
Determinants of Multiplicative Toeplitz Matrices1

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

In this paper we study matrices A = (aij) whose (i, j)th-entry is a function of i/j; that is,
aij = f(i/j) for some f : Q+ → C. We obtain a formula for the truncated determinants in the
case where f is multiplicative, linking them to determinants of truncated Toeplitz matrices.
We apply our formula to obtain several determinants of number-theoretic matrices.
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Introduction
In this article, we consider matrices and their determinants of the form




c(1) c( 1
2 ) c( 1

3 ) c(1
4 ) · · ·

c(2) c(1) c( 2
3 ) c(1

2 ) · · ·
c(3) c( 3

2 ) c(1) c(3
4 ) · · ·

c(4) c(2) c( 4
3 ) c(1) · · ·

...
...

...
...

. . .




, (0.1)

where the (i, j)th-entry is a function of i/j. They are characterised by being constant along lines
where i/j is a given positive rational. In this sense they resemble Toeplitz matrices, which are
constant on lines parallel to the diagonal; i.e. where i − j is a given integer. For this reason we
shall call them multiplicative Toeplitz matrices. These matrices represent linear operators between
various spaces. To identify these spaces, and to determine when they are bounded are interesting
questions in themselves, but for the purposes of this paper, these will not concern us. We shall be
mainly concerned with determinants of truncated matrices.

Toeplitz matrices are most usefully studied by associating them with a function (or ‘symbol’)
whose Fourier coefficients make up the matrix. Indeed, they generate bounded operators on `2 if
and only if the matrix entries are the Fourier coefficients of an essentially bounded function on T.
For matrices of the form (0.1), we associate, by analogy, the series

∑

q∈Q+

c(q)qit, (0.2)

where q ranges over the positive rationals. We shall first make sense of such series in §1.
In §2 , we concern ourselves with the case when c(·) is a multiplicative function on the positive

rationals. Then the matrix (0.1) and the series (0.2) are shown to factorise as ‘Euler products’.
In §3, we consider the determinants of truncated multiplicative Toeplitz matrices for which c(·)

is multiplicative. The ‘Euler product’ formula ceases to hold when we truncate the matrices, but
we show in Theorem 3.2 that it is miraculously recovered on taking determinants. This reduces
the problem of evaluating such determinants to those whose non-zero entries lie on ‘lines’ i/j = pk

for p prime and k ∈ Z. It is shown in Theorem 3.1 that these can be evaluated in terms of
determinants of Toeplitz matrices. The proofs are done separately in §4. Using this formula, and
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known formulae for Toeplitz determinants with rational symbol, we evaluate several determinants
of number-theoretic interest in §5. For example, for f and g completely multiplicative

det
(

f
( i

(i, j)

)
g
( j

(i, j)

))

i,j≤n

=
∏

p≤n

(
1− f(p)g(p)

)[ n
p ]

. (0.3)

Determinants associated with arithmetical functions have been studied and evaluated by many
authors. A number of generalizations have been made of Smith’s determinant [7] of the matrix
with coefficients (i, j) (see for example [6]). The matrices considered are however of a different
form; e.g. in [6], the first column is constant. Generalizations in a different direction were made
in [2], [5], and also [3], but again the matrices considered are of a different form from (0.1).

§1. Q+-coefficients and series
For a function c : Q+ → C defined on the positive rationals, we define

∑

q∈Q+

c(q) = lim
N→∞

∑
m, n ≤ N
(m, n) = 1

c
(m

n

)
, whenever this limit exists.

We shall sometimes abbreviate the left-hand sum by
∑

q c(q). For q = m
n ∈ Q+, with (m,n) = 1,

we write |q| = max{m,n}. Thus the above definition becomes
∑

q

c(q) = lim
N→∞

∑

|q|≤N

c(q).

Note that if f(t) =
∑

q∈Q+ c(q)qit and the sum converges absolutely, then

lim
T→∞

1
2T

∫ T

−T

f(t)x−it dt = lim
T→∞

1
2T

∫ T

−T

∑

q∈Q+

c(q)qitx−it dt

=
∑

q∈Q+

c(q) lim
T→∞

1
2T

∫ T

−T

(q/x)it dt

=
{

c(x) if x ∈ Q+

0 if x 6∈ Q+.

More generally, given a measurable function f : R→ C, we can ask if the limit

lim
T→∞

1
2T

∫ T

−T

f(t)x−it dt (1.1)

exists for every x > 0. If it exists, we shall denote it by c(x) or, if we want to emphasize the
dependence on f , by cf (x). This limit is also called the ‘Hadamard coefficient’ (see [8], [4]).
Of particular number-theoretic interest are those f for which c(x) is supported on the positive
rationals; that is,

c(x) = 0 for x 6∈ Q+. (1.2)

Definition 1.1

(a) Let V denote the space of measurable functions f for which (1.1) and (1.2) hold. We call
c(q) (for q ∈ Q+), the Q+-coefficients of f and write

f(t) ∼
∑

q∈Q+

c(q)qit,

which we call the Q+-series, of f . (The series formed as such is a formal series and need not
converge.)
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(b) Let U denote the subspace of V consisting of all absolutely convergent Q+-series; that is,

U =
{ ∑

q∈Q+

c(q)qit :
∑

q∈Q+

|c(q)| < ∞
}

.

(c) For f ∈ V , with Q+-coefficients c(q), let A(f) denote the infinite matrix

A(f) =
(

c
( i

j

))

i,j≥1

.

Proposition 1.2
Let f, g ∈ U . Then fg ∈ U and

cfg(q) =
∑

r∈Q+

cf (r)cg(q/r).

Proof. If f(t) =
∑

r∈Q+ cf (r)rit and g(t) =
∑

s∈Q+ cg(s)sit we have, by the absolute convergence
of the series,

f(t)g(t) =
∑

r,s∈Q+

cf (r)cg(s)(rs)it =
∑

q∈Q+

qit
( ∑

r∈Q+

cf (r)cg(q/r)
)

from which the result follows.
¤

Examples 1.3

(a) Let g(s) =
∑∞

n=1
an

ns and h(s) =
∑∞

n=1
bn

ns be two Dirichlet series which converge absolutely
for <s > σ0. Let α, β > σ0 and put f(t) = g(α− it)h(β + it). Then f ∈ U with

c(q) =
1

mαnβ

∞∑

d=1

amdbnd

dα+β
for q = m

n with (m,n) = 1.

We can prove this by multiplying out the series for g(α− it) and h(β + it). We have

f(t) =
∞∑

m=1

am

mα−it

∞∑
n=1

bn

nβ+it
=

∑

m,n≥1

ambn

mαnβ

(m

n

)it

=
∞∑

d=1

∑
m, n ≥ 1

(m, n) = d

ambn

mαnβ

(m

n

)it

=
∞∑

d=1

1
dα+β

∑
m, n ≥ 1

(m, n) = 1

amdbnd

mαnβ

(m

n

)it

=
∑

m, n ≥ 1
(m, n) = 1

1
mαnβ

( ∞∑

d=1

amdbnd

dα+β

)(m

n

)it

.

(b) As a special case of the above, take an = bn = 1 for all n. Then, for α, β > 1, we have

ζ(α− it)ζ(β + it)
ζ(α + β)

=
∑

q∈Q+

c(q)qit =
∑

m, n ≥ 1
(m, n) = 1

1
mαnβ

(m

n

)it

,

where ζ(·) is the Riemann zeta function. Note that this gives for arbitrary m,n ∈ N

c
(m

n

)
= c

(m/(m,n)
n/(m,n)

)
=

(m,n)α+β

mαnβ
.

§2. Multiplicative coefficients and Euler products
We start by extending the notion of a multiplicative function to functions defined on the positive
rationals. Recall that a function f : N → C is multiplicative if it is not identically zero and
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f(mn) = f(m)f(n) whenever (m, n) = 1. This is equivalent to saying that f satisfies: f(1) = 1
and

f(pa1
1 . . . pak

k ) = f(pa1
1 ) . . . f(pak

k ),

for all distinct primes pi and all ai ∈ N.

Definition 2.1 A function a : Q+ → C is multiplicative if a(1) = 1 and

a(pa1
1 . . . pak

k ) = a(pa1
1 ) . . . a(pak

k ),

for all distinct primes pi and all ai ∈ Z \ {0}.
We say a is completely multiplicative if, in addition to the above, we also have, for all primes

p and k ∈ N,
a(pk) = a(p)k, and a(p−k) = a(p−1)k.

The following proposition follows immediately from the definition:

Proposition 2.2
Let a : Q+ → C. Then a is multiplicative if and only if there exist multiplicative functions
f, g : N → C such that a(m

n ) = f(m)g(n) whenever (m, n) = 1. Furthermore, a is completely
multiplicative if and only if both f and g are.

Next we show that coefficients derived from Dirichlet series with multiplicative coefficients as
in example (a) are also multiplicative.

Theorem 2.3
Let a, b : N → C be multiplicative functions such that

∑∞
d=1 a(md)b(nd) converges absolutely for

every m,n ≥ 1 and its sum is non-zero if m = n = 1. Then the function c : Q+ → C is
multiplicative, where c(·) is defined by

c
(m

n

)
=

∑∞
d=1 a(md)b(nd)∑∞

d=1 a(d)b(d)
for (m,n) = 1.

Proof. First c(1) = 1. Now consider (m, n) = 1. Write m =
∏

p pα and n =
∏

p pβ . Note that
α = 0 for p|n, while β = 0 for p|m. Since a and b are multiplicative we have

c
(m

n

) ∞∑

d=1

a(d)b(d) =
∏
p

∞∑

k=0

a(pk+α)b(pk+β)

=
∏

p-mn

∞∑

k=0

a(pk)b(pk)
∏

p|mn

∞∑

k=0

a(pk+α)b(pk+β)

=
∏
p

∞∑

k=0

a(pk)b(pk)
∏

p|mn

∑∞
k=0 a(pk+α)b(pk+β)∑∞

k=0 a(pk)b(pk)

=
∞∑

d=1

a(d)b(d)
∏

p|mn

∑∞
k=0 a(pk+α)b(pk+β)∑∞

k=0 a(pk)b(pk)
.

(Note that here we used the fact that
∑∞

k=0 a(pk)b(pk) 6= 0 which follows from
∑∞

n=1 a(n)b(n) 6= 0.)
Hence

c
(m

n

)
=

∏

p|m

∑∞
k=0 a(pk+α)b(pk)∑∞

k=0 a(pk)b(pk)

∏

p|n

∑∞
k=0 a(pk)b(pk+β)∑∞

k=0 a(pk)b(pk)
(2.1)

= f(m)g(n),
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where

f(m) =
∏

p|m

∑∞
k=0 a(pk+α)b(pk)∑∞

k=0 a(pk)b(pk)
and g(n) =

∏

p|n

∑∞
k=0 a(pk)b(pk+β)∑∞

k=0 a(pk)b(pk)
.

After Proposition 2.2, it remains to show that f and g are multiplicative.
Consider f . Again, let (m,n) = 1 and write m =

∏
p pα and n =

∏
p pβ . Then

f(mn) =
∏

p|mn

∑∞
k=0 a(pk+α+β)b(pk)∑∞

k=0 a(pk)b(pk)

=
∏

p|m

∑∞
k=0 a(pk+α)b(pk)∑∞

k=0 a(pk)b(pk)

∏

p|n

∑∞
k=0 a(pk+β)b(pk)∑∞

k=0 a(pk)b(pk)

= f(m)f(n),

showing f is multiplicative. Similarly, g is multiplicative.
¤

Euler products
Dirichlet series with multiplicative coefficients can be factorised as Euler products. We show
below that this factorisation extends naturally to Q+-series with multiplicative coefficients and,
furthermore, to the corresponding multiplicative Toeplitz matrix.

Suppose f ∈ U and f has multiplicative Q+-coefficients c(q). For a prime p and t real, we
define fp(t) by

fp(t) =
∑

k∈Z
c(pk)pikt.

Let n be a squarefree number greater than 1. We define fn(t) by

fn(t) =
∏

p|n
fp(t).

Let Sn denote the set of all rationals formed from the prime divisors of n; i.e. if n = p1 . . . pk then

Sn = {pa1
1 · · · pak

k : a1, . . . , ak ∈ Z}.
By multiplicativity of c(·) and the Fundamental Theorem of Arithmetic, it follows that

fn(t) =
∑

q∈Sn

c(q)qit.

Theorem 2.4
Let f ∈ U whose Q+-coefficients c(q) are multiplicative. Then we have the Euler products

(i) f(t) =
∏
p

fp(t), and

(ii) A(f) =
∏
p

A(fp).

Proof. (i) From above we have ∏

p≤P

fp(t) =
∑

q∈SQ

c(q)qit,

where Q =
∏

p≤P p. Note that every q with |q| ≤ P is in SQ. Hence
∣∣∣∣∣∣
f(t)−

∏

p≤P

fp(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

q∈Q+

c(q)qit −
∑

q∈SQ

c(q)qit

∣∣∣∣∣∣
≤

∑

|q|>P

|c(q)| → 0, as P →∞

5



from which the result follows.

(ii) First we prove that for m,n coprime,

A(fmfn) = A(fm)A(fn). (2.2)

By Proposition 1.2, fm, fn ∈ U implies fmfn ∈ U , with

cfmfn
(q) =

∑

r∈Q+

cfm(r)cfn(q/r).

Replacing r with i/q gives

A(fmfn)ij = cfmfn

( i

j

)
=

∑

q∈Q+

cfm
(i/q)cfn

(q/j). (2.3)

On the other hand, (
A(fm)A(fn)

)
ij

=
∞∑

r=1

cfm(i/r)cfn(r/j).

Hence we must show that there is no contribution in (2.3) if q 6∈ N.
We can write i = s1t1u and j = s2t2v, where s1, s2 ∈ Sm, t1, t2 ∈ Sn and u, v are coprime to

mn. Since i, j ∈ N, this forces s1, s2, t1, t2, u, v ∈ N. For a contribution to (2.3), we need i/q ∈ Sm

and q/j ∈ Sn. Hence
q = is = jt for some s ∈ Sm and t ∈ Sn.

But then s1st1u = s2t2tv, which forces s1s = s2, t1 = t2t, and u = v. As a result, q = is2
s1

=
s2t1u ∈ N.

Applying (2.2) repeatedly we have, for every P ,

A
( ∏

p≤P

fp

)
=

∏

p≤P

A(fp).

Fix i, j, and let P ≥ max{i, j}. Then the matrices A(fp) for p > P do not affect the (i, j)th-entry
on the right. Similarly, on the left, the (i, j)th-entry equals that of A(f). Thus

A(f) =
∏
p

A(fp).

¤

§3. Determinants
In this section we obtain a formula for the determinants of truncated multiplicative Toeplitz ma-
trices in the case where the Q+-coefficients are multiplicative. Let f ∈ U with multiplicative
Q+-coefficients c(q). We denote by AN (f) the truncated N ×N -matrix for A(f); that is,

AN (f) =




c(1) c( 1
2 ) c( 1

3 ) c( 1
4 ) · · · c( 1

N )
c(2) c(1) c( 2

3 ) c( 1
2 ) · · · c( 2

N )
c(3) c( 3

2 ) c(1) c( 3
4 ) · · · c( 3

N )
c(4) c(2) c( 4

3 ) c(1) · · · c( 4
N )

...
...

...
...

. . .
...

c(N) c(N
2 ) c(N

3 ) c(N
4 ) · · · c(1)




.

From Theorem 2.4 we had the Euler product formula

A(f) =
∏
p

A(fp).
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When we truncate the matrices, we find that

AN (f) 6=
∏
p

AN (fp).

However, even though this formula breaks down, the formula is miraculously recovered by taking
determinants. Thus

detAN (f) =
∏
p

detAN (fp).

This reduces the problem to the evaluation of det AN (fp) for a given prime p. Define f̂p : T → T
(where T is the unit circle) by

f̂p(eiθ) = fp

( θ

log p

)
(0 ≤ θ < 2π)

Write ck for c(pk). The matrix A(fp) contains only entries (i, j) where i/j is a power of p; the
(i, j)th-entry is ck if i/j = pk. For instance for p = 2 it looks like

A(f2) =




c0 c−1 0 c−2 0 0 0 c−3 · · ·
c1 c0 0 c−1 0 0 0 c−2 · · ·
0 0 c0 0 0 c−1 0 0 · · ·
c2 c1 0 c0 0 0 0 c−1 · · ·
0 0 0 0 c0 0 0 0 · · ·
0 0 c1 0 0 c0 0 0 · · ·
0 0 0 0 0 0 c0 0 · · ·
c3 c2 0 c1 0 0 0 c0 · · ·
...

...
...

...
...

...
...

...
. . .




.

For a ∈ L∞(T), we denote (as is usual) by T (a), the Toeplitz matrix with symbol a, and by TN (a)
its N ×N -truncation. Thus

T (f̂p) =




c0 c−1 c−2 c−3 · · ·
c1 c0 c−1 c−2 · · ·
c2 c1 c0 c−1 · · ·
c3 c2 c1 c0 · · ·
...

...
...

...
. . .




.

For example, writing ck and dk for the coefficients of f2 and f3 respectively, we have

A4(f2)A4(f3) =




c0 c−1 0 c−2

c1 c0 0 c−1

0 0 c0 0
c2 c1 0 c0







d0 0 d−1 0
0 d0 0 0
d1 0 d0 0
0 0 0 d0




=




c0d0 c−1d0 c0d−1 c−2d0

c1d0 c0d0 c1d−1 c−1d0

c0d1 0 c0d0 0
c2d0 c1d0 c2d−1 c0d0


 ,

while

A4(f2f3) =




c0d0 c−1d0 c0d−1 c−2d0

c1d0 c0d0 c1d−1 c−1d0

c0d1 c−1d1 c0d0 c−2d1

c2d0 c1d0 c2d−1 c0d0


 .

So A4(f2)A4(f3) 6= A4(f2f3), but both the above matrices have determinants

c0

∣∣∣∣∣∣

c0 c−1 c−2

c1 c0 c−1

c2 c1 c0

∣∣∣∣∣∣
d2
0

∣∣∣∣
d0 d−1

d1 d0

∣∣∣∣ .
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Our main results are the following:

Theorem 3.1
Let p be a prime number. Then

detAN (fp) =
∏

r≥1

(det Tr(f̂p))
[ N

pr−1 ]−2[ N
pr ]+[ N

pr+1 ]
.

(The product is of course finite with r ≤ log N
log p + 1.)

Theorem 3.2
Let f ∈ U and suppose f has multiplicative Q+-coefficients. Then

detAN (f) =
∏
p

det AN (fp) =
∏
p

∏

r≥1

(det Tr(f̂p))
[ N

pr−1 ]−2[ N
pr ]+[ N

pr+1 ]
.

Remarks 3.3 The restriction of f to U is clearly unnecessary (in both Theorem 3.1 and 3.2) since
the results only concern the values c(q) with |q| ≤ N . The only necessary assumption is that c(·)
is multiplicative on {q ∈ Q+ : |q| ≤ N}. We retain the notation A(f) since the form of f (and
hence of f̂p) is useful in evaluating det Tr(f̂p).

On noticing that the exponent of det Tr(f̂p) is positive for r ≤ [ log N
log p ]−1, we have the following

corollary:

Corollary 3.4
(i) The matrix AN (f) is invertible if and only if AN (fp) is invertible for all p.
(ii) The matrix AN (fp) is invertible for all sufficiently large N if and only if Tr(f̂p) is invertible
for all r ≥ 1, in which case

detAN (fp) =
∏

r≥1

( |Tr−1(f̂p)||Tr+1(f̂p)|
|Tr(f̂p)|2

)[ N
pr ]

,

where |Tr(f̂p)| = det Tr(f̂p) and |T0(f̂p)| = 1. Hence, if Tr(f̂p) is invertible for all r ≥ 1 and all
primes p, we have

detAN (f) =
∏
p

∏

r≥1

( |Tr−1(f̂p)||Tr+1(f̂p)|
|Tr(f̂p)|2

)[ N
pr ]

.

§4. Proofs of Theorems 3.1 and 3.2
We start with some preliminaries.

Definition 4.1 Let n > 1 be squarefree, say n = p1 . . . pk. Define sets Sn and S+
n by2

Sn = {pa1
1 · · · pak

k : a1, . . . , ak ∈ Z} and

S+
n = {pa1

1 · · · pak

k : a1, . . . , ak ≥ 0} = Sn ∩ N.

It is straightforward to prove the following basic properties:
(i) Sn is a group under multiplication;
(ii) if d|n, then S+

d ⊂ S+
n ;

(iii) if k ∈ S+
n and d|k, then d ∈ S+

n .

Definition 4.2 Define a relation ∼n on a subset T of N as follows: for i, j ∈ T

i ∼n j ⇐⇒ i/j ∈ Sn.

2Sn was defined earlier in §2, but we include it here for convenience.
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That ∼n is an equivalence relation follows immediately from the fact that Sn is a group under
multiplication.

Lemma 4.3
Let T be a subset of N which satisfies the condition: if m ∈ T , then d ∈ T for every divisor d of
m. Then the equivalence classes of the relation ∼n on T are given by

[k] = kS+
n ∩ T = {ks ∈ T : s ∈ S+

n } for each k ∈ T coprime to n.

Proof. For k ∈ T such that (k, n) = 1, define [k] = kS+
n ∩ T . Then a, b ∈ [k] implies a = ks and

b = kt for some s, t ∈ S+
n . Hence a/b = s/t ∈ Sn, and so a ∼n b. Next, every j ∈ T is in some [k].

For we can write j =
∏

p pαp for some αp, so that

j =
∏

p|n
pαp

∏

p-n
pαp = sk,

where s =
∏

p|n pαp ∈ S+
n and k is coprime to n, and k ∈ T since k|j. Hence j ∈ [k].

¤

In particular, we can take T = TN
def= {1, . . . , N}. Further, by property (iii) above, we can (and

shall) take T = S+
m ∩ TN for some m. We shall sometimes write [k]n or [k]n,T to denote the

equivalence classes, to emphasize the dependence on n and the set T .

Define the counting function
Sn(x) =

∑
s ≤ x

s ∈ S+
n

1.

Thus |[k]n,TN | = Sn(N/k), and since ∼n partitions TN , we have

∑
1 ≤ k ≤ N
(k, n) = 1

Sn

(N

k

)
= |TN | = N.

Slightly more generally, using the fact that [x/k] = [[x]/k], we have for x ≥ 0
∑
k ≤ x

(k, n) = 1

Sn

(x

k

)
= [x]. (4.1)

We shall write
S+

n = {s(n)
1 , s

(n)
2 , . . .} where 1 = s

(n)
1 < s

(n)
2 < · · ·

Proof of Theorem 3.1
Since p is prime, the equivalence relation ∼p on TN = {1, 2, . . . , N} is now: for i, j ∈ TN ,

i ∼p j ⇐⇒ i

j
= pm for some integer m.

The equivalence classes are given by

[k] = {kpm : m ≥ 0} ∩ TN , where k ∈ TN and p - k.

The (i, j)th-entry of the matrix AN (fp) is cfp( i
j ). This entry is zero if i 6∼p j, while if i ∼p j, say

i/j = pm, then it is c(pm) = cm.

Consider the first equivalence class [1] = {1, p, p2, . . . , pr−1} for some r. Swap the rows labelled
1, p, . . . , pr−1 with the first r rows, then swap the columns labelled 1, p, . . . , pr−1 with the first r

9



columns. The determinant remains the same3, but now the top left (r × r)-matrix has entries
aij = cfp

(pi−1/pj−1) = ci−j ; i.e. it is the Toeplitz matrix Tr(f̂p). Furthermore, all remaining
entries in the first r rows and columns are zero. Now apply the same procedure for the next
equivalence class, say [k1] = {k1, k1p, . . . , k1p

s−1} for some s. Swap rows and columns labelled4

k1, k1p, . . . , k1p
s−1 with the s rows and columns directly after the first r. Repeating this for each

equivalence class and rearranging the matrix accordingly results in a matrix with blocks down the
diagonal and zeros elsewhere; that is,

detAN (fp) =

∣∣∣∣∣∣∣∣∣∣∣∣

T|[1]|(f̂p) 0

T|[k1]|(f̂p)

T|[k2]|(f̂p)

0
. . .

∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1 ≤ k ≤ N

p - k

detT|[k]|(f̂p).

The size of a class [k] is

|[k]| =
∑

m≥0, kpm≤N

1 =
∑

0≤m≤ log N/k
log p

1 =
[ log N/k

log p

]
+ 1.

We require the number of equivalence classes of a given size r; that is, for how many k ∈ TN with
p - k is

r =
[ log N/k

log p

]
+ 1 ?

This holds if and only if N
pr < k ≤ N

pr−1 , and so the required number is

∑
N
pr < k ≤ N

pr−1
p - k

1 =
∑

N
pr <k≤ N

pr−1

1−
∑

N

pr+1 <k≤ N
pr

1

=
[ N

pr−1

]
− 2

[N

pr

]
+

[ N

pr+1

]
.

Hence
detAN (fp) =

∏

1≤r≤[ log N
log p ]+1

(det Tr(f̂p))
[ N

pr−1 ]−2[ N
pr ]+[ N

pr+1 ]
.

¤

For the proof of Theorem 3.2, we first need a preliminary result, regarding the determinants of
a certain type of block matrix. For a matrix A = (aij), denote by Am,n the (m× n)-truncation of
A; that is, Am,n = (aij)i≤m,j≤n (m,n ∈ N). Further, write An for An,n.

Proposition 4.4
Let l1, . . . , ln be positive integers such that l1 ≥ . . . ≥ ln ≥ 1. Let B = (bij) and C = (cij) be

3The determinant of a matrix remains unchanged after swapping rows k and l and columns k and l.
4Using the labelling of the original matrix.
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arbitrary matrices. Let A be the matrix formed by the blocks (brsClr,ls)r,s≤n; that is,

A =




b11




c11 . . . c1l1
...

. . .
...

cl11 . . . cl1l1


 b12




c11 . . . c1l2
...

. . .
...

cl11 . . . cl1l2


 . . . b1n




c11 . . .c1ln
...

. . .
...

cl11. . .cl1ln




b21




c11 . . . c1l1...
. . .

...
cl21 . . . cl2l1


 b22




c11 . . . c1l2...
. . .

...
cl21 . . . cl2l2


 . . .

...
...

. . .

bn1

[
c11 . . . c1l1...

. . .
...

cln1 . . . clnl1

]
bnn

[
c11 . . . c1ln...

. . .
...

cln1. . .clnln

]




.

Then

detA =
n∏

m=1

(det Bm)lm−lm+1(det Clm),

where ln+1 = 0.

Proof. We can describe A = (aij) as follows: put L0 = 0 and Lr = l1 + · · · lr, for r = 1, . . . , n.
Then for Lr−1 < i ≤ Lr and Ls−1 < j ≤ Ls

aij = brsci−Lr−1,j−Ls−1 .

We call the submatrix where Lr−1 < i ≤ Lr and Ls−1 < j ≤ Ls the block (r, s).

We prove the result by induction on n. If n = 1, we have |b11Cl1 | = bl1
11|Cl1 | = |B1|l1 |Cl1 |,

as required. Now assume the result holds for all such matrices with k ≤ n − 1 blocks down the
diagonal. Since determinants vary continuously with respect to the entries, it suffices to prove the
result when b11 6= 0, which we now assume.

Apply the first step in Gaussian elimination: subtract suitable multiples of the first number of
rows from each of the blocks in the first column to obtain zeros below the leading block. i.e. for
Lr−1 < i ≤ Lr and r = 2, . . . , n, we apply the rule

ri 7→ ri − br1

b11
ri−Lr−1 .

Then the (r, s)-block Lr−1 < i ≤ Lr, Ls−1 < j ≤ Ls transforms as

aij → aij − br1

b11
ai−Lr−1,j =

(
brs − br1b1s

b11

)
ci−Lr−1,j−Ls−1 = b′rsci−Lr−1,j−Ls−1 ,

say, where b′rs = brs − br1b1s

b11
. Here we used the fact that Lr−1 < i ≤ Lr implies 0 < i − Lr−1 ≤

lr ≤ l1, so that ai−Lr−1,j lies in block (1, s). Note that b′r1 = 0 so the first column of blocks (apart
from the top one) are now all zero. Hence

|A| = |(brsClr,ls)r,s≤n| =
∣∣∣∣∣

b11Cl1 ∗
0 (b′rsClr,ls)2≤r,s≤n

∣∣∣∣∣
= bl1

11 |Cl1 | |(b′rsClr,ls)2≤r,s≤n|.

On the right we have again a determinant of a ‘block’ matrix, but this time with n−1 blocks along
the diagonal. By inductive hypothesis, we have

|A| = |B1|l1 |Cl1 | · |B′
1|l2−l3 · · · |B′

n−1|ln−ln+1 |Cl2 | · · · |Cln |, (4.2)

11



where B′ = (b′ij)i,j≥2. But applying the same first step of Gaussian elimination to Br itself, we get

|Br| =
∣∣∣∣

b11 ∗
0 B′

r−1

∣∣∣∣ = b11|B′
r−1|.

Hence |B′
r−1| = |Br|/|B1|, and (4.2) becomes

|A| = |B1|l1 |B2|l2−l3 · · · |Bn|ln−ln+1

|B1|l2−l3 · · · |B1|ln−ln+1
|Cl1 | · · · |Cln |

= |B1|l1−l2 |B2|l2−l3 · · · |Bn|ln−ln+1 |Cl1 | · · · |Cln |.

¤

Proof of Theorem 3.2. Note that det AN (f) = det AN (fn) where n =
∏

p|N p, since the coefficients
c(i/j) with i or j greater than N do not affect the matrix AN (f). Indeed, we shall evaluate
det AN (fn) for any n squarefree and any N by proving

det AN (fn) =
∏

p|n
detAN (fp).

If n is prime, then there is nothing more to prove. Suppose n has at least two prime factors. We
can write n = mp where p is prime and p - m. Then the above follows if we can prove that

det AN (fn) = det AN (fp) det AN (fm). (4.3)

We begin as in the proof of Theorem 3.1, this time swapping the rows and columns of AN (fn)
corresponding to each of the equivalence classes of ∼n on the set TN in turn. They are

[k] = [k]n,TN = {ks
(n)
1 , ks

(n)
2 , . . .} where (k, n) = 1 and k ≤ N .

Swap rows and columns labelled by the elements of [1] with the first |[1]| rows and columns. The

top left |[1]| × |[1]|-matrix now has entries bij = c( s
(n)
i

s
(n)
j

). Then swap the rows and columns labelled

by the elements of the next equivalence class, say [k1], with the next |[k1]| rows and columns.
Repeat this procedure for all the equivalence classes. As in the case n = p for Theorem 3.1, we
obtain a matrix with blocks down the diagonal and zeros elsewhere:

|AN (fn)| =

∣∣∣∣∣∣∣∣∣∣∣∣

B|[1]|(fn) 0

B|[k1]|(fn)

B|[k2]|(fn)

0
. . .

∣∣∣∣∣∣∣∣∣∣∣∣

=
∏

1 ≤ k ≤ N
(k, n) = 1

∣∣B|[k]|(fn)
∣∣ , (4.4)

where B(fn) = (bij) with bij = c( s
(n)
i

s
(n)
j

), and Br(fn) is the r × r-truncation of B(fn).

Let k ∈ TN such that (k, n) = 1. Define the set T (k) by

T (k) def= [1]n,TM
= S+

n ∩ TM , where M = [N
k ],

and let tk denote its cardinality; i.e.

tk = |T (k)| = Sn

(N

k

)
.
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Note that |[k]n,TN | = |[1]n,TM | = tk, so that B|[k]n,TN
|(fn) = Btk

(fn), and (4.4) becomes

|AN (fn)| =
∏

1 ≤ k ≤ N
(k, n) = 1

|Btk
(fn)| . (4.5)

Consider the equivalence relation ∼m on T (k). By Lemma 4.3, the equivalence classes are

[j]m,T = jS+
m ∩ T (k) = jS+

m ∩ S+
n ∩ TM = jS+

m ∩ TM = [j]m,TM
, (since jS+

m ⊂ S+
n )

for j ∈ T such that (j, m) = 1; i.e. j ∈ S+
n and j ≤ M and (j, m) = 1. But j ∈ S+

n implies j = prj′

for some r ≥ 0 and j′ ∈ S+
m. Since j is coprime to m, we must have j′ = 1, hence j is a power of p

only. Thus the equivalence classes are

[pr]m,TM
= {prs

(m)
1 , prs

(m)
2 , . . . , prs

(m)
l } (for some l)

for r = 0, 1, 2, . . . such that pr ≤ M . Note that |[pr]m,TM
| = Sm( N

kpr ).

Label the rows and columns of each matrix Btk
(fn) by the elements of T (k). Now swap the

rows and columns of each Btk
(fn) according to the equivalence classes of ∼m on T (k). That is,

swap the rows and columns labelled by the elements of [1]m,TM
with the first |[1]m,TM

| rows and
columns. Then swap those labelled by [p]m,TM with the next |[p]m,TM | rows and columns. Repeat
this for each of the equivalence classes. The resulting determinant now has its rows and columns
ordered as

[1]m, [p]m, [p2]m, . . .

For this new determinant, the (i, j)th-entry in the ‘block’ corresponding to the equivalence classes
[pr−1]m and [ps−1]m is

c
(prs

(m)
i

pss
(m)
j

)
= c(pr−s)c

(s
(m)
i

s
(m)
j

)
(by multiplicativity of c(·))

= cr−sB(fm)ij .

The resulting matrix is therefore in the block form as in Proposition 4.4, with “B” = T (f̂p),“C” =
B(fm) , and

“lr” = lr,k
def= |[pr−1]m,TM | = Sm

( N

kpr−1

)
.

By Proposition 4.4, we have

|Btk
(fn)| =

∏

r≥1

|Tr(f̂p)|lr,k−lr+1,k |Blr,k
(fm)|.

(This is a finite product since the lr,k are eventually zero. Indeed, lr,k = 0 when kpr−1 > N .)
Substituting into (4.5) gives

|AN (fn)| =
∏

1 ≤ k ≤ N
(k, n) = 1

∏

r≥1

|Tr(f̂p)|lr,k−lr+1,k |Blr,k
(fm)|

=
(∏

r≥1

|Tr(f̂p)|er

)(∏

r≥1

∏
1 ≤ k ≤ N
(k, n) = 1

∣∣Blr,k
(fm)

∣∣
)

, (4.6)

where
er =

∑
1 ≤ k ≤ N
(k, n) = 1

(lr,k − lr+1,k) =
∑

1 ≤ k ≤ N
(k, n) = 1

(
Sm

( N

kpr−1

)
− Sm

( N

kpr

))
.
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Now, (k, n) = 1 if and only if (k, m) = 1 and p - k. Hence for x ≤ N ,
∑

1 ≤ k ≤ N
(k, n) = 1

Sm

(x

k

)
=

∑
k ≤ x

(k, m) = 1, p - k

Sm

(x

k

)
=

∑
k ≤ x

(k, m) = 1

Sm

(x

k

)
−

∑
pk ≤ x

(k, m) = 1

Sm

( x

pk

)

= [x]− [x/p] from (4.1).

It follows that

er =
[ N

pr−1

]
−

[N

pr

]
−

([N

pr

]
−

[ N

pr+1

])
=

[ N

pr−1

]
− 2

[N

pr

]
+

[ N

pr+1

]
.

Hence (4.6) implies (after Theorem 3.1),

|AN (fn)| = |AN (fp)|
∏

r≥1

∏
1 ≤ k ≤ N
(k, n) = 1

∣∣Blr,k
(fm)

∣∣ . (4.7)

Furthermore, since lr,k = 0 when kpr−1 > N , we have

∏
1 ≤ k ≤ N
(k, n) = 1

∣∣Blr,k
(fm)

∣∣ =

∏
k ≤ N/pr−1

(k, m) = 1

∣∣Blr,k
(fm)

∣∣

∏
pk ≤ N/pr−1

(k, m) = 1

∣∣Blr,pk
(fm)

∣∣ .

But lr,pk = lr+1,k, so

∏

r≥1

∏
1 ≤ k ≤ N
(k, n) = 1

∣∣Blr,k
(fm)

∣∣ =

∏
r≥1

∏
k ≤ N/pr−1

(k, m) = 1

∣∣Blr,k
(fm)

∣∣

∏
r≥2

∏
k ≤ N/pr−1

(k, m) = 1

∣∣Blr,k
(fm)

∣∣

=
∏

k ≤ N
(k, m) = 1

∣∣Bl1,k
(fm)

∣∣ (r = 1 term only)

= |AN (fm)| by (4.5),

since, l1,k = tk. Thus (4.7) gives

|AN (fn)| = |AN (fp)||AN (fm)|,
and the result follows.

¤

§5. Applications
We can use Theorem 3.2 to evaluate some interesting determinants. First suppose f has completely
multiplicative coefficients c(q), such that |c(p)|, |c(1/p)| < 1. Then, for t ∈ T,

f̂p(t) =
∞∑
−∞

c(pk)tk =
∞∑

k=1

c(p)ktk +
∞∑

k=0

c(1/p)kt−k

=
c(p)t

1− c(p)t
+

t

t− c(1/p)

=
(1− c(p)c(1/p))t

(1− c(p)t)(t− c(1/p))
.

This is a rational function and explicit formulas for determinants of truncated Toeplitz matrices
with rational symbols were found by Day (see, for example [1], p. 163). Applying Day’s formula,
one finds that

detTn(f̂p) =
(
1− c(p)c(1/p)

)n−1

for n ≥ 1.
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Hence
|Tm−1(f̂p)||Tm+1(f̂p)|

|Tm(f̂p)|2
=

{
1 if m ≥ 2

1− c(p)c(1/p) if m = 1.

Corollary 3.4 gives

detAn(f) =
∏

p≤n

(
1− c(p)c(1/p)

)[ n
p ]

.

After Proposition 2.2, we can rewrite this more conveniently as follows: put c(m/n) = f(m)g(n)
whenever (m,n) = 1 and where f and g are completely multiplicative functions on N. Then
c( i

j ) = c( i/(i,j)
j/(i,j) ) = f( i

(i,j) )g( j
(i,j) ) and we obtain:

Corollary 5.1
Let f, g : N→ C be completely multiplicative. Then

det
(

f
( i

(i, j)

)
g
( j

(i, j)

))

i,j≤n

=
∏

p≤n

(
1− f(p)g(p)

)[ n
p ]

=
n∏

r=1

∏

p|r

(
1− f(p)g(p)

)
.

The last expression is a standard manipulation the RHS.

For example, with f(n) = 1
nα and g(n) = 1

nβ (α, β ∈ C), we obtain

det
(( (i, j)α+β

iαjβ

)
i,j≤n

)
=

n∏
r=1

∏

p|r

(
1− 1

pα+β

)
. (5.1)

In particular, putting α = β = 1
2 , we have

det
(( (i, j)√

ij

)
i,j≤n

)
=

n∏
r=1

φ(r)
r

.

More generally, taking f(n) = h(n)√
n

and g(n) = 1√
nh(n)

, with h completely multiplicative and
non-zero, Corollary 5.1 gives

det
((h(i)(i, j)

h(j)
√

ij

)
i,j≤n

)
=

n∏
r=1

φ(r)
r

.

As a further example, let a(n) = µ(n)
nσ and b(n) completely multiplicative. Define c(·) as in Theorem

2.3. Then c is multiplicative (but not completely). Moreover, by (2.1) (with m =
∏

p pα, n =
∏

p pβ

and (m,n) = 1) we have

c
(m

n

)
=

∏

p|m

a(pα)
1 + a(p)b(p)

∏

p|n

b(pβ) + a(p)b(pβ+1)
1 + a(p)b(p)

=
a(m)b(n)∏

p|m(1 + a(p)b(p))
(since b is completely multiplicative)

=
µ(m)b(n)

mσ

∏

p|m

1
1− b(p)p−σ

. (5.2)

For m ≥ 1 and p prime, it follows that

c(pm) =
{ − 1

pσ−b(p) if m = 1
0 if m ≥ 2

, and c
( 1

pm

)
= b(p)m.

Hence

f̂p(t) =
∞∑
−∞

c(pm)tm =
t(pσ − t)

(pσ − b(p))(t− b(p))
,
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again a rational symbol. Applying Day’s explicit formula for Toeplitz matrices with rational symbol
gives

det Tn(f̂p) =
(
1− b(p)

pσ

)1−n

for n ≥ 1.

Hence
|Tm−1(f̂p)||Tm+1(f̂p)|

|Tm(f̂p)|2
=

{
1 if m ≥ 2
1

1−b(p)p−σ if m = 1.

Corollary 3.4 now gives

det
(

c
( i

j

))

i,j≤n

=
∏

p≤n

(
1− b(p)

pσ

)−[ n
p ]

.

As a special case take b(n) = nσ−1. Then (5.2) gives for m,n coprime

c
(m

n

)
=

µ(m)nσ−1

φ(m)mσ−1
.

Hence

det
(

µ(i/(i, j))
φ(i/(i, j))

( i

j

)1−σ
)

i,j≤n

=
n∏

r=1

r

φ(r)
.
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