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Abstract
In this paper we study generalised prime systems for which the integer counting function

NP(x) is asymptotically well-behaved, in the sense that NP(x) = ρx + O(xβ), where ρ is a
positive constant and β < 1

2 . For such systems, the associated zeta function ζP(s) has finite
order for σ = <s > β, and the Lindelöf function µP(σ) may be defined.

We prove that for all such systems, µP(σ) ≥ µ0(σ) for σ > β, where

µ0(σ) =
{

1
2 − σ if σ < 1

2
0 if σ ≥ 1

2

.

Introduction
A generalised prime system (or g-prime system) P is a sequence of positive reals p1, p2, p3, . . .
satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pn ≤ · · ·
and for which pn → ∞ as n → ∞. From these can be formed the system N of generalised
integers or Beurling integers; that is, the numbers of the form

pa1
1 pa2

2 . . . pak
k

where k ∈ N and a1, . . . , ak ∈ N0.2

Such systems were first introduced by Beurling [3] and have been studied by many authors
since then (see in particular [2]).

Much of the theory concerns connecting the asymptotic behaviour of the g-prime and g-
integer counting functions, πP(x) and NP(x), defined respectively by3

πP(x) =
∑

p∈P,p≤x

1 and NP(x) =
∑

n∈N ,n≤x

1.

The methods invariably involve the associated Beurling zeta function, defined formally by

ζP(s) =
∏

p∈P

1
1− p−s

=
∑

n∈N

1
ns

. (1)

In this paper, we shall be concerned with g-prime systems P for which

NP(x) = ρx + O(xβ), (2)

for some β < 1
2 and ρ > 0. (For example, for the rational primes when N = N, this is true with

β = 0 and ρ = 1.)
1Journal of Number Theory 122 (2007) 336-341.
2Here and henceforth, N = {1, 2, 3, . . .}, N0 = N ∪ {0}, and P = {2, 3, 5, . . .} — the set of primes.
3We write

∑
p∈P to mean a sum over all the g-primes, counting multiplicities. Similarly for

∑
n∈N .
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For such systems, the product and series (1) converge for <s > 1 and ζP(s) has an analytic
continuation to the half-plane <s > β except for a simple pole at s = 1 with residue ρ. Indeed,
writing NP(x) = ρx + E(x) with E(x) = O(xβ), we have for <s > 1,

ζP(s) =
∫ ∞

1−
x−s dNP(x) = s

∫ ∞

1

NP(x)
xs+1

dx = s

∫ ∞

1

ρx + E(x)
xs+1

dx

=
ρs

s− 1
+ s

∫ ∞

1

E(x)
xs+1

dx.

The integral on the right converges for <s > β and is an analytic function for such s.
Furthermore, ζP(s) has finite order for <s > β; i.e. ζP(σ + it) = O(|t|A) as |t| → ∞ for

some constant A for σ > β (indeed, in our case this is true with A = 1). We can therefore
define, as is usual, the Lindelöf function µP(σ) to be the infimum of all real numbers λ such that
ζP(σ+ it) = O(|t|λ). It is well-known that, as a function of σ, µP(σ) is non-negative, decreasing,
and convex (and hence continuous) (see, for example, [5]). Since µP(σ) = 0 for σ > 1, and (from
above) µP(σ) ≤ 1 for σ > β, it follows by convexity that

µP(σ) ≤ 1− σ

1− β
for β < σ ≤ 1.

For P = P (so that N = N), the Lindelöf Hypothesis is the conjecture that µP(σ) = µ0(σ) for
all σ, where

µ0(σ) =
{

1
2 − σ if σ < 1

2
0 if σ ≥ 1

2

.

In this paper we prove that for all g-prime systems satisfying (2), µP(σ) must be at least as
large as µ0(σ); i.e.

µP(σ) ≥ µ0(σ) for σ > β.

This is, of course, trivial for σ ≥ 1
2 , so we shall only concern ourselves with β < σ < 1

2 .
For the proof we employ the same methods (but strengthened) as those used in [4], where

(essentially) it was shown that µP(σ) > 0 for any σ < 1
2 , in order to prove that for such systems

we have ψP(x)− x = Ω(x
1
2
−δ) for every δ > 04.

Main result

Theorem 1
Let P be a g-prime system for which

NP(x) = ρx + O(xβ),

for some β < 1
2 and ρ > 0. Let µP(σ) and µ0(σ) be as defined above. Then for σ > β, we have

µP(σ) ≥ µ0(σ).

Proof. As mentioned above, we need only consider β < σ < 1
2 .

Suppose, for a contradiction, that we have µP(σ) < 1
2 − σ for some σ ∈ (β, 1

2). Then we can
write

µP(σ) =
1
2
− σ − δ,

4Here ψP(x) is the generalised Chebychev function: ψP(x) =
∑

pk≤x,p∈P,k∈N log p (counting multiplicities).
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for some δ > 0.
Let ζN (s) =

∑
n≤N n−s, where the sum ranges over n ∈ N (for clarity, we shall drop the

subscript P throughout this proof). By identical arguments as those used in [4], we find that
there exists constants c1, c2 > 0 such that for R ≥ c1N ,

R∑

r=1

∫ 2r−1

0
|ζN (σ + it)|2 dt ≥ c2R

2N1−2σ. (3)

Also, writing s = σ + it, and following the arguments in [4], we have

ζN (s) =
1

2πi

∫ c+iT

c−iT

ζP(s + w)Nw

w
dw + O

( N c

T (c + σ − 1)

)
+ O

(
N1−σ

T

∑
N
2 < n < 2N

n ∈ N

1
|n−N |

)
,

for |t| < T , c > 1− σ and N 6∈ N .
Now push the contour in the integral to the left as far as <w = −η, where η > 0, picking

up the residues at w = 0 and w = 1 − s (since |t| < T ). Here, η is chosen sufficiently small
such that σ − η > β and µP(σ − η) < 1

2 − σ. This is possible since µP(·) is continuous. Thus
ζP(σ − η + it) = O(|t| 12−σ−δ′) for some δ′ > 0.

The contribution along the horizontal line [−η + iT, c + iT ] is, in modulus, less than

1
2π

∫ c

−η

Ny|ζP(σ + y + i(t + T ))|√
y2 + T 2

dy = O(N cT−
1
2
−σ−δ′).

Similarly on [−η − iT, c− iT ]. For the integral along <w = −η, we have
∣∣∣∣

1
2πi

∫ −η+iT

−η−iT

ζP(s + w)Nw

w
dw

∣∣∣∣ ≤
N−η

2π

∫ T

−T

|ζP(σ − η + i(t + y))|√
η2 + y2

dy

= O

(
N−η

∫ T

−T

T
1
2
−σ−δ′

√
η2 + y2

dy

)

= O(N−ηT
1
2
−σ−δ′ log T ).

The residues at w = 0 and w = 1 − s are, respectively, ζP(s) and ρN1−s/(1 − s) = O(N1−σ

|t|+1 ).
Putting these observations together and letting c = 1−σ+ 1

log N (so that N c = eN1−σ), we have

ζN (σ + it) = ζP(σ + it) + O
( N1−σ

|t|+ 1

)
+ O(N1−σT−

1
2
−σ−δ′) + O(N−ηT

1
2
−σ−δ′ log T )

+ O
(N1−σ log N

T

)
+ O

(
N1−σ

T

∑
N
2 < n < 2N

n ∈ N

1
|n−N |

)
, (4)

for |t| < T and N 6∈ N .
Fix α ∈ (0, 1

4ρ), and let N → ∞ in such a way that (N − α,N + α) ∩ N = ∅. This is
possible for if not, then n′ < n + 4α (where n and n′ are consecutive g-integers), which leads to
N(x) & 1

4αx — a contradiction as 1
4α > ρ.
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For such N , we can bound the final sum in (4) as follows. We have

∑
N
2 < n < 2N

n ∈ N

1
|n−N | =

∑

α ≤ |n−N| <
√

N
n ∈ N

1
|n−N | +

∑
√

N ≤ |n−N| < N
2

n ∈ N

1
|n−N | + O(1)

= O
(
N(N +

√
N)−N(N −

√
N)

)
+ O

(N(3
2N)√
N

)
+ O(1)

= O(
√

N),

using N(x) = ρx + O(xβ+ε) with β < 1
2 . (In fact, the better estimate O(Nβ+ε) is possible by

splitting the sum over smaller ranges, but O(
√

N) suffices for our purposes.) Hence (4) becomes

ζN (σ+ it) = ζP(σ+ it)+O
( N1−σ

|t|+ 1

)
+O

(
N1−σ

T
1
2
+σ+δ′

)
+O(N−ηT

1
2
−σ−δ′ log T )+O

(N
3
2
−σ

T

)
. (5)

Choosing T = N1+η makes the last three O-terms all O(N
1
2
−σ−η′) for some η′ > 0. Using the

hypothetical bound ζP(σ + it) = O(|t| 12−σ−δ′), (5) becomes

ζN (σ + it) = O(|t| 12−σ−δ′) + O
( N1−σ

|t|+ 1

)
+ O(N

1
2
−σ−η′).

Using the Cauchy-Schwarz inequality, we have

R∑

r=1

∫ 2r−1

0
|ζN (σ + it)|2 dt = O

( R∑

r=1

∫ 2r−1

0
t1−2σ−2δ′ dt

)
+ O

( R∑

r=1

∫ 2r−1

0

N2−2σ

(t + 1)2
dt

)

+ O

( R∑

r=1

∫ 2r−1

0
N1−2σ−2η′ dt

)

= O(R3−2σ−2δ′) + O(RN2−2σ) + O(R2N1−2σ−2η′).

Taking R to be of slightly larger order than N , say R = N log N , the RHS becomes o(R2N1−2σ),
which contradicts (3).

¤

Remark. The result is best possible — at least if we assume the Lindelöf Hypothesis. If P = P,
then (2) holds with β = 0 and, on the Lindelöf Hypothesis, µP = µ0. However, it is conceivable
that the result might be subject to further improvements if (2) holds with β > 0. The example
below shows this is not the case — again on the assumption of the Lindelöf Hypothesis.

Let β ∈ (0, 1
2) and denote by P the g-prime system made up of p and p1/β where p varies

over all the primes; i.e.
P = P ∪ {p 1

β : p ∈ P}.
For this system, NP(x) satisfies (2). Indeed,

NP(x) =
∑

n≤xβ

[ x

n1/β

]
=

∑

n≤aβ

[ x

n1/β

]
+

∑

n≤b

[(x

n

)β]
− [aβ][b],
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for any ab = x (see [1] for such manipulations). Putting a = xλ, we obtain

NP(x) = x
∑

n≤xλβ

1
n1/β

+ xβ
∑

n≤x1−λ

1
nβ

− xλβ+1−λ + O(xλβ) + O(x1−λ)

= x

(
ζ
( 1

β

)
− β

1− β
x
−λβ( 1

β
−1) + O(x−λβ( 1

β
))

)

+ xβ
(x(1−λ)(1−β)

1− β
+ ζ(β) + O(x−(1−λ)β

)
− xλβ+1−λ + O(xλβ) + O(x1−λ)

= ζ
( 1

β

)
x + ζ(β)xβ + O(xλβ) + O(x1−λ).

Choosing λ = 1
1+β so that λβ = 1− λ minimises the error. This gives

NP(x) = ζ
( 1

β

)
x + ζ(β)xβ + O(x

β
1+β ).

The associated Beurling zeta function is ζ(s)ζ(s/β). On the Lindelöf Hypothesis, it follows that
µζ(·/β)(σ) = 0 for σ ≥ β

2 . Thus µP(σ) ≤ 1
2 − σ for β < σ < 1

2 . By Theorem 1, we must have ≥
as well, so in fact there is equality; i.e.

µP(σ) =
1
2
− σ,

for β < σ < 1
2 .
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