Maximal order of a class of multiplicative functions'
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Abstract
In this paper we obtain the maximal order of the multiplicative function given at the prime powers
by f(p*) = exp{h(k)l(p)} where h(-) and I(-) are increasing and decreasing functions respectively
with [(p) regularly varying of index —a (0 < a < 1). For example, we show that under appropriate
conditions

l/a “
m<axlogf (Z Ah(n ) L(log N)

where L(z) =3 _, l(p) and Ah(n) = h(n) — h(n —1).
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Introduction
We consider a class of multiplicative functions f(n) which at the prime powers are given by

f(pF) =PI p e Pk e N. (0.1)

In particular, we are interested in the maximal order of such functions®. If [(p) is constant, then f is a
prime-independent multiplicative function and the maximal order has been discussed by various authors
(see for example, 7], [8], [9] and references therein). Thus, for example, Shui [8] has proven that (using
our notation) if f(p*) = e"*) where 0 < h(k) < Ak? with 0 < 8 < 1 and some A, then

) log f(n)loglogn h(k)

limsup ————=—— = max ——.

n—00 logn k>1  k
In this case, the maximal order occurs for n of the form (][, pp)™ where m maximises h(k)/k. Results
such as the above were then applied to find the maximal order of divisor-like functions.

For non prime-independent multiplicative functions not much work appears to have been done. In

[10], Té6th and Wirsing consider a class of multiplicative functions which are at most of order loglogn
including (n), but their results do not overlap with ours.

For the function o_o(n) = >4, d”“, Gronwall [3] showed 100 years ago that for 0 < a < 1, the

maximal order is given by
1+o0(1 e
sl 101)_(ogm)' =)
11—« loglogn

Notice that in this case

o_o(p®) = 1—&—%—}—...4—% :exp{Lz(l)}
p p p
which is of the form (0.1) in an asymptotic sense, with h(k) constant and I(p) = p~. In fact, the
maximum order occurs for n of the form H <p P, and to find this maximum is then relatively easy, using
the prime number theorem. More genemlly7 if f is multiplicative and given by (0.1) and both h and [ are
decreasing (and non-negative), then the maximum order of f(n) again occurs for n of the form [[ _pp,
since f(p*¥) < f(p) and f(q) < f(p) for primes p,q with p < q. As such, logn = 6(P) ~ P by the prime
number theorem and multiplicativity of f(n) gives

log f(n) =h(1) > _ I(p )L(P),

p<P

1To appear in Annales Universitatis Scientarium Budapest.

2More accurately, the maximal order of log f; here the maximal order of F is loosely defined to be any real positive
Fn) _

function G such that limsup,, , Gy =

1. In practise, one chooses the simplest possible G.



where L(z) = > . l(p). If now we assume that L(y) ~ L(z) whenever y ~ z, then log f(n) ~
h(1)L(logn) (for such n) and this represents the maximal order.

In this article, we consider the less trivial (and perhaps more interesting) case is where h is increasing,
while keeping | decreasing. As such we shall see that the maximal order occurs for n = H <p P with
a, decreasing. The problem then reduces to finding the optimal a, which maximises f(n ) A simple
lower bound for the maximal order can be found by taking a, = 1 for all p < P, giving (under some mild

conditions on L)
1
tim sup 287 ()

nooo L(logn) = h(1).

With some extra conditions, we also have log f(n) < L(logn) and the question reduces to finding this
limsup. First, we require some bound on the growth of h with respect to L if we want log f(n) < L(logn).
For if n = 2% then

log f(n) = log f(2") = U(2)h(k) = l(2)h(i§g)’

so h(k) = o(L(k)) is necessary. A futher natural condition is that L should be regularly varying (see §1.
for the definition). In fact, for our main results we shall assume that L is regularly varying of index 1 — «
for some « € [0,1), while

h(k) < kP  for some <1 —a.

As such, L(y) ~ L(z) whenever y ~ z and L(z) = z'~e+o(),
Finally, we prove a slightly stronger result in that we find an asymptotic formula for max,,<n log f(n).

Let Ah(n) = h(n) —h(n—1) for n € N. Note that h(0) = 0 (by definition) and so Ah(1) = h(1). Our
main result is:

Theorem 1
Let f be multiplicative and given at the prime powers by (0.1), where we assume that h is increasing
and 1 is decreasing. Further suppose that L(z) = Zp<x l(p) is regularly varying of index 1 — o, where

0<a<1,and h(n) < nP for some 3 <1—a. Then

max log f(n) ~ Ry L(log N)

where ) -
Zoofl Ah(n)a’ — 1—
R, = sup =2= n = sup E Ah(n)a, . 0.2
a0 (Dopey @n)t = It () (0.2)
n=109n =1

The supremum here is over all decreasing sequences a,,, not identically zero, for which Y ° a,, converges.
In various cases we can evaluate R, more explicitly. In particular we note that by Holder’s inequality

nf:lAh(n al=e < (ZAh W) (ian)l_a (0.3)

n=1

and R, < (3207, Ah(n)Y/®)* always. The case of equality leads to:

Theorem 2
Let f be as in Theorem 1 and suppose further that Ah(n) decreases with n. Then

m<axlogf (ZAh 1/0‘) L(log N).

Note that the series 3¢ | Ah(n)'/® converges if Ah(n) decreases as Ah(n) < @, so Ah(n)Y/* < n™7
where v = =551,



In the case a = 0, R, can be evaluated and gives:

Theorem 3
Let f be multiplicative and given at the prime powers by (0.1), where h is increasing and l is decreasing
and L is regularly varying of index 1. Suppose that h(n) < n” for some 3 < 1. Then

h
o ()~ (1

n) > L(log N).
The form (0.1) (with h increasing and [ decreasing) may seem restrictive, but actually the results apply to
cases where (0.1) holds in an asymptotic sense. We illustrate this in example 5(b). Indeed, the example

1 2
= iy 27—

for which log f(p*) = W(l + O( = )), motivated the present results.

The rest of the paper is organlsed as follows. First we recall the notion of regular variation, then in
section 2 we find lower bounds for log f(n), to be followed in section 3 by upper bounds and the proofs
of the results.

In section 4, we show how to evaluate R, in case Ah(n) is not decreasing and a # 0. Finally, we
present some examples.

1. Some preliminaries

Notation We write f < g to mean f = O(g); i.e. |f(z)| < Ag(z) for some constant A and all =
sufficiently large. We write f < g to mean f(z) < (14 o(1))g(z), and similarly for f = g. Finally, f < g
means f(z) = o(g(x)), while f > g is the same as g < f.

Regular Variation
A function £ : [A, 00) — R is reqularly varying of index p if it is measurable, eventually positive, and

U(Ax) ~ Nl(x) as z — oo for every A >0 (1.1)

(see [2] for a detailed treatise on the subject). We shall sometimes denote this by £ € R,. If p = 0, then
¢ is said to be slowly varying. For example, 2”(log x)™ is regularly varying of index p for any 7. Trivially,
if 41 € Rp and f5 € R, then {145 € RP+U, while Ei\ S Rp,\.

The Uniform Convergence Theorem says that (1.1) is automatically uniform for A in compact subsets
of (0,00). In particular, {(z) ~ ¢(y) whenever x ~ y. We shall make use of Karamata’s Theorem: for £
reqularly varying of index p,

/IENM ifp>—1, / {~ if p<—1,

A p+ 1 p —|— 1
while if p=—1, [* € is slowly varying and [* ¢ = x(z).

We shall also make use of Potter’s bounds (see [2], p.25): if £ is regularly varying of index p then for
any chosen A >1 and § > 0, there exists X = X (A,0) such that

= am{ (207} ez x

The notion of regular variation extends to sequences ([2], p.52). For [ defined on P — the set of primes,
we say [ is regularly varying of index p if there exists a l € R,, defined on [2,00) such that I(p) = I(p).
As such, we can always take [ to be the step function defined by ( ) =1I(p) for p < z < p’ where p and
p’ are consecutive primes, which we shall do from now on, and we denote this extension by I.



We note that if [ is decreasing, regular variation of | (of index > —1) is equivalent to regular variation
of L, where L(z) = _ ., l(p). Indeed, by the Prime Number Theorem and Karamata’s Theorem, if [ is
regularly varying of index —a and o < 1, then

L(x):/il(t) dw(t)w/; ifgt)t @t~ g _xlof;”fogx (1.2)

which is regularly varying of index 1 — . Conversely, if L € Rq_, for some o < 1 and [ is decreasing,
then for every A > 1

1) (r(Ar) — (@) < L) — L) = 3 U(p) < U(a)(x(Aa) — m(x)).

rz<p<Az

Using L € R1_, and m € R; and dividing by L(z) gives

Az —1 < l(z)m(x) < Almo — 1)\a
A-=1 ~ Lx) ~ -1 ’

and on letting A — 1, (1.2) follows again, so that [ € R_,.

2. Lower bounds for log f(n)

Proposition 2.1

Let f be multiplicative with f(p*) = exp{h(k)l(p)}. Put n = Hp<Pp[9(P/p)], where g : [1,00) = R is
continuous, strictly increasing without bound, and g(1) = 1. Then

logn = ;9(9_1%) (2.1)
log f(n) = ZAh(r)L(g_]:(r)) (2.2)
r>1

where O(z) = . logp and L(z) =3 . U(p).
Of course the series are finite, ending when g=(r) > P/2.

Proof. We have

P
logn = E [g(—)]logp: g r E log p.
p<P p r>1 p<P
st [g(P/p)] =r
But [g(P/p)] =1 = =r{iam) <P < 571y 50

s T (0 5) ot en) = S )

r>1

For (2.2), we have

oz 1(m) = 3 h([o(5) i) = h0) X 1)

p<P r>1 p<P
st[g(P/p)] = r
_ ;h(r) <L(g_ir)) = L(g_l(;:_1)>) = g(h(r) —h(r - 1))L(g_ir>>,

as required.



Proposition 2.2

Let g : [1,00) — R be continuous, strictly increasing without bound, and g(1) = 1. Suppose further that
>7°1/g7 (n) converges. Let | be regularly varying of index —cv, with v € (0,1), and h increasing such
that h(k) = O(kP) for some B <1 —a. Then

(1) g{g(i)}logp~<gg_llm)>x
B ()]~ (5 A0 )

where L(z) =3, 1(p).
Proof. (1) Let G(x) denote the sum on the left in (1). Then from the proof of (2.1), we see that
x
G(z) = 0 ——).
0= 3 (m)
n<g(x)
By the Prime Number Theorem, we can write 6(z) = x+n(z) where n(z) = o(z). Let A = Y77 1/g7(n).
The term involving x is
1
n<g(x) ()

Now, given ¢ > 0, there exists zg such that |n(z)| < ex for * > . Note that x/g~1(n) > zo for

n < g(z/xo). Hence
> ()| s X <o

n<g(z/zo) n<g(z/xo)
For the remaining range g(x/zg) < n < g(z), the terms are O(1) and so the sum is O(g(z)). But
g~ Y(n) = n (since % < 22/2 g,%(n) — 0) so that g(z) = o(x). Thus G(z) ~ Az follows.

(2) Let H(x) denote the LHS of (2). From the proof of (2.2) we see that

Haxz) = Y h(n){L(g_fm))L<W)} Z Ah(n ( (n)). (2.3)

n<g(x)

Since h is increasing,
Ah(n)
> > Ahn ( ) ~ D e L),
= )/ Zatm)ime
for every N € N, by regular variation of L. Note that by Holder’s inequality
Ah(n) ( 1 )“( 1 )1—@
—— <A —_— — < oQ.
<Nl =) (2w
Hence® 37, -, % <ooand H(z)/L(z) 2 3250, 5 e(hn()ri) =

For the range n > N, we use the bound h(n) < An® in the middle expression of (2.3) and Potter’s

bounds on L N
Utm) - A

L(z) ~ g'(n)t—o?
for every § > 0 (some A;). But with § sufficiently small,

S == (S) (Sem)

n>N n>N Toto o I

3This incidentally shows that R, is finite.



Both sums converge, and so tend to zero as N — oco. Thus the result follows.

Proposition 2.3
Let f be multiplicative and given at the prime powers by (0.1), and assume that h and | satisfy the
conditions of Proposition 2.2. Then, with R, given by (0.2),

>
max log f(n) 2 RoL(log N).

Proof. Tt is clear that in the definition of R, we may range over strictly decreasing a,, rather than just
decreasing. Thus, given € > 0, there exists a strictly decreasing a,, for which " a,, < oo and

>y Ah(n)ay~®

n

(220:1 an)t=

Without loss of generality we may assume a; = 1, as we may replace a,, by a,/a;. Let g be an increasing
bijection on [1,00) such that g(1/a,) = n. Then a,, = 1/g71(n) so that g_%(n) < 00. Take n of the

form
- H p[g(P/P)] (2.4)
p<P

> R, — €.

As such, Proposition 2.2 implies

logn ~ (i aT)P and  log f(n) ~ (2 Ah(r)a}—a>L(P)

r=1
as P — oo through the primes. Using the fact that L is regularly varying of index 1 — «,

o ) _ 352, Ah(r)at-
L(logn) (oo an)t—e

Now note that if n and n’ are consecutive numbers of the form (2.4) (i.e. n' =[] - p, plsP'/P)] where P’
is the prime after P) then, with A =37 -, an, a

> R, —¢. (2.5)

logn' ~ AP" ~ AP ~ logn.
Hence, with N denoting the largest number of the form (2.4) below N,
maxlog f(n) > log f(N) Z (Ra — €)L(log N) ~ (Ro — €)L(log N).

This holds for every € > 0, hence it must also hold for e = 0.

3. Upper bounds and proofs of Theorems 1-3

The lower bound obtained in Proposition 2.3 already gives the maximum order of log f(n) for n of the
form Hp<Pp[-‘7(P/P)] with g an increasing bijection on [1,00) such that >" g71(n)~! converges. We have
to show that no other n gives still larger values of log f(n).

Lemma 3.1
Let f be multiplicative with f(p*) = eM®) for p € P,k € Ny, where h is increasing and 1 is decreasing.
Then the mazimal size of f(n) occurs when n is of the form

n= H p® (3.1)

p<P

with a, decreasing with p. More precisely, if n is as in (3.1) and a,, < ap, for some i < j (where p; is
the i*"-prime) then there exists n’ < n such that f(n') > f(n).



Proof. Let n be as in (3.1) with a,, < a,, for some i < j and put n’ = Hp<Ppa;9 where
a, =a, if p# p;,p;, and a, = apj,a;j = ay,.
Then n'/n = (p;/p;)*~ "7 < 1, while

£
8 ¥y

= (h(apj> - h(apl)) (l(pl) — l(pj)) > 0.

O

Proof of Theorem 1. By Lemma 3.1, we need only consider n of the form (3.1) with a, decreasing.
Suppose, without loss of generality, that ap > 1. Then

logn = Z aplogp > Z logp = 6(P),

p<P p<P

while log f(n) = >_ - p h(ay)l(p). Consider > 51,0, P(ap)l(p) for § > 0 (small). Using h(k) < kP, we
have - -

> ha)ip) < > dlp) = > (aplogp)ﬁ(l(p)%)l%

p<dlogn p<dlogn p<dlogn (Ing) =8

< (1ogn)5( > W)lﬁ, (3.2)

p<dlogn (logp)q

=P

(logp) T-F =
by Karamata’s Theorem and the prime number theorem,

o - x<l(t)lﬁ dn(t) » — 2T (33)

_B_
p<z (logp) 1=6

by Holder’s inequality. Now is regularly varying of index — 1= ﬁ, which is greater than —1. Thus

Hence (3.2) gives

5 (0logn)'~Pl(6logn)  67(1 — a)L(logn)
h(a ) < (logn)? ~
p<§gn ) (1 - 125) Ploglogn (1— 257
where 7 = 1 — (a+3) > 0. Let € > 0. Thus we can find 6 > 0 such that >° _5,,.., h(ap)l(p) < eL(logn).
As such
log f(n) < Y hlap)l(p) +L(logn). (3.4)
dlogn<p<P

From (3.4) and the fact that log f(n) is sometimes as large as cL(logn), it follows that for the maximal
order we must have P > §logn for ¢ sufficiently small. Now for every prime p,

logn > a, Zlogq = a,d(p)
q<p

(here ¢ runs over the primes < p). So, for the range of p under consideration (i.e. dlogn < p < P) and
using 0(x) > agz for some absolute constant ay,

logn L
= 90) = a0

(3.5)



The bound is independent of n, only depending on a, 8 and ¢, and so a, takes only finitely many values,
say ap € {1,...,M}. Let

Sdlogn < p < P

Then 7
M M M
Do Mapp) =Y _h(r) D> Up) =D AT = Tra) = Y Ah(r)T, (3.6)
dlogn<p<P r=1 Slogn <p < P r=1 r=1

ap =1

Since a, decreases with p, we have a, > r < p < ¢, for some ¢, (depending on r and P), decreasing with
r. Thus ¢, < ¢1 = P. For a non-zero contribution, we require g, > §logn > d0(P), so that agd < & < 1.
By the uniform convergence theorem for regular variation, L(g,) = L(4% - P) ~ (%)'~*L(P) and

3 <ZAh (ZAh ( ) )L(P) (3.7)

dlogn<p<P
Also y
logn—Zaplogp>Zr Z logp>z Z logp_ZQ @) (Z?;)
p<P p<P r=1 »p <>P = r=1
ap =~ ap > 7

by the Prime Number Theorem, so

Finally (3.4), (3.7) and (3.8) give

log f(n) _ YLy Ah(r)(%)—°
hTILIl—)Sol(l)p L(logn) (M &)11:)—04

This holds for all € > 0, so the above holds with ¢ = 0. Combining with Proposition 2.3 concludes the
proof of Theorem 1.
O

Proof of Theorem 2. We already noted in the introduction that R, < S, where

Sa _(ZAh 1/(*) :

But equality holds in (0.3) if a, = cAh(n)/® for some constant c. So we choose a,, as such (with ¢ > 0)

which is valid as Ah(n)'/® is decreasing and summable. Thus R, = S, in this case.
O
Proof of Theorem 3. Consider a = 0. For M € N let
M
. Ah(n)a,
Ro(M) = sup —Zn_lM () ;
OgaMg...Sal Zn:l Cl,n
the supremum being over all ay, ..., aps satisfying a; > ... > ap; > 0. It is clear that Ry(M) — Ry as
M — oo. We show that
h(n)
Ro(M) = max (3.9)
n<M N



Let a; > ...ap > 0 and put b, = ap, —apy1 (n=1,..., M) with apr+1 = 0. So an:Zi\/f:nbr. Then

ZAh ZAh Zb _Zb ZAh ibv-h(r)

while 27131:1 ap = Zr:l rb,. Thus

M M h
- Zn:1 h(n)b, . Zn:1 (nn) Cn
Ro(M) sup =L ——— = sup o —
bi,bar>0 Do, nby, Clinem>0 D Cy

on putting nb, = c,. The expression on the right is < max,<y @ while, choosing ¢ =1 and ¢, =0

for n # k (k any fixed integer from 1,..., M), we find Ry(M) > @ Thus (3.9), and hence, Theorem 3
follows. Note that the supremum is a maximum since h(n)/n — 0.
0

4. On the value of R,
The evaluation of R, is an intriguing optimization problem in its own right. In the case @ = 0 and the
case where Ah(n) is decreasing one obtains simple explicit formulas for R,. In general, one can still
evaluate R, but there does not appear to be an elegant formula.

We can turn it into a finite-dimensional problem by defining, for M € N,

Ry(M) = sup Z Ah(n)al=?.
ap >, Zapy 20 T
M an =1 -

We first prove that where Ah(n) is increasing, we must take a, constant. In fact, we prove this for a

slightly more general problem:

Lemma 4.1
Let a € (0,1), £ = (Iy,...,lpr) €ENM and A = (\y, ..., A\yr) € RM with each \; > 0 and consider

. — -«
Ry (A, 6 M) = R Z Amlma,, <.
SM irap =1
(i) Suppose that A\, < A\p11 for some k € {1,...,M — 1}. Then for the above mazimum, we must take
ar = Qf41-
(ii) If A, > App1 for every k, then Ry (A, 0; M) = (M A,ln/alm)".

m=1

Proof. (i) In any case a > agy1, so it suffices to show that if ar > ap41 then there exists a' =
(a},...,a)) with a} > ... >a),; >0 and Zn]\le Ima), =1 for which

M M
S Nnlmal, T > 3 Almal (4.1)
m=1 m=1

So, suppose ay > ap4+1. Let a), = a,, for n # k,k + 1 and put

d = d lpag + ley10k41
b Rl = I + g1

As such, ¢} > ... > d); > 0 (since apy1 < a) < ai) and Zivnf:llma;n = 1 (since lxaj, + lpy1a3,, =

lxar + lgr1ak+1) while

M M
> Almaly, %= D Amlman,® = el + Meslern)(@h)' ™ = klkay™* + Mealiirag ()

1a{ (ls + lk+1)

= )\k+1ak m([}c + lk+1t)1_a - (lkS + lk+1t1_a)} (42)
+



where s = /\A
k+

a"“ . Note that 0 < s,t < 1. Now put

(mz + n)(m + ny) =
(m+n)t—e

F(z,y) = Fon(2,y) = —(mz+ny'=")  (m,n€N).

So the RHS of (4.2) is )\k+1ak “F,.
if and only if x =y = 1. For

lig: (8, 1). We claim that for any z,y € [0,1], F(z,y) > 0 with equality

11—«
(ma J(rn?)_iﬂ;;—zy) > ma + nyl ™

= mafi- (ZE) T <l (I yed wnpep
== () {550 v} wea

since the LHS is largest when 2z = 1. Rearranging, we see that this holds if and only if G(y) > 0 for
0 <y <1 where

F(z,y) >0 Va,y€[0,1] < Va,y € [0,1]

Gy) = (m+n)*(m+ny)'"™* —m —ny' ™,
But G'(y) = (1 — a)ny‘a((%)“ —1) <0 for 0 <y <1 Thus G is strictly decreasing in [0,1]. Since

G(1) = 0 the result follows.
For the second part, note that by Holder’s inequality

M M o
3 Almali® = Z Al (L)1~ < (Z A},{azm) .
m=1

m=1

Equality holds if )\%O‘ = ca., for some constant ¢, which is feasible if \,, is decreasing.

Determining R,,.

Thus, in the evaluation of R, (A, ¢; M), for the optimal solution we need to take a,, constant on intervals
where A, is strictly increasing. Partition {1,..., M} into consecutive intervals* Li,...,Lyp and A, is
strictly increasing on each £,.. Thus we can write £, = {L,_1+1,..., L.} forr=1,..., M’ where L, is
a strictly increasing sequence of integers with Ly =0 and Ly = M, and A1 > A, for L1 <n < L,,
while A\p11 < A\, forn = L, (1 <r < M’'). (If Ay is decreasing, we must take £, = {r}.) As such, we
take a, constant on each £,. Writing

= Z l, and b, =ar,,

neLl,

gives Z;Vil lpay, = Zi\il(znem ln)ar, = ZT L Unby, = 1, while

M M’ M’
3 Aalnal® = Z( 3 /\nln>b,1f‘" =Y b
n=1 r=1 neL, r=1
where X, = 7 Znecr Anly. Thus
. _ Il l—a ! . /
Ra(AGM) = maxw>0 mezmbm = R, (N, ¢'; M)

=M llrbr =1

where A" = (M],...,Ny) and ¢ = (lf,...,1};,). Note that M’ < M, unless )\, is decreasing, in which
case R,(M) can be evaluated. Now apply Lemma 4.1 to this optimization problem and continue the
process repeatedly. Thus

Ra(Aae; M) = Ra(A/7€/;M/) == Ra(A*a€*7M*)

4That is; sets of the form {k,k 4+ 1,k +2,...,1} where k,l € N.

10



where the process stops when A* is a decreasing set. This is guaranteed to happen when M* = 1, but
could happen earlier. Notice that at each stage, the forms for A and [ are the same. Consider for example
the second stage, where we have partitioned {1,..., M’} into consecutive intervals £f,..., L), with
corresponding ¢’ and A”. Then

f=2 =2 > =)k

neL; neL) meLy nel

for some consecutive set £ (dependent on k). Likewise

)\ZZ: Z )‘;11;1: Z Z )\mlm:ZAnln

neLl neL) meLy neLl

In particular, this holds for * and A*. Rewriting, the above shows that the optimal solution always has

the form®
K

Ro(A, 6 M) = <Z(Q(mk) - Q(mk—l))(S(mk) _ S(mk1)>1/“)a

2 a(mi) — q(mi—)

where ¢(r) = l; +--- 4+ I, and s(r) = Aly + -+ + Al,, for some sequence of integers my satisfying
0=mpg<mi <---<mg = M. Being optimal, this requires that

s(my) — s(mg—1)

q(mg) — q(my—1)

is decreasing.
For the special case I, = 1 and A\, = Ah(k), ¢(r) = r and s(r) = h(r). Thus

Ra(M) = (i(mk ~ mkil)(h(mk) - h(mk_l))l/a)a

My — Mp—
st k k—1

h(mg)—h(mr_1)
Mg —MEk—1

for some such sequence my for which decreases.
5. Examples and final comments
Now we illustrate our results with a few examples.

(a) Let f be multiplicative with f(p*) = exp{k®p=*} where 0 < o < 1 and 0 < 8 < 1 — « for prime
powers p*. Thus h(k) = k?, which is increasing and Ah(k) is stricly decreasing as can be readily

verified. In this case L(z) ~ (1_:”;%. Thus, by Theorem 2,

max n) ~ 3 nf — (n— 1P/« © (logN)'™
nSaNlogf( ) (;( (n=1)%)! ) (1—a)loglog N

(For a = 0 the RHS is 22~ _ ) In some cases the constant can be evaluated in terms of ¢-values.

loglog N *
For example, taking 5 = % and o = %,
N N 1
S (V- V-1 =4N¥2 1 3VN -6 Vi - —6@(—5),
n=1 n=1

after suitable manipulations. By the functional equation for ((s) this equals £-((2). That is, the
maximal order of the multiplicative function with f(p*) = exp{Vk/¢/p} is

oz N)2/3
exp { (2 Y %((g) +0(1)>(110gglj(:2N} .

5 Another way to see this is to realise that at each stage more consecutive a,s are equated until the corresponding A/ s
(or A\I’s etc.) are decreasing.
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(b)

Theorem 2 can also be used in cases where log f(p*) is not the form h(k)I(p), but only asymptotically
of this form. In [5], the maximal order of the function

T (1) = ﬁ % o o(d)

was required, where o_q(n) = >_;,, d” and d(n) = o¢(n). It was shown that for a € (0,1) and
any v >0

max lo (n) = _ (logN)'™
new o8Ny = T Voglog N

but the true maximal order was left open. With Theorem 2, this can now be established.

Note that 74 ~(n) is multiplicative with
k k
1 1 1 1 ¥
S VAN (15 3 (% SRUE)
N (D7) k’“r:og a(P") k+1< +,«:1 t e T

v g+ O) el o)}

the implied constants being independent of k (and p). Let s(n) denote the multiplicative function
with s(p¥) = exp{ﬁ}. Then 1,,(n) = s(n)t(n) and from the above, o_2,(n)™" < t(n) <
0_24(n)" for some k > 0. It follows that logt(n) < (logn)!=2T¢ for every ¢ > 0. Thus the
maximal order of log7q,,(n) is the same as for log s(n), which can be found from Theorem 2. In
this case h(k) = k"’—fl which is increasing and Ah(k) = pZ+y which is decreasing, while I(p) = p~
Theorem 2 now gives

[0}

= 1 1/eN*  (log N)i=@
glgagfclognaﬁ(n) - Jibngaj%clogs(n) ~ 7(Z(n(n + 1)) ) (1 —a)loglog N~

For particular values of o the constant may be evaluated. Take, say, a = % Then the sum above

becomes . N
nz_:l<n_ n+1) :Z<ﬁ+ TESE n(n+1)) =2¢(2) - 3.

max lo (n) ~4 7T—Z—SM
nen 0852 V3 " “loglog N

Let f be multiplicative with log f(p*) = h(k)l(p) where h(k) = [V/k]. This time h(k) is increasing
but Ah(k) is not, as Ah(k) =1 for k a square and zero otherwise. Note that to apply Theorem 1,
we require o < % To calculate R, we use the method in §4. Thus

Hence, with say v = 2,

oo oo
R, = sup Z Ah(n)al=® = sup Z als®.
ﬂ‘i"l ;:LOZ , n=1 Zﬂinl n\‘noz ;. m=1
Putting b1 = a1, by = as = a3 = a4, b3 = a5 = - -+ = ag etc. for the optimal solution gives
oo o0 1 (e}
R = sup Z b};a = (Z 1a> )
fo:l(l;?t }10)bn —q, n=1 n=1 (27’L - 1) *

by taking the optimal choice b, = ¢(2n — 1)~/

regularly varying of index —a with 0 < a < % then

for some ¢ > 0. Thus, if [ is decreasing and

maxlogf(n)~(1—21_é)a((l—1)a Z I(p).

n<N (e
- p<log N
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Final comments
The constant appearing in the asymptotic formula in the theorems has the form of an [P-norm. For
a = (ay) the IP- norm is defined for 1 < p < oo and p = oo respectively by

o 1/p
lall, = (Z |an|p) » Jlalle = suplanl.
ne—1 neN

Writing « = 1/p (p > 1) we therefore see that, given the conditions of Theorem 2,
maxlog f(n) ~ [|Ah]|,L(log N),

while for Theorem 3, with a@ = 0 corresponding to p = oo
maxlog f(n) ~ [[h1lc L(log N),

where hq(n) = h(n)/n.

This type of formula is strangely similar to an asymptotic formula found for the following ‘quasi’-norm
of an arithmetical operator (see [6]). Let

g€M2 ||g||2
llgll2 =T

where M? is the set of square-summable multiplicative functions and * is Dirichlet convolution. Taking
f € M? to be completely multiplicative such that f(p) is regularly varying with index —q, it was proven
in [6] that for § < a <1

log My (T) ~ (§B(%,1- i))aF(longoglogT)

where F(z) = > _, f(p). Here B(z,y) is the beta-function. Writing p = 1/, the constant can be

rewritten as ||h/||, where h(z) = v/1 —e~2¢. With some heurstic reasoning, it was further suggested in
the case where f(n) =n~% that My(T) represents the maximal order of ((co + it) up to height T i.e.

, log 7)1«
1 ~ ! (
Irtrllg}jg 0g |<(Oé + Zt)| Hh ||P(1 _ Oé)(].OgIOgT)O‘

where [|1||, = (J;° |W/[P)}/P is now the L,-norm. The similarity of form between these ‘discrete’ and
‘continuous’ cases is rather striking, and suggests that there might be a more general framework which
combines these formulae.
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APPENDIX

To put the results into a broader context, we consider a few classes of multiplicative functions of the form
(0.1) where h and [ satisfy slightly altered assumptions.

(a)

Case where 1 is increasing, | decreasing and such that ) I(p) < co. In this case we find

the maximal order of log f(n) is of size h([ll‘;ig]) More precisely, with A =3 1(p)

(@ ([ogg]) = tou st < 3([225])

where the RHS inequality holds for all n and the LHS for infinitely many n, namely, n = 2.

Proof. Let n = HP<P p® where a, can be taken to be decreasing after Lemma 3.1. Thus logn =
> p<p aplogp > azlog2 and

log f(n) = Y hla,)l(p) < h(az) Zz — M(as) <Ah([log"]).

<P log 2

On the other hand, with n = 2%, log f(n) = I(2)h(k) = 1(2)h(1E2).

log 2

Case where h and Ah are increasing, and [ decreasing. Now the maximum for f occurs

when n = 2F and
mag o) = exo {12 [255]) |

To see this, suppose p|n where p is an odd prime, so n = 2¥...p! for some k,l € N. After Lemma
3.1 we can take k > [. Then, with n’ = %n,

) _ Y
f) = F@R D

Thus, with K such that 25 < N < 2K+1

max f(n) = f(2K) = /@K = exp{l(Z)h({lOgnD}.

n<N lOg 2

= exp{l(2)Ah(k + 1) — I(p)Ah(1)} > 1.
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