for normal and enlarged

support

Not only will mesh instabilities such as this be more diffusive, they also make it much

more likely that the CFL condition will be violated or adjacent connectivity changes occur

further degrading the solution. In the worst case they could trigger other (hydrodynamic)

instabilities, so it is important they be eliminated if possible.

5.2 Weighted least squares

Meshfree methods suggest a possible remedy. In SPH a quantity A(r) is spatially

smoothed by the convolution Â(r) =
∫

A(r′)W (r−r′, h)dr′ where W is a kernel function

with characteristic lengthscale h [63]. Initially a Gaussian kernel was used (W (r, h) ∝
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e−r2/h2
, r = |r|) but this is nonzero everywhere making computation inefficient, so various

kernels with compact support (W (r, h) = 0, r > h) are used instead. We implement this

here by introducing a fixed radius R and radial weight function w(r/R). For continuous

data U(x) the weighted least squares error of the approximation ui(x) centred at xi is

E =
1

w

∫
w(r/R) [ui(x)− U(x)]2 dx, w =

∫
w(r/R)dx, r = |x− xi| (5.5)

For a general weight the integral is over R2 but for a weight with compact support (w =

0, r > R) it can be reduced to the disc Di = {x : r 6 R}. For discrete data Uj, we

change the fixed support Sup(i) to the geometrically based Sup(i, R) (section 4.8) and

approximate the integral by:

E =
1

wi

∑

j∈Sup(i,R)

wij [ui(xj)− Uj]
2 , wi =

∑

j∈Sup(i,R)

wij (5.6)

wij =

∫

Cj

w(r/R)dx =

∫

Cj

w(r/R)rdrdθ, x = xi + r(cosθ, sinθ)

= R2

∫

Cj

w(λ)λdλdθ (5.7)

where λ=r/R is the normalised radius. Substituting in the approximation (4.5) for ui(x):

E = cT Mc− 2eT c + E0,

MIJ =
1

wi

∑

j∈Sup(i,R)

wijPI(xj − xi)PJ(xj − xi),

eI =
1

wi

∑

j∈Sup(i,R)

wijUjPI(xj − xi), E0 =
1

wi

∑

j∈Sup(i,R)

wijU
2
j . (5.8)

The optimal coefficients are again c = M−1e. We set R to be twice the distance

between centroids on a uniform hexagonal mesh (R = 0.075), so Sup(i, R) contains on

average two layers of cells around i - drawn in red for selected cells in Fig 5.5a.

To verify the necessity of (5.7) we instead set wij = 1 in (5.8) and iterate with β =

0.75, λmon = 0.1, as before. The mesh still doesn’t settle (Fig 5.5b) but the oscillations

have dropped an order of magnitude. This suggests that the monitor is now too sensitive

to cells entering or leaving the support, but we can use the weights to make this transition

smoother - for example even with w = 1, wij is then the area of intersection between the

disc and cell j which goes to zero as they separate. Smoother still would be a weight

function w(λ) that goes to zero as λ → 1 e.g. w(λ) = 1− λ or w(λ) = cos2(λπ/2).
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Figure 5.5: Support radius R for selected cells and convergence history for wij = 1

To compute the integral (5.7) we find any intersections between the edge of cell j and

disc, and draw lines from these, and any vertices inside the disc, to the origin (Fig 5.6a).

This splits the integral into integrals over triangles and integrals over sectors of the disc.

O

1

23

P

θ

Q

1

2

r

rp

θp

O

(a) (b)

Figure 5.6: Convex polygon/circle intersection

First the integral over the triangle O12 (shaded in Fig 5.6b):

wO12 = R2

∫ θ2

θ1

∫ rq/R

0

w(λ)λdλdθ = R2

∫ θ2

θ1

dθ w1(rq/R)

where rq = |−→OQ| and

wn(λ) =

∫ λ

0

w(λ′)λ′ndλ′. (5.9)
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From 4OPQ, cos(θ − θp) = rp/rq, so

wO12 = R2

∫ θ2

θ1

dθ w1(rp sec(θ − θp)/R)

= R2

∫ θ2−θp

θ1−θp

dθ w1(λp secθ), λp = rp/R

= R2[W (λp, θ2−θp)−W (λp, θ1−θp)]

where

W (λ, θ) =

∫ θ

0

w1(λ secϕ)dϕ. (5.10)

For the sector O23,

wO23 = R2

∫ θ3

θ2

dθw1(1) = R2(θ3 − θ2)w1(1).

Not that many weight functions are integrable in (5.10) e.g. w = cos2(λπ/2) can be

integrated to w1 but not W . Some that are include (λ 6 λ sec θ 6 1 to be inside the disc,

n > 0):

w(λ) = (n + 2)λn ⇒ w1(λ) = λn+2, W (λ, θ) = λn+2

∫ θ

0

secn+2ϕdϕ (5.11)

w(λ) = (n + 2)(1−λ2)n/2 ⇒ w1(λ) = 1− (1− λ2)n/2+1,

W (λ, θ) = θ−
∫ θ

0

(1−λ2sec2ϕ)n/2+1dϕ (5.12)

which are normalised so w1(1) = 1. Away from domain boundaries wi =2πR2. Recurrence

relations for W are found by integration by parts, for (5.11) and (5.12) respectively:

(n+1)Wn = λ2nWn−2 + λn+2 tanθ secnθ, (5.13)

(n+1)Wn = [n(2−λ2) + 1]Wn−2 − n(1−λ2)Wn−4 + λ tanθ(1−λ2sec2θ)n/2, (5.14)

with W0 = λ2 tanθ for both and W2 = W0[2− λ2(3 + tan2 θ)/3] for (5.12). For the inter-

section area required in the construction of Sup(i, R), w = 1 so w1(λ) = 1
2
λ2,W (λ, θ) =

1
2
λ2 tanθ.

Of course evaluating these integrals exactly is expensive, but they can be approximated

by quadrature e.g. W (λ, θ) =
∫ θ

0
w1(λ secϕ)dϕ ≈ ∑

i ρiw1(λ secϕi) for a set of sample

angles ϕi ∈ [0, θ] and weights ρi. To check whether computing the intersection is actually

necessary we include two approximations that don’t - the first splits Cj into triangles and

uses the weights at the vertices xk ∈ Cj:

wij =
∑

k

Area(xj,xk, xk+1) [w(|xj − xi|/R) + w(|xk − xi|/R) + w(|xk+1 − xi|/R)] /3.

(5.15)
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and the second uses only the single weight at the cell centroid:

wij = Ajw(|xj − xi|/R). (5.16)

We set w = (1− λ2)2 because it goes to zero smoothly as λ → 1 and can be evaluated

either approximately with (5.15) or (5.16) or exactly with (5.14). Returning to the test

problem (with β =0.75, λmon =0.1 again), all three reach equilibrium (defined here to be

when the fractional change in monitor drops below 10−12 - far stricter than required in

practice but more illuminating). The final meshes (Fig 5.7a) are indistinguishable, but

the convergence rates differ (Fig 5.7b). As expected, (5.14) in blue is slowest, taking 51

seconds, whereas (5.15) in green took roughly the same number of cycles but only 24

seconds. The cruder (5.16) in red shows signs of oscillatory behaviour and took double

the number of cycles but in only 26 seconds.
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Figure 5.7: Equilibrium mesh and convergence history for w = (1− λ2)2

This confirms that the monitor was indeed too sensitive to cells entering or leaving

the support, and that with a suitable weighting function the geometrically based support

can work where the fixed support cannot. Furthermore the weight integrals do not need

to be evaluated exactly, but the approximation used can make a difference.

However the support circles in Fig 5.7a indicate some problems still remain. For

cells outside the ellipse their support is too small for sensible derivative estimates to be

recovered (in the bottom left corner the support contains only one or two other cells),

but as U = 0 outside the ellipse this is not so important here. Conversely cells in the
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middle have the opposite problem - their supports are too large which is both inefficient

and smoothes out fine details. A solution is again provided by SPH - make R variable.

5.3 Adaptive supports

In [63] it suggests varying the characteristic lengthscale so as to keep the size of the

support approximately constant. Here this means R ∝ √
J (equation 1.1). We add a

minimum value Ra to R to stop any potential problems with cells getting very small,

setting the support radius for cell i to be:

Ri = Ra + Rb

√
Ai/π. (5.17)

The support therefore has area πR2
i , so if the mesh is approximately uniform, the number

of cells this contains, N , satisfies NAi = πR2
i ⇒ N = πR2

i /Ai = (Ra

√
π/Ai + Rb)

2 ≈ R2
b

when Ra small. So for example if Rb = 4 then N ≈ 16 giving just over two layers of

neighbours on a hexagonal mesh. In practice (5.17) seems to work very well, adding a

stabilising influence to the adaption as well as improving efficiency. Fig (5.8) shows the

equivalent results for Ra = 0, Rb = 4. The supports (Fig 5.8a) are clearly much better

adapted, solving most of the problems mentioned earlier. The times are shorter for all

three because convergence is much smoother, (5.14) in blue took 33 seconds, (5.15) in

green took 15 seconds and (5.16) in red 20 seconds. The average size of the support

over all the cells is 28 for (5.14) and (5.15) and 17 for (5.16). The reason this is higher

than R2
b = 16 is clear from the figure - some cells outside the ellipse have a wide support

which includes many small cells just inside. This is a consequence of the support being

isotropic (circular) and could be reduced with an anisotropic (elliptical) support (as used

in Adaptive SPH) but this is not explored here.

So far U has been continuous, with a discontinuity in ∇U . We now explore disconti-

nuities in U itself.

5.4 Discontinuous data U

We keep the same geometry but change U to be constant inside the ellipse:

U(x, y) =





1 if
(

x−x0

a

)2
+

(
y−y0

b

)2 6 1− (
u0

c

)2

0 otherwise
(5.18)

Of course analytically ∇U is a delta function on the ellipse so numerically doesn’t exist

there but it will acquire finite values on the mesh which will be entirely mesh and algorithm
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Figure 5.8: Equilibrium mesh and monitor change history with adaptive support

dependent making this a more challenging problem. In fact with the same parameters

as before (β = 0.75, λmon = 0.1, Ra = 0, Rb = 4, w = (1 − λ2)2), (5.14) and (5.15) are both

successful (Fig 5.9b), in 230 and 57 seconds respectively, but (5.16) fails completely to

settle. In the equilibrium mesh (Fig 5.9a) there is a band of concentrated cells around the

ellipse with maximum width R as expected, although this narrows where it comes close

to the domain boundary. Beyond this band the cell areas jump dramatically which could

cause difficulties if the discontinuity moves with time because cells coming into the band

will suddenly shrink.
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Figure 5.9: Equilibrium mesh and monitor change history for discontinuous U
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The results are better for the adaptive support - (5.14) and (5.15) taking 87 and 140

seconds but (5.16) still failing. Around the ellipse the cell sizes change more evenly and

are less affected by the boundary.
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Figure 5.10: Equilibrium mesh and monitor change history for discontinuous U

So far so good, but if we then change from m =
√

1 + |∇U |2/α to m = 1 + |∇U |2/α
then all three weight computations fail. Reducing λmon has no effect but (5.14) succeeds

if Ra is raised to 0.007, although this increases the average size of the support from 34 to

43. A plot of the computed values of |∇U |2 on the equilibrium mesh (Fig 5.11a) shows

that the mesh has settled despite quite noisy values and therefore the size of the smallest

cells in the mesh will be uneven. This raises the question: are there any other less noisy

quantities available that can be used for the monitor? The answer is yes - the least squares

error itself (5.6).

5.5 The least-squares error monitor

Denote by EN the least squares error when fitting polynomials up to order N − 1, so

E1 is the error fitting a constant function - P = (1), E2 a linear function - P = (1, x, y),

E3 a quadratic - P = (1, x, y, x2, xy, y2) etc. Some properties of EN are:

• If the data is polynomial of order M then EN = 0 for N−1 > M

• If the data is continuous then EN → 0 as N →∞

• In all cases if U → kU , k ∈ R, then M → M, e → ke, E0 → k2E0 so EN → k2EN .
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Fig 5.11 compares |∇U |2 with E = E1 −E2 on the equilibrium mesh - the latter is much

more even over the discontinuity.
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Figure 5.11: |∇U |2 and the least squares error E = E1 − E2 on the equilibrium mesh

Using the least squares error as a monitor is attractive theoretically because it is a

direct measure of the interpolation error, naturally taking into account the local charac-

teristics of the mesh. And Cao et al [17] have found the interpolation error to be superior

to the gradient and comparable with the a posteriori error when used as monitors.

With m = 1+E/α, all three of (5.14), (5.15) and (5.16) reach equilibrium very quickly

even with Ra = 0, the latter with an average support of only 22 cells. As Fig 5.12 shows,

there are differences between the equilibrium meshes for the two monitors, with that of

the E monitor closer to Fig 5.10a.
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Figure 5.12: Equilibrium meshes for (a) m = 1 + |∇U |2/α and (b) m = 1 + E/α
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The question naturally arises as to how this new monitor compares to the old in

previous problems. Fig 5.13 compares the equilibrium meshes for m =
√

1 + |∇U |2/α
and m =

√
1 + E/α. As before, the smoother E concentrates the mesh slightly less over

the ellipse but the difference is not that great.
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Figure 5.13: Equilibrium meshes for (a) m =
√

1 + |∇U |2/α and (b) m =
√

1 + E/α

To gain some understanding of these errors we investigate them analytically. Away

from domain boundaries, from (5.5)

w =

∫

r6R

w(r/R)dx = 2πR2w1(1). (5.19)

Let PI(x) = xi1yj1 , PJ(x) = xi2yj2 , then from (5.8)

MIJ =
1

w

∫

r6R

w(r/R)PI(x− xi)PJ(x− xi)dx, x = xi + λR(cosθ, sinθ)

=
1

w

∫ 2π

0

dθ

∫ 1

0

R2λdλ w(λ)(Rλ cosθ)i1+i2(Rλ sinθ)j1+j2

=
Ri1+i2+j1+j2+2

2πR2w1(1)

∫ 1

0

λi1+i2+j1+j2+1w(λ)dλ

∫ 2π

0

cosθi1+i2 sinθj1+j2dθ

=





(2i)!(2j)!
i!j!(i+j)!

(
R
2

)2i+2j w2i+2j+1(1)

w1(1)
if i1 + i2 = 2i, j1 + j2 = 2j

0 otherwise.
(5.20)
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The first few elements are:

MIJ =




M11 0 0 M13 0 M13 · · ·
0 M13 0 0 0 0

0 0 M13 0 0 0

M13 0 0 M15 0 M33

0 0 0 0 M33 0

M13 0 0 M33 0 M15

...
. . .




(5.21)

For EN , M has N
2
(N + 1) rows and columns. At the minimum error, c = M−1e so

EN = E0 − eT M−1e. Computing the first few explicitly

E1 = E0 − e2
1

M11

E2 = E0 − e2
1

M11

− e2
2 + e2

3

M13

(5.22)

E3 = E0 − e2
1

M11

− e2
2 + e2

3

M13

− (e4 − e6)
2

4M33

− (2M13e1 −M11e4 −M11e6)
2

4M11(2M11M33 −M2
13)

− e2
5

M33

.

The denominator (2M11M33−M2
13) can be shown to be positive using the Cauchy-Schwarz

inequality, and from (5.20) M11 =1, M15 =3M33. As expected, as new degrees of freedom

are included nonnegative quantities are subtracted indicating the fit approximates the

data better. Obviously an orthonormal basis would be useful here, and one has recently

been developed for general weight functions [92] but is quite cumbersome.

Next we Taylor expand U(x) (assuming it is continuous) about xi:

U(x) =
∞∑

J=1

UJPJ(x− xi) = U1 + U2x
′ + U3y

′ + U4x
′2 + U5x

′y′ + U6y
′2 + . . .

in local coordinates x′ = (x′, y′) = x− xi. So at xi, ∇U = (U2, U3), and from (5.8),

eI =
1

w

∫

r6R

w(r/R)U(x)PI(x− xi)dx

=
∞∑

J=1

UJ
1

w

∫

r<R

w(r/R)PI(x− xi)PJ(x− xi)dx =
∞∑

J=1

MIJUJ . (5.23)

Finally we can substitute this into (5.22):

E0 − E1 =
e2
1

M11

=
1

M11

(M11U1 + . . .)2 ≈ M11U
2
1

E1 − E2 =
e2
2 + e2

3

M13

=
1

M13

[
(M13U2 + . . .)2 + (M13U3 + . . .)2

]

≈ M13(U
2
2 + U2

3 ) = M13|∇U |2. (5.24)
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To see how good an approximation this is, Fig 5.14 overlays the computed values of

|∇U |2 (green) and (E1 − E2)/M13 (red) for the ellipsoid problem (with w = (1 − λ2)2

using (5.14) and Ra = 0.075, Rb = 0) - the approximation is very good here.
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Figure 5.14: Comparison of |∇U |2 (green) and (E1 − E2)/M13 (red)

For E3, substituting (5.23) into (5.22) yields

E2 − E3

M33

≈
(

M15M11 −M2
13

M11M33

)
(U4 + U6)

2 − (4U4U6 − U2
5 ). (5.25)

Now the Gaussian and mean curvatures at xi are:

κ =
UxxUyy − U2

xy

(1 + U2
x + U2

y )2
=

4U4U6 − U2
5

(1 + U2
2 + U2

3 )2

H =
(1 + U2

x)Uyy − 2UxUyUxy + (1 + U2
y )Uxx

2(1 + U2
x + U2

y )3/2
=

(1 + U2
2 )U6 − U2U3U5 + (1 + U2

3 )U4

(1 + U2
2 + U2

3 )3/2

≈ U4 + U6, U2, U3 ¿ 1.

So that
E2 − E3

M33

≈
(

M15M11 −M2
13

M11M33

)
H2 − κ(1 + U2

x + U2
y )2. (5.26)

Fig 5.15a shows the analytic values for the right hand side of (5.26) for the ellipsoid prob-

lem and Fig 5.15b (E2 − E3)/M33. The errors became quite noisy near the discontinuity

(as would be expected for higher order derivatives) so were clipped for the figure, but

elsewhere the agreement is good given the crude approximation for H.
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Figure 5.15: Comparison of curvature term and (E2−E3)/M33 for the ellipsoid problem

So for smooth U the least squares errors contain information about the gradient and

curvature. What do they look like for discontinuous U?

5.6 Line discontinuity - fixed radius support

Let

U(x) = H(x) =





0 if x < 0

1 otherwise.

and the support radius R be constant. For the support to intersect the discontinuity

|xi| 6 R (Fig 5.16), so let −R 6 xi 6 0. Put −xi = Rλ0 then x > 0 ⇒ λ cosθ > λ0 where

x = xi + λR(cosθ, sinθ) .

x = 0

R

−xi

arccos λ0

U = 0 U = 1

Figure 5.16: Computing EN for U = H(x)

For w = (n + 2)λn and PI(x) = xjyk, w = 2πR2 and from (5.8),

eIn =
n + 2

2πR2

∫

r6R

(r/R)nH(x)PI(x− xi)dx

=
n + 2

2πR2

∫

λ61,λ cosθ>λ0

λn(Rλ cosθ)j(Rλ sinθ)kR2λdλdθ

=
n + 2

2π
Rj+k

∫ arccos λ0

− arccos λ0

dθ cosj θ sink θ

∫ 1

λ0 secθ

λj+k+n+1dλ
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=
n + 2

π
Rj+k

∫ arccos λ0

0

dθ cosj θ sink θ

[
1− (λ0 secθ)j+k+n+2

j + k + n + 2

]
, k even

=
n + 2

j+k+n+2

Rj+k

2π

[
B1−λ2

0

(
k+1

2
,
j+1

2

)
− λj+k+n+2

0 B1−λ2
0

(
k+1

2
,−k+n+1

2

)]

where Bx(p, q) is the incomplete beta function. This is ungainly but computable, and

can be used to construct general polynomial weights e.g. for w = 6(1 − λ2)2 = 3(2λ0) −
3(4λ2) + (6λ4), eI = 3eI0 − 3eI2 + eI4. Values for λ0 < 0 can be deduced from the sym-

metry eIn(−λ0) + eIn(λ0) = 2eIn(0) = n+2
j+k+n+2

Rj+k

π
B

(
k+1
2

, j+1
2

)
. Thanks to the identity

H2(x) ≡ H(x), E0 = e1n (P1(x) = 1). Now we can numerically evaluate M , e and E0 for

polynomial weights, we can compute EN .

Fig 5.17 shows the results for w = (n + 2)(1 − λ2)n/2 with n = 0, 2, 4 as functions

of λ0, with the support just touching the line at λ0 = ±1 and sitting directly on top

at λ0 = 0. The surprising thing about the errors is that they are not all singly peaked

- sometimes being further away from the discontinuity makes it harder to approximate

not easier, although this effect weakens as n increases. This is not good if the monitor is

intended to focus the mesh over the discontinuity as the error will instead focus the mesh

slightly more over bands either side. However a single peak can easily be restored with a

linear combination of the errors:

E =
∑
N

µNEN (5.27)

for constants µN . The second point to notice is how the errors behave at λ0 = ±1, which

governs the smoothness of the transition as cells become aware of a discontinuity and so

is important to the mesh iteration. As expected this transition becomes smoother as n

increases, and there appears to be a jump in the gradient for n = 0 although this is not

so. For general w and PI(x) = xjyk,

eI =
1

w

∫

r6R

w(r/R)H(x)PI(x− xi)dx

=
Rj+k

2πw1(1)

∫ arccos λ0

− arccos λ0

dθ cosj θ sink θ

∫ 1

λ0 secθ

λj+k+1w(λ)dλ

=
Rj+k

πw1(1)

∫ arccos λ0

0

dθ cosj θ sink θ

∫ 1

λ0 secθ

λj+k+1w(λ)dλ, k even.

Differentiating,

e′I =
deI

dλ0

= − Rj+k

πw1(1)

∫ arccos λ0

0

dθ cosj θ sink θ(λ0 secθ)j+k+1w(λ0 secθ) secθ

= − Rj+k

πw1(1)
λj+k+1

0

∫ arccos λ0

0

sec2 θ tank θw(λ0 secθ)dθ (5.28)
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Figure 5.17: Least squares errors EN for U = H(x) and w = 2 (top), w = 4(1 − λ2)

(middle) and w = 6(1− λ2)2 (bottom)
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∴ |e′I | 6 Rj+k

πw1(1)
λj+k+1

0 ‖w‖∞
∫ arccos λ0

0

sec2 θ tank θdθ

=
Rj+k

πw1(1)
‖w‖∞λj

0(1− λ2
0)

k+1
2

k + 1
= 0 at λ0 = ±1 if ‖w‖∞ < ∞.

So from EN = E0 − eT M−1e the errors are always differentiable at λ0 = ±1. The third

observation is that E2N+1(0) = E2N(0) which makes sense as U − 1
2

is an odd function

around λ0 = 0, so enlarging the basis to include even functions cannot help reduce the

error. Lastly there are points λ0 6= 0 where E2N+1(λ0) = E2N(λ0) which presumably are

related to the superconvergent points.

As an aside, for I = 1 (j =k=0), changing the variable of integration in (5.28) to λ:

e′1 = − λ0

πw1(1)

∫ arccos λ0

0

sec2 θw(λ0 secθ)dθ

= − 1

πw1(1)

∫ 1

λ0

w(λ)λdλ√
λ2 − λ2

0

(5.29)

which is the Abel transform of w, and can be inverted to give w in terms of e′1 (w1(1)

being a free parameter as e′1 is unchanged if w → kw). Also e′1 is related to E1 through

E1 = e1 − e2
1

M11
(using (5.22) and again E0 = e1 as H2(x) ≡ H(x)). And so if the

monitor is chosen to be a function of E1, e.g. m = 1 + E1/α, then w can be given

directly in terms of m. In other words it is possible to decide exactly how you want the

cell areas to change across a discontinuity and then derive the weight needed to achieve

this. For example E1(λ0) = λ2
0(1 − λ2

0) if e1 = λ2
0 (M11 = 1), in which case w(λ) =

4w1(1)[cosh−1(1/λ) − 1/
√

1− λ2], but this weight is not very practical as it diverges at

λ = 0,±1. Alternatively, inverting e′1 = −B( 1
2
,n+ 1

2)
2πw1(1)

(1−λ2
0)

n yields w = (1−λ2
0)

n− 1
2 so for

example if w =
√

1− λ2 then e1 = 1
4
(2 − 3λ0 + λ3

0) (using the constant of integration to

set e1(1) = 0) and E1 = 1
4
(1− λ2

0)
2(1− λ2

0/4).

5.7 Line discontinuity - adaptive support

So far the support has been fixed in size but now we will relax that condition. The

resulting system turns out to be soluble, enabling tangible qualities of the equilibrium

mesh, such as the width of the band, to be related to the parameters Ra, Rb and β.

Suppose that a weight w has been chosen and a set of constants µN picked (5.27)

and so on resulting in a final known error E(λ) where x = Rλ, but now R = R(x). We

set up a mesh iteration in a rectangular domain of size Ωx × Ωy, with a large number of

cells N , so that the cell area a(x) and monitor m(x) can be treated as continuous. In
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computational space Ωc the cells are spread evenly so each has area |dξ| = |Ωc|/N , and

from |dx| = J |dξ| we have a(x) = J |Ωc|/N . From the equidistribution criterion (1.12)

Jm = σ so a(x) = σ|Ωc|
Nm(x)

. As the problem is symmetric in y so is the equilibrium mesh,

i.e. a = a(x), m = m(x) and R = R(x). We use (5.1) for the monitor with E in place of

‖Dlu‖2
p to match the scaling (under U → kU , E → k2E and ‖DlU‖2

p → k2‖DlU‖2
p), i.e.

m =

(
1 +

E(λ)s/2

α

)γ/s

, (5.30)

set s = 2, and change γ → 2γ for ease of notation, so a(x) = σ|Ωc|
N

(
1 + E(λ)

α

)−γ

. The cells

are largest away from the discontinuity (|λ| > 1), where E(λ) = 0 and a(x) = amax = σ|Ωc|
N

.

To close the system we have the definitions of α (5.2) and the support size (5.17):

α =

[
(1− β)

β|Ω|
∫

Ω

E(λ)γdx

]1/γ

=

[
(1− β)

βΩx

∫

Ωx

E(λ)γdx

]1/γ

R(x) = Ra + Rb

√
a(x)/π.

a(x) = amax

(
1 +

E(λ)

α

)−γ

λ = x/R(x).

Some properties of the equilibrium mesh can be immediately inferred: R(x) is largest far

from the discontinuity, where R = Ra + Rb

√
amax/π and this sets the maximum (half)

width of the band of concentrated cells - beyond this no cell’s support is big enough for

it to be aware of the discontinuity. By definition, α puts a fraction β of the mesh cells in

the band, so the area outside is N(1− β)amax = Ωy(Ωx − 2Rmax) ≈ |Ω| so

amax ≈ |Ω|
N(1− β)

, Rmax = Ra + Rb

√
amax

π
. (5.31)

Continuing on, we rearrange α and substitute a(x) into R(x), then R(x) into λ:

βΩxα
γ

1− β
=

∫

Ωx

E(λ)γdx

x = λ


Ra + Rb

√
amax

π

(
1 +

E(λ)

α

)−γ

 = λS(λ), say. (5.32)

Finally, we substitute dx = dx
dλ

dλ and use E(λ) = E(−λ), E(λ) = 0, |λ| > 1 to change

the limits of integration:

βΩxα
γ

1− β
=

∫ 1

−1

Eγ d

dλ
[λS]dλ = 2

∫ 1

0

Eγ d

dλ
[λS]dλ. (5.33)
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Therefore

βΩxα
γ

2(1− β)
= [EγλS]10 −

∫ 1

0

λS
dEγ

dλ
dλ

= −
∫ 1

0

λ


Ra + Rb

√
amax

π

(
1 +

E

α

)−γ

 dEγ

dλ
dλ

= −Ra

∫ 1

0

λ
dEγ

dλ
dλ−Rb

√
amax

π

∫ 1

0

λ

(
1 +

E

α

)−γ/2
dEγ

dλ
dλ.

We arrive at an implicit equation for α in terms of the other parameters:

βΩxα
γ

2(1− β)
= F (∞)Ra + F (α)Rb

√
amax

π
, (5.34)

where

F (α) = −
∫ 1

0

λ

(
1 +

E

α

)−γ/2
dEγ

dλ
dλ, α > 0

F (∞) = −
∫ 1

0

λ
dEγ

dλ
dλ = −[λEγ]10 +

∫ 1

0

Eγdλ =

∫ 1

0

Eγdλ.

We first characterize F (α). If E(λ) is a decreasing function of λ for λ > 0, then dEγ

dλ
< 0 ⇒

F (α) > 0. And if α1 < α2 then
(
1 + E

α1

)−γ/2

<
(
1 + E

α2

)−γ/2

, so F (α) is an increasing

function of α, in particular F (α) < F (∞), α < ∞. Also, as α → 0, α−γ/2
(
1 + E

α

)−γ/2
=

(α + E)−γ/2 → E−γ/2 so α−γ/2F (α) → a constant, so F (0) = 0. Thus 0 6 F (α) < F (∞).

Assuming Ra, Rb > 0, then as α increases from 0 to ∞, the right hand side of (5.34)

increases from F (∞)Ra to F (∞)Rmax whereas the left hand side increases from 0 to ∞ so

by continuity they must cross, i.e. there is always a positive solution for α, and therefore

an equilibrium position for the mesh. Once α is known, then for any λ ∈ [0, 1], (5.32) gives

the corresponding x from which a(x) and R(x) can be derived, completely characterising

the mesh.

To verify the accuracy of (5.34) we perform some numerical tests. For this we need a

specific E(λ) - one that is representative and can also be integrated. We use w =
√

1− λ2

so E1(λ) = 1
4
(1− λ2)2(1− λ2/4), and set E = 4E1, γ = 1. Integrating by parts:

F (α) = −
∫ 1

0

λ

(
1 +

E

α

)−1/2
dE

dλ
dλ

= −
[
λ2α

√
1 +

E

α

]1

0

+

∫ 1

0

2α

√
1 +

E

α
dλ = 2α

[∫ 1

0

√
1 +

E

α
dλ− 1

]
,

∫ 1

0

√
1 +

E

α
dλ =

1

2
√

α

∫ ∞

1

dt

t3

√
αt3 + (t− 1)2(t− 1/4), t = 1/λ2.

Standard techniques [1] can be used to convert this integral into Jacobian elliptic integrals

for numerical evaluation [73]. Figure 5.18 displays an example equilibrium mesh with some
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supports in green and the band delineated in blue (Ω = [−2, 2] ∗ [0, 1.732], Nx = 40, Ny =

10, Ra = 0.05, Rb = 2.5, β = 0.8). The first test varies Ra and Rb with fixed β = 0.6,
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Figure 5.18: A typical equilibrium mesh with some supports (green) and the band (blue)

and the second varies β with Ra = 0.18, Rb = 5.65. Fig 5.19 compares the analytic and

computed α for the equilibrium meshes - the agreement is very good.
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Figure 5.19: Comparison of analytic (red) and computed (blue) α

We are now in a position to ask how to set the parameters Ra, Rb and β to achieve

tangible mesh qualities such as the width of the band, the minimum and maximum cell

sizes and so on. We already have expressions for the width and maximum cell sizes (5.31),

and the minimum cell size is

amin = amax

(
1 +

E(0)

α

)−γ

(5.35)

Suppose we wish to set all three - amin, amax and Rmax. From (5.31) β = 1− |Ω|/Namax,

so that for β > 0, amax must be greater than |Ω|/N which is reasonable because if cells in
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the band are to shrink then cells outside must expand to compensate. Then from (5.35)

α = E(0)/

[(
amax

amin

)1/γ

− 1

]
and finally inverting (5.31), (5.34):

Ra

Ωx

=
αγ/2

F (∞)− F (α)

(
F (∞)

αγ

Rmax

Ωx/2
− β

1− β

)

√
amax

π

Rb

Ωx

=
αγ/2

F (∞)− F (α)

(
β

1− β
− F (α)

αγ

Rmax

Ωx/2

)
. (5.36)

Now Ra, Rb cannot be negative, which restricts the values of the parameters:

Ra, Rb > 0 ⇔ β

1− β

αγ

F (∞)
6 Rmax

Ωx/2
6 β

1− β

αγ

F (α)

⇔
(

1 +
Ωx/2

Rmax

αγ

F (α)

)−1

6 β 6
(

1 +
Ωx/2

Rmax

αγ

F (∞)

)−1

.

This is indicating that some combinations of mesh qualities are incompatible. Heuristi-

cally we are asking for a mesh with given cell sizes at the discontinuity and at the edge of

the band a set distance away, plus they must expand between these smoothly in a defined

profile - sometimes the cells just aren’t being allowed to change quickly enough. Although

this is for continuous cell areas a(x), it is reminiscent of what we have seen already for

finite cells, e.g. the cells in Fig 5.9a between the ellipse and the boundaries, despite Ra

and Rb being manifestly nonnegative. It suggests that for finite cells the answer is simi-

larly to increase Ra or Rb - which happened automatically by introducing Rb in the first

place.

Figs 5.20 and 5.21 plot the surfaces Ra = 0 (red) and Rb = 0 (green) along with the

previous sets of test data. To make the domain finite, the coordinates used are β, amin

amax
-

which is one for a uniform mesh, and Rmax

Ωx/2
- the fraction of the the domain covered by the

band. The surface closest is Rb = 0 with Ra = 0 just behind, and between them is the

thin region of achievable equilibrium meshes. The test data (in blue) all lie in the region

as expected. The diagram confirms that there is a trade-off between the parameters - e.g.

fix the width of the band (take a horizontal slice) and change the ratio of cell sizes away

from uniformity and the cells outside the band must grow to compensate those shrinking

inside. As the green surface is above the red it suggests that using Rb instead of Ra to

gain the necessary stability in the mesh iteration comes at the expense of widening the

band.
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Figure 5.20: The achievable region in parameter space

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

R_a=0
R_b=0

Test Data

amin

amax

β

Rmax

Ωx/2

Figure 5.21: The achievable region in parameter space

It should be noted that the smoothing inherent in the weight w obviates the need for

any further spatial smoothing of the monitor, unlike many moving mesh methods [42].

In conclusion we have developed an error-based monitor function that is sufficiently

smooth for the mesh adaption cycle (Chapter 4, section 4.3) to converge to a static mesh

for static data, despite the presence of discontinuities. Unfortunately, in the process some

new parameters were introduced, but these have been related to tangible mesh qualities

for both continuous and discontinuous data.
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Chapter 6

Results

The algorithm is demonstrated in six test problems. The first, the Sod shock tube,

is used mainly to explore the effects of the parameters and functions introduced by the

novel monitor, and determine reasonable values where possible for the following problems.

Some include comparisons with published solutions but others are more exploratory.

6.1 Sod shock tube

The problem definition is as follows: Ω = [−2, 2]× [0, 0.5], (ρ, p, u, v) = (0.125, 0.1, 0, 0)

for x < 0 and (1, 1, 0, 0) for x > 0 with reflective boundary conditions. Nx = 40, Ny = 10

(851 cells), β = 0.8 and Ccfl = 0.9. For the monitor we use (5.30) with s = 2, γ = 1 and

E = E1 (a simpler version of the gradient-like E1 − E2). The monitor quantity U = ρ

as it is discontinuous at both the shock and contact, w = (1 − λ2)2 with (5.16), and the

support is set quite broad so cells are reasonably spaced for visualization (Ra = 0.5R0 ,

Rb = 4) where R0 ≈ 0.052 here (3.18). For the mesh to adapt to the initial conditions

λmon . 0.02 was found necessary, but could be raised to 0.05 for t > 0, and to minimise

the probability of remapping it is scaled by k/Ncycle on the kth cycle.

Fig 6.1 shows the initial mesh with selected supports:
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Figure 6.1: Initial mesh with selected supports for Sod shock tube problem

Fig 6.2 zooms in on the discontinuity to see the cells.

Fig 6.3 shows the mesh at 0.2 intervals (all time units are in seconds) until the end

time t = 0.8 - the mesh has concentrated over the shock, contact and rarefaction fan as

expected and has successfully remained one dimensional. No remapping was required.

Fig 6.4 shows the flow variables at end time. In each plot a cell is drawn as single point

over the centroid, with connecting lines corresponding to shared edges (i.e. the dual space
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Figure 6.2: Close up of the cells over the discontinuity
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Figure 6.3: Mesh for Sod shock tube problem at (top to bottom) t = 0, 0.2, 0.4, 0.6, 0.8
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Figure 6.4: Density (top left), pressure (top right), u (bottom left) and v (bottom right)

at end time viewed both from an angle and side-on
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triangulation). The shock is smeared over 2 cells and the contact about 4 cells, and the

variables have remained one dimensional, but there are noticeable overshoots at the shock

despite this using the monotone corrector (section 4.3). The results for the second-order

corrector are indistinguishable, so this is attributed to the fact that the predictor does

not use any information from neighbouring cells.

Fig 6.5 compares the effect on the end time mesh of different λmon for t > 0. The

mesh is identical for 0.1 and 0.05, validating the earlier choice of 0.05, but there are slight

differences with 0.02 - the cells between the discontinuities have not been allowed to fully

expand back - and with 0.01 the cells cannot keep up with the discontinuities in the first

place.
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Figure 6.5: End time mesh for (top to bottom) λmon = 0.01, 0.02, 0.05, 0.1 for t > 0

Fig 6.6 overlays the end time mesh for (5.16) (red, taking 198 seconds), (5.15) (green,

267 secs) and (5.14) (blue, 423 secs) - they only differ significantly where the monitor

is very small, which is to be expected as approximations to the weight integral will be

poorer where there are fewer datapoints. (5.16) is used from here on.
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Figure 6.6: End time mesh for (5.16) (red), (5.15) (green) and (5.14) (blue)

Fig 6.7 compares the effect on the final mesh of increasing Ra or Rb - both enlarge the

smallest cells:
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Figure 6.7: End time mesh for Ra/R0 = 0.25 (left), 0.75 (right) and Rb = 2.5 (top), 4

(bottom)

Now the timestep is determined by both the wave speeds, which are the same in all cases

(ignoring mesh dependency in the velocity), and the cell sizes, so should increase with

Ra or Rb. Fig 6.8 compares the average timestep over the calculation with the minimum

cell size at t = 0 for Ra/R0 ∈ {0.25, 0.5, 0.75}, Rb ∈ {2.5, 3, 3.5, 4} - the general trend is

present although the relationship is not linear.

The reason for this is clearer from the end time monitor (which is related to the area

via equidistribution (1.12)), shown in Fig 6.9.
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Figure 6.8: Plot of average timestep against minimum cell size at t = 0
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Figure 6.9: End time monitor for (Ra/R0, Rb) = (0.25,2.5) red, (0.25,4.0) green, (0.75,2.5)

blue, (0.75,4) pink for complete mesh (top) and individual features (bottom row)

We can now see that as Ra or Rb are increased, not only are the smallest cells enlarged, but

the relative distributions change as well. The monitor (and hence cells) is redistributed

from the shock to the contact and rarefaction, with the shock and contact being even for

the pink case (bottom right Fig 6.7)). However this is at the expense of increasing the

support numbers (the number of cells in a support), plotted in Fig 6.10.

For Rb = 4 (green and pink) they are excessively large, but the red is practical, being

around 10 for large parts of the mesh (below Ra/R0 . 0.1 or Rb . 2.0 mesh adaption

fails). It is noticeable that the support numbers are highest not where the cells are smallest

(over the shock or contact) but nearby, where the cell sizes are changing most rapidly.
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Figure 6.10: Support numbers for (Ra/R0, Rb) = (0.25,2.5) red, (0.25,4.0) green, (0.75,2.5)

blue, (0.75,4) pink

Changing the weight w has a similar but less pronounced effect (after reducing λmon

to 0.002 at t = 0 so the mesh can settle to the initial conditions). Fig 6.11 shows the
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Figure 6.11: End time mesh for (top to bottom) w = (1− λ2)2,
√

1− λ2, 1

meshes and Fig 6.12 the monitor at end time. As the weight becomes less sharply peaked

cells are redistributed from the shock and contact to the rarefaction, but in this case the

support numbers are not changed. However w = 1 triggered remaps on six occasions (out

of 199 timesteps), so we choose w = (1− λ2)2 from here on.
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Figure 6.12: End time monitor for w = (1 − λ2)2 (red) w =
√

1− λ2 (green) and w = 1

(blue)

Having gained some understanding of λmon, Ra, Rb and w we turn now to the choice

of E used in the monitor, which so far has been E = E1. Fig 6.13 shows the least squares

errors at end time for the baseline calculation.
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Figure 6.13: The least square errors at end time - E1 (red), E2 (green), E3 (blue) and E4

(pink) for complete mesh (top) and individual features (bottom)

The errors for the shock and contact are similar to the analytic errors for the fixed

radius support (Fig 5.17). Now the discretization scheme is second-order in time and
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space which means that it should be exact when the variables are all linear, regardless

of their gradients. This suggests that in general the truncation error will be more closely

represented by the deviation from linearity, i.e. the errors E2, E3 etc, rather than the

gradient itself, approximated by E1 − E2. For example the gradient-type monitor used

here so far has concentrated cells throughout the rarefaction fan which is wasteful as the

truncation error will be greatest at the discontinuities in gradient at the ends, exactly as

indicated by E2 in green at the right of Fig 6.13. Potential problems are that E2 is not

singly peaked and the higher order errors become rapidly noisier but these turn out to be

largely irrelevant. Fig 6.14 shows the final meshes for various errors:
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Figure 6.14: End time mesh for E = E2, E2 + E3, E3 and E1 + E2 + E3 (top to bottom)

Unfortunately the higher order errors are biased towards the shock, and because the

structure of the shock is more stable than the contact (characteristics flow into rather

than with it) these differences are amplified with time. From Fig 6.13 this is true for all

the higher order errors so no linear combination can correct for this. Comparing the end

time monitor of the baseline E1 (red) and E1 + E2 + E3 (green) in Fig 6.15 only confirms
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this.
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Figure 6.15: End time monitor for E = E1 (red) and E1 + E2 + E3 (green)

Increasing Ra or Rb to counteract the bias as in Fig 6.9 is not an option as the support

numbers are already too large (somewhere between the green and pink in Fig 6.10), so we

conclude that the higher order errors cannot help here and that E = E1 is best. Unless

otherwise stated E = E1 from here on.

6.2 Huang and Sun’s five circles problem

This static problem is taken from Huang and Sun [46], Example 2, in which

U(x, y) =
5∑

i=1

tanh

(
30

[
(x− xi)

2 + (y − yi)
2 − 1

8

])
(6.1)

describing five osculating circles with centres (x1, y1) = (0, 0), (xi, yi) = (±0.5,±0.5), i =

2, 3, 4, 5 in the domain Ω = [−2, 2]× [−2, 2]. We set P = (1, x, y) (linear approximation)

and stop the iteration when the fractional change in monitor drops below 10−4. We define

e1(x, y) to be the difference between (6.1) and the least squares approximation on the

converged mesh and |Sup| to be the average size of the support on the converged mesh.

Fig 6.16 shows the converged meshes for E = E1 and E = E2 where Nx = Ny = 56 (6385

cells), Ra/R0 = 0.1, Rb = 2.5, m = 1+
√

E/α, weight (5.14) and β = 0.5. As with Huang

and Sun, we see the mesh concentrates either directly over the circles (for E = E1) or

in bands either side (E = E2), an effect we can now attribute to whether the monitor is

singly or doubly peaked over each circle, as in Fig 5.17.

Fig 6.17 compares the variation of ‖e1‖, the L2 norm of e1, with |Sup| over different

values of the parameters: Ra/R0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, Rb ∈ {1.5, 2.5, 3.5, 4.5, 5.5},

119



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Figure 6.16: Converged mesh for E = E1 (top) and E = E2 (bottom)
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m ∈ {
√

1 + E/α, 1 +
√

E/α}, E ∈ {E1, E2, E1 + E2}, weights (5.14), (5.15) and (5.16).
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‖e1‖

Figure 6.17: Variation of error with support size for various combinations of parameters

The general pattern is that ‖e1‖ increases with the support size, which is to be expected

as the reconstruction becomes less tightly focused on the cell it is centred on (and where

e1 is evaluated). However if the support size drops below a certain threshold (around 10

here) the mesh fails to settle and the approximation becomes very poor. It is no surprise

that for a given support size, ‖e1‖ is smallest for the most accurate weight - (5.14). Also,

there is little difference between m =
√

1 + E/α and m = 1+
√

E/α, or between E = E1,

E = E2 and E = E1 + E2. The smallest value of ‖e1‖ obtained here is about 2.54e-2

which is comparable with Huang and Sun’s 1.77e-2 ([46], 812 cells, (k, m) = (1, 0)).
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6.3 Rayleigh-Taylor instability

In this problem gravity acts downwards and the upper half of the rectangular domain

is made denser than the lower. With zero velocity the system is in unstable equilibrium,

but an initial perturbation starts the upper region falling down the left hand side, whilst

a bubble of the lower region rises up the right hand side to replace it. Where they pass,

the contact surface is unstable and starts to roll up forming a characteristic inverted

mushroom shape.

The problem definition is as follows: Ω = [0, 0.5] × [−1, 1], ρ = 2, 1 for y > 0, < 0

with reflective boundary conditions. Gravity g = (0,−1), which is included by modifying

S → S + (0, ρgx, ρgy, ugx + vgy)
T in the predictor-corrector scheme. The initial velocity

is u = sign(−y)ke−2π|y|/l0 sin(2πx/l0), v = ke−2π|y|/l0 cos(2πx/l0) where k = 1.02, l0 = 1

and the pressure is set so as to be in equilibrium (p = p0 + gyρy, p0 = 2). Nx = 40,

Ny = 10 (851 cells), β = 0.8 and Ccfl = 0.95. For the monitor, m =
√

1 + E/α, U = ρ,

Ra/R0 = 0.25, Rb = 2.5 (R0 = 0.037) and λmon = 0.02.

Figs 6.18 and 6.19 show the evolution of the mesh. The perturbation also causes a

pressure wave to travel upwards from the contact, reaching the top of the domain at about

t = 0.5, and a smaller release wave to travel downwards, which is more visible in the 3D

density plots in Figs 6.20 and 6.21. The calculation took 1121 timesteps in 922 seconds

and required no remaps.
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Figure 6.18: Mesh at t = 0, 0.1, 0.2, 0.3 (top row, left to right) and t = 0.4, 0.5, 0.6, 0.7

(bottom row, left to right)
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Figure 6.19: Mesh at t = 0.8, 1, 1.2, 1.4 (top row, left to right) and t = 1.6, 1.8, 2 (bottom

row, left to right)
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Figure 6.20: Density at t = 0, 0.1, 0.2, 0.3 (left column, top to bottom) and t =

0.4, 0.5, 0.6, 0.7 (right column, top to bottom)
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Figure 6.21: Density at t = 0.8, 1, 1.2 (left column, top to bottom), t = 1.4, 1.6, 1.8 (right

column, top to bottom) and t = 2 (bottom)
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Fig 6.22 compares the density contours at various times for m =
√

1 + E/α with

m = 1 +
√

E/α - the differences are very slight, suggesting this problem is less sensitive

to the monitor regularisation.

Figure 6.22: Density contour plots for m =
√

1 + E/α (top row) and m = 1 +
√

E/α

(bottom row) at t = 0.6, 1.0, 1.4, 1.8 (left to right) for 0.9 6 ρ 6 2.8 in 0.1 increments
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Fig 6.23 shows the total number of edge flips experienced by each cell at the end time -

cells passed by the contact surface average about ten and those in the roll up about twenty

indicating significant mesh restructuring, but nearly all cells have changed connectivity

several times.
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Figure 6.23: Total edge-flips per cell at the end time (green=0-5, pink=5-15, blue=15-31)
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6.4 2D Riemann problem

This problem, introduced by Kurganov and Tadmor [54], is a 2D extension of the

Riemann problem in which a square domain is divided into four quarters. As time evolves,

the dense lower left quarter moves diagonally into the dense stationary upper right quarter

creating a region of higher density between them.

The definition is as follows: Ω = [0, 1] × [0, 1], (ρ, p, u, v) =(1.1,1.1,0.8939,0.8939) in

the bottom left corner (x, y 6 0.5), (0.5065,0.35,0,0.8939) bottom right (y 6 0.5 < x),

(0.5065,0.35,0.8939,0) top left (x 6 0.5 < y), (1.1,1.1,0,0) top right (x, y > 0.50) with

transmissive boundary conditions. Nx = Ny = 50 (5101 cells), β = 0.8 and Ccfl = 0.75.

For the monitor, m = 1 +
√

E/α or m =
√

1 + E/α, U = ρ, Ra/R0 = 0.25, Rb = 2.5

(R0 = 0.025), and λmon = 0.02.

Fig 6.24 shows the initial mesh in full on the left, and on the right zooms in on the

centre. Moving away from the centre along the diagonals, the cells become quite stretched

which is an artifact of the fixed dual-space connectivity, but the monitor ensures that as

the shocks move, cells become aware of them in good time and shrink smoothly in response.
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Figure 6.24: Initial mesh for 2D Riemann problem

Fig 6.25 shows the mesh and density at the end time t = 0.2 (13 remaps were required

in 1143 timesteps taking 110 minutes for m =
√

1 + E/α, and 22 remaps in 1653 timesteps

taking 160 minutes for m = 1 +
√

E/α).

Comparing with the uniform calculation of Morrell [65, Fig 4.4.1, 1002 cells], both mon-

itor regularisations achieve the correct shock location but in this problem m =
√

1 + E/α
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is clearly superior, capturing the valley down the middle of the high density region, and

compares favourably with her ALE-AMR calculation [65, Fig 4.4.2, ∼ 4500 cells].
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Figure 6.25: End time mesh and density (contours 0.55 6 ρ 6 2 in 0.05 increments) for

m = 1 +
√

E/α (top) and m =
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1 + E/α (bottom)
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6.5 LeVeque spherical blast

This problem, introduced by LeVeque [56], is a spherical explosion in an axisymmetric

domain between reflective walls. The domain is Ω = [0, 1] × [0, 1.4], rotated around

the x axis with reflective boundary conditions everywhere except y = 1.4 where it is

transmissive. Initially the fluid is at rest with p = 1 everywhere and ρ = 5 inside a circle

(sphere) centre (0.4,0), radius 0.2, ρ = 1 outside. As the spherical shock starts to expand,

the rarefaction wave travels inwards, resulting in a region of low density. Fluid then rushes

in from all directions, and meets at the centre forming a second, smaller outward shock

to follow the first. By the time they have both reflected off the boundaries a number of

interactions have occurred forming a complex pattern of waves.

For the monitor, m = 1 +
√

E/α, Ra/R0 = 0.5, Rb = 3.0 (R0 = 0.015), and λmon =

0.01. The mesh is Nx = 120, Ny = 30 (7351 cells) and the monitor variable is U = ln(ρp).

This is so the monitor identifies discontinuities in both the density and pressure, and

is equally sensitive to the discontinuities in the low density region (which have much

smaller magnitude) as those elsewhere. This is not recommended in general because for

example 0.0001, 0.0002 and 1,2 have the same ratio but usually the difference between

the former is due to noise and so of no interest. Fig 6.26 shows the mesh evolution (in

total requiring 20 remaps in 1224 timesteps and taking 3 hours). It is noticeable that

all of the mesh behind the initial shock is refined due to the gradients of ρ or p being

non-zero (Fig 6.27), but in most of that area ρ and p vary quite smoothly and there is

not much happening, suggesting this is a waste of mesh. Fig 6.28 plots the least squares

errors at the end time. As with the Sod shock tube (Fig 6.14), the errors are distributed

differently between the features. On a logscale (Fig 6.29) E2 and E3 are much noisier,

and are proportionally much smaller between features than E1, so if used for monitors

should let the mesh derefine more in such places . Fig 6.30 compares the end time meshes

for E = E1, E1 + E2 + E3 and E2 + E3 - with no component of E1 the latter does indeed

focus almost completely on the discontinuities.

Figs 6.31, 6.32 compare end time density and pressure contour plots. Despite the

differences in mesh between the different monitors, these are very similar, and comparable

with Azarenok [6, Figs 5.2-5.10] (who ran separate calculations for U = ρ and U = p and

used a larger mesh, 100×140). For this problem, changing the monitor from m = 1+
√

E/α

to m =
√

1 + E/α makes virtually no difference to the results (compare Figs 6.30, 6.33).
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Figure 6.26: Mesh at t = 0, 0.1, 0.2, 0.3 (left column, top to bottom) and t =

0.4, 0.5, 0.6, 0.7 (right column, top to bottom)
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Figure 6.27: Density and pressure at t = 0.7
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Figure 6.28: E1, E2 and E3 (top to bottom) at t = 0.7
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Figure 6.29: E1, E2 and E3 in log-scale (top to bottom) at t = 0.7
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Figure 6.30: End time meshes for E = E1 (top), E = E1 + E2 + E3 (middle) and

E = E2 + E3 (bottom)
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Figure 6.31: Density contour plots for E = E1 (top), E = E1 + E2 + E3 (middle) and

E = E2 + E3 (bottom) for 0.2 6 ρ 6 1.3, increment 0.0125
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Figure 6.32: Pressure contour plots for E = E1 (top), E = E1 + E2 + E3 (middle) and

E = E2 + E3 (bottom) for 0.775 6 p 6 1.5, increment 0.0125
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Figure 6.33: End time meshes for m =
√

1 + E/α and E = E1 (top), E = E1 + E2 + E3

(middle) and E = E2 + E3 (bottom)
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6.6 Elliptical shock problem

The last problem is a variation on the circular Sod problem in which the discontinuity

is elliptical. Our interest here is to run the problem onto very late times, so that the

shock bounces around the domain several times, and see how the mesh reacts. The

physical domain Ω = [−1, 1] × [0, 1], (ρ, p) = (1, 1) inside, (0.125, 0.1) outside the ellipse
(

x
0.4

)2
+

(
y−0.5
0.3

)2
= 1, Nx = 100, Ny = 40 (8141 cells), β = 0.8, m = 1 +

√
E/α, E = E1,

Ra/R0 = 0.25, Rb = 2.5 (R0 = 0.017), and λmon = 0.05. Figs 6.34, 6.35 and 6.36 show

the mesh evolution, and Figs 6.37, 6.38 and 6.39 show the density. It took 2815 timesteps

(32 remaps) and 6 hours to reach the end time t = 2.0. The mesh has managed to stay

with the shock throughout, but more notable is the fact that the contact surface is still

visible in the mesh at the end time. As with the previous problem, changing the monitor

from m = 1 +
√

E/α to m =
√

1 + E/α makes virtually no difference to the results (Fig

6.40).
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Figure 6.34: Mesh at t = 0, 0.1, 0.2 (left column, top to bottom) and t = 0.3, 0.4, 0.5 (right

column, top to bottom)
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Figure 6.35: Mesh at t = 0.6, 0.7, 0.8, 0.9 (left column, top to bottom) and t =

1, 1.1, 1.2, 1.3 (right column, top to bottom)
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Figure 6.36: Mesh at t = 1.4, 1.5, 1.6 (left column, top to bottom), t = 1.7, 1.8, 1.9 (right

column, top to bottom) and t = 2 (bottom)
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Figure 6.37: Density at t = 0, 0.1, 0.2, 0.3 (left column, top to bottom) and t =

0.4, 0.5, 0.6, 0.7 (right column, top to bottom)
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Figure 6.38: Density at t = 0.8, 0.9, 1, 1.1 (left column, top to bottom) and t =

1.2, 1.3, 1.4, 1.5 (right column, top to bottom)
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Figure 6.39: Density at t = 1.6, 1.7 (left column, top to bottom), t = 1.8, 1.9 (right

column, top to bottom) and t = 2 (bottom)
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Figure 6.40: End time mesh (left) and density contour plot (right, contours from 0.075 to

0.325 in 0.025 intervals) for m =
√

1 + E/α (top) and m = 1 +
√

E/α (bottom)
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Chapter 7

Conclusions and further work

The objective of this thesis was to develop a moving mesh algorithm for the Euler equa-

tions based on the Geometric Method for the solution of the optimal transport problem.

The Geometric Method was originally developed in the context of weather simulation

to solve numerically the semi-geostrophic equations, which have since been recognised

as an optimal transport problem. The method of discretisation results in a mesh of

polyhedral cells with specified (positive) areas so could be used for mesh generation. The

mesh depends continuously on the areas, so that as the specifications change, the mesh

adapts smoothly and in such a way as to minimise the total movement suggesting its use

as a moving mesh algorithm.

We set the scene in chapter 1 by surveying current moving mesh methods paying par-

ticular attention to variational formulations similar to optimal transportation such as the

harmonic method and equidistribution. In chapter 2 we then introduced optimal trans-

portation theory and the semi-geostrophic equations, and the discrete version which the

Geometric Method solves. Other solution methods were then briefly mentioned. Chapter

3 went into the algorithmic details of the original solution method of Chynoweth and the

later improvements of Purser. After repeating Purser’s discussion of various extensions,

we then applied the algorithm to some simple test cases to assess its performance. When

the specified areas were fixed it displayed quadratic convergence, but when the specified

areas become position dependent limit cycles were found to exist.

In chapter 4 we introduced the discretization method for the Euler equations, which

employed the finite volume approach. Space-time cells were constructed by joining cells

at one time level to the next, and any tetrahedral gaps created by connectivity changes

were split up and assigned to adjacent cells. Then the predictor-corrector scheme and

the mesh adaption loop were described and the least squares gradient estimator for the

unstructured grid. A novel monotonic limiter on the unstructured grid was described,

based on quadratic programming, then the timestep criteria and finally the remapping

algorithm required when the mesh changes too much within a timestep.
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In chapter 5 we selected a monitor function based on derivative estimates and applied

it to a series of mesh adaption problems involving discontinuities. Each time it failed the

algorithm was modified, first by changing the support to a fixed radius and introducing

weighting, then making the support adaptive, and finally by switching the monitor to the

least squares error itself. Further analysis showed that for smooth data the least squares

errors can be linked to geometric properties such as the gradient. For data with a line

discontinuity, error profiles were generated for various weights with a fixed support, and

for an adaptive support the associated continuous problem was solved completely yielding

conditions on some of the parameters and shedding some light on previous difficulties.

Chapter 6 then applied the complete algorithm to various test problems. The first, the

Sod shock tube, was used as a test bed to investigate the effects of the various functions

and parameters introduced in chapter 5. Two test problems, a 2D Riemann problem and

a spherical explosion, demonstrate comparability with published solutions. The last, an

elliptical shock, is run to late times, so that the regions of concentrated mesh change

topology significantly during the course of the simulation, merging and separating.

Thus we conclude that the method is viable.

7.1 Further work

Two areas require immediate attention to make the algorithm fully functional. The

first is the under/overshoots visible in the Sod shock tube. The claim that this is due to

the predictor not using any neighbour information needs verification and if so, correction.

The second is to ascertain whether the boundary conditions need to be explicitly enforced

in the limiter for the solution to the Rayleigh-Taylor instability. Another area of concern

is whether there is a satisfactory limiter that is both monotone and second order, perhaps

based on limiting at the vertices of the space-time cell.

More generally, the complexity of the monitor functions required to satisfy the sensi-

tivity of the mesh iteration suggest that this naive iteration requires some form of mod-

ification e.g. by damping the mesh movement or incorporating the monitor directly into

the cost function for the optimal transport problem.

Beyond this there are two major avenues of exploration. The first is extension to three

dimensions. A good starting point would be to investigate current convex hull algorithms

to see if any can more naturally incorporate the changing nature of the solution as the

specified volumes change. The second is extension to multiple fluids. Some progress has
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been made already in this area using power diagrams, but no attempt has been made

yet to vary the position of the sites to improve the solution e.g. to match up interfaces

between adjacent cells.
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